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Intelligent image analysis for retrieval of leaf chlorophyll content of rice 
from digital images of smartphone under natural light
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Abstract

The present study describes a new imaging method to acquire rice leaf images under field conditions using a smartphone 
and modeling approaches to retrieve the leaf chlorophyll (Chl) content from digitized images. Pearson's correlation of 
image-based color indices of the relative Chl content measured with Soil Plant Analysis Development (SPAD) indicated the 
suitability of the color models RGB, rgb, and DGCI-rgb. Among the linear regression models, the models based on mean 
brightness ratio (rgb) alone or in combination with a dark green color index (DGCI-rgb) show a good correlation between 
the predicted Chl content and relative Chl content. A feed-forward backpropagation-type network was also developed 
following the optimization of hidden neurons, training, and transfer functions. The predicted Chl contents showed a good 
correlation with SPAD values. Compared to the linear regression model, the developed artificial neural network model was 
found to be more efficient in predicting the Chl content, particularly with RGB index. 
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Introduction

Chlorophyll (Chl) is the most important pigment molecule 
that absorbs light and subsequently transfers its energy to 
drive the photochemical reactions of photosynthesis. The 
contents of Chl a and b are directly related to the photo-
synthetic ability and primary productivity of plants. It can 
also reflect the physiological status and is considered to 
be an important indicator for plant health status (Curran 
et al. 1990, Pagola et al. 2009, Yadav et al. 2010, Munoz-
Huerta et al. 2013). Chl absorbs both red (625–675 nm) 
and blue (425–475 nm) light, whereas the wavelength 
corresponding to green color (520–560 nm) is poorly 
absorbed and leaves are green as they reflect more this 
color (Goetz et al. 1983, Rigon et al. 2012). The Chl 
content of leaves further serves as an indicator of nitrogen 
status (Yuan et al. 2016, Ravier et al. 2017) and additional 
information on plant nutrient status (Steele et al. 2008, 
Sim et al. 2015, Rigon et al. 2016). A good correlation 
between Chl and nitrogen content has been observed in 
leaf tissue from a variety of plant species, such as rice (Lin 
et al. 2010, Wang et al. 2014, Yuan et al. 2016), tall fescue 
(Errecart et al. 2012), and wheat (Ravier et al. 2017).

Compared to conventional destructive spectroscopic 
methods of Chl estimation (Lichtenthaler and Wellburn 

1983), sensor-based, modern, noninvasive approaches 
have received considerable attention due to their high-
throughput and real-time measurement abilities (Cassol et 
al. 2008, Yadav et al. 2010, Rigon et al. 2012, Stefan et 
al. 2013, Hu et al. 2014, Jinwen 2014, Novichonok et al. 
2016). Different types of Chl meters (Pagola et al. 2009, 
Novichonok et al. 2016), multi-spectral (Reyniers et al. 
2006) and hyper-spectral sensors (Chen et al. 2010, Li 
et al. 2014) have been developed to measure absorbance  
and spectral reflectance of leaves. Among Chl meters, the 
SPAD meter (SPAD-502, Minolta, Japan) has been widely 
used to measure the Chl content as well as to assess crop 
nitrogen status nondestructively (Uddling et al. 2007, 
Cabangon et al. 2011, Ling et al. 2011, Liu et al. 2012, 
Wang et al. 2013, 2014; Yuan et al. 2016, Vesali et al. 
2017, Agarwal and Dutta Gupta 2018). The instrument 
measures transmission of light absorbed by Chl in the 
red band (650 nm), as well as transmission of infrared 
light (950 nm), where no absorption of Chl occurs. The 
calculation of a SPAD value by the instrument is based 
on the ratio of transmitted red light and infrared light, and 
the SPAD value was found to be well correlated with the 
Chl content (Markwell et al. 1995). Other nondestructive 
techniques, based on satellite or airborne spectral and 
hyperspectral reflectance imaging, have been developed 
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in the recent past to measure the nitrogen status of plants. 
These techniques are costly and usually implemented by 
satellite-mounted sensors and their applications have been 
restricted due to infrequent satellite overpasses, clouds, 
and background soil interferences at farmer level. Among 
the nondestructive methods, the SPAD and related Chl 
meter is cheap, user friendly, and does not suffer from 
any background interferences. However, a large number 
of repetitions of SPAD measurement is needed due to the 
small sampling area (6 mm2) of the instrument. In recent 
years, digital cameras with embedded sensors have been 
utilized as a low cost instrument for estimation of the Chl 
content. Digital imaging together with image segmentation 
and RGB (red, green, blue) color space model is now 
becoming a potential approach for smart agriculture; 
capable of estimating Chl contents, biomass, nitrogen 
content, and leaf area index (Dutta Gupta et al. 2013, 
Riccardi et al. 2014, Wang et al. 2014, Rigon et al. 2016). 
Relationships between indices of spectral reflectance 
and Chl absorbance with RGB image components have 
indicated the potential of digital image segmentation in 
RGB components to estimate the Chl content (Santos do 
Amaral et al. 2018). Variations in light conditions can 
affect imaging constraints due to different ambient light 
conditions. Shadows on leaves have been addressed by 
several workers utilizing various types of color indices 
or chromatic transformations. Several studies reported 
the capability of the dark green color index (DGCI) to 
determine the nitrogen status of plants. This index was 
introduced by Karchar and Richardson (2003) utilizing 
HSB (hue, saturation, and brightness) color space. The 
DGCI showed a good correlation with the nitrogen content 
in corn (Rorie et al. 2011a,b) Apart from this, other indices 
derived from images have been also found useful in 
reducing the effect of lighting variation. Wang et al. (2013) 
used G – R (difference between green component and red 
component), G/R (green divided by red), R/(R + G + B) 
(normalized red index, NRI), G/(R + G + B) (normalized 
green index, NGI) and hue to estimate biomass and leaf 
area index along with nitrogen content.  

The recent advancements in smartphones with high-
speed processors and camera sensors offer an opportunity 
to utilize their image acquisition as well as processing 
abilities for applications in many areas including 
agriculture (Gomez-Robledo et al. 2013, Pongnumkul 
et al. 2015, Friedrichs et al. 2017). Smartphone images 
have been utilized to measure a citrus yield (Gong et al. 
2013), crop water requirements (Confalonieri et al. 2013), 
phosphorus content in soil (Moonrungsee et al. 2015), and 
to estimate Chl contents in corn (Vesali et al. 2015, 2017) 
and soybean plants (Rigon et al. 2016). A recent study 
demonstrated its capability in measuring Chl fluorescence 
(Friedrichs et al. 2017). However, variations exist between 
the color models and the proposed regressions that fit well 
with SPAD values among the findings. Moreover, in most 
of studies, analysis was based on linear relationships 
between the color indices and SPAD-derived Chl contents. 
The nonlinear and nondeterministic nature of a biological 
system makes such a relationship incomprehensible. 
Artificial neural network (ANN) modeling has an inherent 

ability in determining the complex nonlinear relationships 
between the input and output of a biological system 
based on the strengths of their interconnected neurons 
(Krogh 2008, Prasad and Dutta Gupta 2008, Osama et 
al. 2015). Feed Forward Neural Network (FFNN) with 
a backpropagation (BP) algorithm was developed to 
estimate Chl contents from hyperspectral data (Liu et al. 
2010) and in one instance from smartphone contact image 
(Vesali et al. 2015).

The present work describes the imaging of rice leaves 
using a smartphone under natural light and subsequent 
modeling approach to retrieve leaf Chl contents of rice 
using various RGB color indices.

Materials and methods

Plant material and experimental site: The data were 
collected from rice (Oryza sativa L. cv. IR36) plantations 
established at the Agricultural and Food Engineering Farm, 
Indian Institute of Technology Kharagpur, India, with 
three different fertilizer treatments designated as U 60, 
U 90, and U 120 representing 27.6, 41.4, and 55.2 kg(N) 
ha–1, respectively. The site plot is in agro-climatic zone 
WB-5 (undulating red and laterite zone of West Bengal) 
of India with an average rainfall of 8.5 mm at the time 
of imaging. The type of soil present in the experimental 
plots is sandy clay loam in nature. The traditional practices 
were followed for the crop management. A representative 
experimental plot is shown in Fig. 1S (supplement). 

Imaging of rice leaves using a smartphone: The images 
of rice leaves were acquired from the experimental 
plot at the end of the tillering stage (around 30 d after 
transplanting). Fifty rice plants were randomly selected 
from each experimental site and the fourth leaf on the main 
stem of each plant was used for image acquisition. The 
leaf mid portion was considered as the target during image 
acquisition. The images of plant leaves were captured by 
a YU Yureka ao5510 (Micromax, India), 13 mega pixel 
smartphone camera consisting of Sony IMX135 CMOS 
image sensor with auto-focus feature. A magenta sheet was 
used behind the leaf to eliminate the field background in 
the leaf image according to Vollmann et al. (2011). Leaf 
images were captured by holding the smartphone parallel 
to the leaf surface, with the aperture at a fixed distance 
of 12 cm from the leaf. The camera was set at aperture 
of f/2.2 with auto-mode for ISO and exposure time with 
the flash turned off. The images were captured between 
9:00 and 12:30 h IST on sunny days at a mean temperature 
of 32–34°C and precipitation of 0–1 mm. They were 
saved in JPEG format (joint photographic experts group). 
Altogether, there were 50 digital images for each nitrogen 
treatment. 

SPAD measurement for estimation of relative Chl 
content: SPAD values were simultaneously measured from 
the respective leaves by using a SPAD-502 chlorophyll 
meter (Minolta, Japan). Five SPAD values were obtained 
from the same area of rice leaf which was selected for 
image acquisition and the mean SPAD value (relative Chl 
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content) was calculated for each leaf. The SPAD value 
has an exponential relation with Chl content of plants 
measured spectrophotometrically: 

[Chl] = 10M^0.265                                                                          (1)

where [Chl] is the Chl content in unit of µmol m–2 and M 
is the SPAD value (Markwell et al. 1995).

Image preprocessing, segmentation and feature ex-
traction: Image preprocessing was done using Adobe 
Photoshop 7.0 (Adobe Systems Inc., USA) to compensate 
the variations in field light conditions during the course 
of image acquisition. The images were subjected to 
white-balancing using a white to black gradient strip as a 
reference (Photo Blog Stop, accessed on 26 August 2016, 
http://photoblogstop.com/photoshop/accurate-white-
balance-adjustments-in-photoshop). A 50% gray point was 
selected from the white to black gradient strip placed right 
side to the leaf during image acquisition. With the help of 
the selected 50% gray point the image was white-balanced 
to ensure image capture independent of light variation. 
A Matlab® 8.1 (MathWorks Inc., Natick, USA) based 
program was developed for image segmentation, RGB and 
HSV features extraction using a binary threshold concept 
in which the threshold values were chosen from minimum 
and maximum RGB values possible for imparting various 
shades of green color in the leaves (Pound and French 
2014). The threshold values for R, G, and B were 0–130, 
51–255, and 0–130, respectively (RapidTables, http://
www.rapidtables.com/web/color/RGB_Color.htm). The 
program selected pixels from the leaf images having 
their RGB values within the stipulated threshold (Fig. 2S,  
supplement). Since the RGB values of the magenta 
background are lying outside the specified thresholds, the 
background was eliminated during image segmentation. 
Finally, the developed Matlab® code extracted the mean 
RGB and HSV features of the leaf from the respective 
digital image.

Derivation of color indices: The color images captured by 
a smartphone are composed of pixels consisting of RGB 
values ranging between 0 and 255 for each band R, G, 
and B. R, G, and B are the mean values of red, green, and 
blue components of an image and each RGB color pixel 
represents a depth of 24 bit. RGB values were normalized 
to obtain the mean brightness ratio (rgb) of each color. 
From HSV color space, the hue (H), saturation (S), and 
value (V) components of each image and Y, Cb, and Cr 
attributes of YCbCr color space were extracted (Table 1S, 
supplement). Apart from these main channel color spaces, 
other combinations of color indices, i.e., G – B, G – R, and 
G/R, VIgreen [(G – R)/(G + R)], and DGCI ([(Hue/60 – 1) +  
(1 – S) + (1 – B)]/3) were also extracted from RGB values. 
The equations used to derive the various color indices are 
presented in Table 1S.

Correlation of color indices with relative Chl content 
(SPAD) values: The mean value of R, G, B and different 
color indices (as in detail in the Table S1, supplement) 
were correlated with SPAD values following the Pearson's 

correlation analysis using Microsoft Office Excel 12.0 
Data Analysis Tool Pack (Microsoft, Washington, USA). 

Multiple linear-regression modeling to estimate Chl 
content from leaf image features: A linear-regression 
analysis was performed using dataset comprised of 
50 leaves with a U 60 treatment using Matlab® 8.1 
(MathWorks Inc., Natick, USA) for the prediction of the 
Chl content from RGB color space model as described in 
Yadav et al. (2010). A similar approach was also adopted to 
predict the Chl content using the values obtained from the 
expression ([(Hue/60 – 1) + (1 – S) + (1 – B)]/3) and rgb, 
hereafter referred to as DGCI-rgb linear regression model. 
The selection of type of models was based on the analysis 
of correlation between the color indices and SPAD values. 
The model equations used are:

[Chl]P1 = a1*R + b1*G + c1*B                                             (2)
[Chl]P2 = a2*r + b2*g + c2*b                                                (3)
[Chl]P3 = a3*DGCI + b3*r + c3*g + d3*b                              (4)

for RGB, rgb, and DGCI-rgb models, respectively. ChlP1, 
ChlP2, and ChlP3 are the predicted Chl contents. R, G, and 
B represent mean reflectance value, whereas r, g, and b 
are the mean reflectance ratio of each primary color. 
The coefficients preceding the color index variables are 
the model parameters which were determined using the 
matrices:

[a1b1c1]T = [AT
RGB*ARGB]–1*AT

RGB*Y                                  (5)
[a2b2c2]T = [AT

rgb*Argb]–1*AT
rgb*Y                                        (6)           

[a3b3c3d3]T = [AT
DGCI-rgb*ADGCI-rgb]–1*AT

DGCI-rgb*Y                (7)

where ARGB is the mean brightness value of primary 
colors and Argb and ADGCI-rgb represent the mean brightness 
ratio of primary colors and image feature DGCI with 
mean brightness ratio. T denotes the transpose. Vector Y 
represents the relative Chl content of the leaves determined 
by SPAD meter. The relation between the model predicted 
and SPAD measured Chl content was assessed by 
coefficient of determination (R2) and root mean square 
error (RMSE). The RMSE is expressed as:

where Xi is the relative Chl content, xi is the predicted Chl 
content and n is the number of measurements.

Validation of linear-regression model was done by using 
the datasets obtained from 50 leaves of both U 90 and U 
120 treated rice plants. The model equation and the model 
parameters as derived from U 60 dataset were considered. 
The RGB, rgb, and DGCI-rgb values of the U 90 and U 120 
datasets are substituted in the respective model equations 
and the predicted Chl content values thus generated were 
correlated with the SPAD measured relative Chl content 
values of the corresponding leaves of U 90 and U 120 
treatments. 

ANN modeling for prediction of Chl content from 
leaf images: For noninvasive prediction of Chl content, 

                                          (8)
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a Feed Forward Neural Network with a backpropagation 
(BP) algorithm (FFNN-BP) ANN model was developed 
using the Matlab® 8.1 platform. FFNN-BP is a multilayer 
perceptron training algorithm in which the input values 
are fed forward to obtain a nonlinear relationship between 
the input (RGB, rgb, DGCI-rgb) and output (Chl content) 
variables, further error is calculated and back propagated 
through the network during training for updating weights 
in the nonlinear relationship generated by the network 
(Krogh 2008, Živković et al. 2009). The performance 
function (mean squared error) was derived following the 
comparison of the predicted properties with the observed 
properties of the process. The RGB model network 
topology is depicted in Fig. 1. However, there were four 
input nodes for DGCI-rgb model. The dataset of U 60 
treatment was divided into two groups. The training set 
consisted of data from 35 leaves, whereas the data obtained 
from 15 leaves were used for testing the ANN model. A 
code was created in Matlab for the RGB, rgb, and DGCI-
rgb models and for training the ANN model as well as 
predicting the Chl content from the test dataset. The model 
uses the logarithmic sigmoid transfer function for both the 
hidden and output layer neurons which scales the input 
data into an open interval of 0–1. The input variables were 
normalized by using the expression:

                                                                 (9)

where XN, X, Xmax, and Xmin are the normalized, real, 
maximum, and minimum values of the input variables, 
respectively. 

Initially, 11 networks were tested with 11 training 
functions, i.e., Train GDA, Train GDX (gradient descent 

with momentum and adaptive learning rate), Train GDM 
(gradient descent with momentum backpropagation), 
Train RP (resilient backpropagation), Train BR (Bayesian 
regularization backpropagation), Train CGB (conjugate 
gradient backpropagation), Train CGF (conjugate 
gradient backpropagation with Fletcher-Reeves updates), 
Train OSS (one-step secant backpropagation), Train 

SCG (scaled conjugate backpropagation), Train BFG 
(BFGS-quasi Newton backpropagation), and Train LM 
(Levenberg-Marquardt backpropagation) following the 
inbuilt command of Matlab. The training function which 
performed best was selected on the basis of a maximum 
R2, least RMSE, and least average percentage difference 
(APD) during testing. 

The average percentage difference (APD) was 
calculated as follows:  

where Chlpredicted = predicted Chl content, Chlrelative = relative 
Chl content, N = number of measurements.

The parameters optimized for the ANN models are 
mentioned below: 

Training function Train LM (Levenberg-Marquardt)
Transfer function LOGSIG
Performance function MSE
Hidden nodes 1
Hidden layers 1
Target epochs 500
Target error 0.0001
Learning rate 0.01

For the validation of the ANN model the datasets of 
U 90 and U 120 were fed into the trained network as 
obtained from U 60 treatment. Thus, model validation was 
performed with a test set of 50 leaves each from U 90 and 
U 120 treatment instead of test set of 15 leaves from U 60 
treatment during model development. 

Performance evaluation of the models: The performance 
of the linear and ANN models in predicting the Chl content 
was assessed by comparing the RMSE and mean absolute 
error (MAE). The MAE is expressed as

where Si and Pi are the SPAD and predicted Chl values, n 
is the number of observations. The accuracy of the models 
with respect to the benchmark of the ability of prediction 
was also evaluated by percent bias (PBias) and is expressed 
as:

                                                    (12)

where Si and Pi represent SPAD and predicted Chl values 
and n is the number of observations.

The overall steps of image analysis system including 
the modeling approach for noninvasive estimation of leaf 
Chl index of rice under field conditions using a smartphone 
are shown in Fig. 2.
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Fig. 1. Artificial neural network (ANN) architecture for RGB 
model with 3-1-1 structure. 
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Results
Correlation of image-based color indices with SPAD 
measured relative Chl content: Pearson's correlation 
analysis was performed to find correlation between the  
color index and the relative Chl content with the datasets of 
U 60, U 90, and U 120 treatments (Tables 1, 2). A negative 
correlation with the relative Chl content was found with  
color indices R, G, G – B, r, S, V, Y, and Cr, whereas  

indices B, b, G – R, G/R, Cb, H were positively correlated. 
The strongest linear relationship (R2 = –0.858, –0.748, 
and –0.728, respectively, for U 60, U 90, and U 120) 
with SPAD value was obtained with r in the RGB color 
space model. Color index G was poorly correlated with  
the Chl content. Considering the relationships prevalent in 
this study, modeling was performed with the color models 
RGB, rgb, and DGCI-rgb.
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Fig. 2. A digital imaging system for predicting the leaf 
chlorophyll content of rice in a noninvasive manner 
under field condition using a smartphone.
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Linear modeling for prediction of Chl content and model 
validation: Linear regression models were developed for 
RGB, rgb, and DGCI-rgb datasets corresponding to U 60  
treatment using Matlab® 8.1. The model parameters  
calculated were a1 = −0.4998, b1 = 0.7917, c1 = 0.3794; a2 =  
−6.8731, b2 = 58.2756, c3 = 93.8636; and a3 = −17.8162, 
b3 = −12.9857, c3 = 72.3768, d3 = 118.4315, respectively, 
for RGB, rgb, and DGCI-rgb models. The performance of  

the models in terms of R2 and RMSE is shown in Fig. 3. 
A poor correlation (R2 = 0.335) between model predicted 
and SPAD-derived Chl content was observed with RGB 
model, whereas rgb and DGCI-rgb models predicted Chl 
content with significant correlations of R2 = 0.776 and  
R2 = 0.792, respectively. 

The linear regression model developed was validated 
using the experimental dataset of U 120 and U 90 treat-
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ments. The predicted Chl content generated from both the 
datasets using RGB linear model showed poor correlation 
with SPAD measured relative Chl content. However, rgb 
and DGCI-rgb models were capable of predicting the Chl 
content efficiently having high correlation with SPAD 
value (Fig. 4).

ANN modeling for estimation of relative Chl content: 
For the FFNN-BP model, the input variables RGB, rgb, 
DGCI-rgb having one hidden layer with one node were 
trained with datasets comprised of 35 leaves and were 
tested with a dataset of 15 leaves with a U 60 treatment. 
Initially, the model development was tested with different 
network architectures, network internal parameters, and 
various training functions. The optimum number of hidden 
neurons was selected on the basis of high R2 and low 
RMSE values. The effective network topology for RGB 
model was observed to be 3-1-1, where 3 represents the 
input variables, 1 denotes the hidden neuron layer, and 1 
represents the output as shown in Fig. 1. During selection 
of the optimum number of hidden neurons, a peaking effect 
was observed as the error increased with an increasing 

number of neurons beyond one. A significant influence of 
the training function in optimization of the ANN modeling 
was observed. The optimal efficiency of the ANN networks 
was obtained by comparing the model predicted values 
with the experimental data obtained from the SPAD meter. 
A comparative assessment between the measured Chl 
content and all trained network output data for the least 
deviation from the target range revealed that the output 
range of network ‘Trainlm’ was closest to the actual data. 
Among the 11 training functions, ‘Train LM’ resulted in 
the lowest RMSE of 2.91, R2 value of 0.797, and APD of 
2.696 (Fig. 3S, supplement), and hence, was selected for 
use in the modeling approach to predict the Chl content. 
Fig. 5 shows the correlation between the predicted and 
SPAD-measured Chl contents for RGB, rgb, and DGCI-rgb 
models. All the models exhibited a significant correlation 
between the predicted and experimental Chl content with 
R2 values of 0.797, 0.806, and 0.807, respectively, for RGB, 
rgb, and DGCI-rgb parameters. Further, the efficiency 
of the developed models was validated with the selected 
image features of test datasets obtained from U 90 and  
U 120 treatments. The predicted Chl contents thus gene-

Fig. 3. The correlation of chlorophyll (Chl) content predicted by linear RGB (A), rgb (B), and DGCI-rgb (C) models to that of relative 
Chl content from U 60 dataset.

Fig. 4. Validation of the linear RGB (A), rgb (B), and DGCI-rgb (C) models using datasets of U 90 and U 120 and their ability to predict 
chlorophyll content.
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rated showed a significant correlation with SPAD values 
for all the three models (Fig. 6).

Performance of the developed models to predict relative 
Chl content: The quantitative relationships between 
the model-predicted and SPAD-derived Chl content in 
rice during performance evaluation of the developed 
RGB, rgb, and DGCI-rgb models from the test datasets 
of U 90 and U 120 are summarized in Tables 2S and 3S 
(supplements). The ANN model performed better than the 
linear model particularly with the RGB color space. With 
the rest of the color indices, both the linear and nonlinear 
model performed equally well. The predicting ability of 
the developed models was also tested with percent bias. 
The PBias values indicate that the predicted values from 
both the models are within the acceptable limit of < ± 10%.

Discussion

Correlation of color indices with relative Chl content: 
In recent years, the successful application of digital image 
processing with color-related indices has opened up a 

new vista to estimate variables of agronomic importance. 
The present study demonstrated the ability of index ‘b’ 
in the RGB color space to predict Chl content with its 
best fit to SPAD value, whereas the green parameter (G) 
was found to be ineffective. Similar relationship of color 
indices with SPAD measurement was also observed in 
corn following image acquisition using spectral absorption 
photometry (SAP) and light aided spectral absorption 
photometry (LASAP, Vesali et al. 2017). In contrast, 
a good relationship of Chl content with the single color 
component index ‘G’ was observed in soybean (Rigon 
et al. 2016). It has been pointed out that the RGB color 
space does not always represent properly the green value 
of vegetation. A conversion of RGB values has been 
suggested to more intuitive HSV color model to represent 
the correlation of color index with SPAD value (Karcher 
and Richardson 2003). In the present study, the index ‘S’ 
of the HSV color model had strong linear relation with the 
Chl content. Among the indices of HSV color spectrum, 
DGCI showed a significant correlation with SPAD value 
in all the treatments. This has been the most widely used 
color model among the various image-related indices that 

Fig. 5. Relationship between chlorophyll (Chl) content predicted by RGB (A), rgb (B), and DGCI-rgb (C) artificial neural network 
models to that of relative Chl content (SPAD values) using the dataset of U 60.

Fig. 6. Validation of the RGB (A), rgb (B), and DGCI-rgb (C) artificial neural network models using the test datasets of U 90 and U 120 
and their ability to predict chlorophyll content.
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fitted well to Chl contents (Rorie et al. 2011a, Lee and 
Lee 2013). However, in their work with corn, Vesali et 
al. (2015, 2017) reported poor correlation of DGCI with 
the value of SPAD. Differences in the species studied, 
image acquisition methods with type of sensors utilized, 
irradiation conditions, and operating system of the camera 
may account for such variations in the relationship (Pagola 
et al. 2009, Wang et al. 2013, Rigon et al. 2016). The 
intrinsic characteristics of plant leaves, such as nature 
of cuticle, presence or absence of trichomes, and leaf 
anatomical features, may regulate the reflectance pattern 
and consequently change the relationship. Considering 
the relationships prevalent in this study, modeling was 
performed with the color models RGB, rgb, and DGCI-rgb. 
The developed image segmentation algorithm is capable of 
extracting the RGB features under field conditions without 
any additional device fitted to the smartphone. It makes 
the image acquisition user friendly along with bypassing 
the constraints of lighting variations in real conditions 
compared to the contact imaging and LASAP methods 
adopted by Vesali et al. (2017).

Linear modeling to predict Chl content and model 
validation: In most of studies, the relationship between 
color indices and SPAD values has been evaluated 
according to the simple correlation and regression analysis 
(Wang et al. 2014, Rigon et al. 2016, Vesali et al. 2017). 
The regression model developed in our study was able to 
establish a best fit to the SPAD-measured data and was also 
capable to predict Chl contents efficiently. The relationship 
obtained is in agreement with the findings of Yadav et al. 
(2010), Dutta Gupta et al. (2014), and Dutta Gupta and 
Pattanayak (2017), where linear regression models were 
used and a rgb model was found suitable for the prediction 
of Chl content in micropropagated potato. The similarity 
in the predicting ability between the model calibration and 
validation suggests the robustness of the imaging method 
and the developed model. Moreover, similar trends in the 
values of R2 and RMSE for different nitrogen treatments 
indicated the consistency of model performance at different 
nitrogen concentrations. 

ANN modeling for estimation of relative Chl content: 
Despite the successful application of linear regression 
model, such modeling approach suffers from poor 
predicting ability in a nonlinear biological system. The 
intrinsic nondeterministic behavior of the biological 
samples prompted us to adopt artificial intelligence model 
for optimum performance (Osama et al. 2015). ANN 
models can be trained with different algorithms and can 
work with noisy data with high nonlinear behaviors. 
Among the various ANN models, FFBP neural network 
was utilized in this study and was optimized with the 
training function ‘Train LM’. This supervised training algo- 
rithm of Lavenberg-Marquardt is one of the fastest BP 
algorithms, recommended for optimization which can 
adjust weights and biases in neural networks (Demuth and 
Beale 1993). This type of model that utilizes BP algorithm 
was also found to be effective in predicting Chl content in 
various growth stages of rice (Liu et al. 2010) and in maize 

grown under various nitrogen concentrations (Vesali et al. 
2015).

Performance of the developed models to predict 
relative Chl content: The performance evaluation of 
the developed models suggested improved efficiency of 
ANN models, compared to linear models to predict the 
Chl content using RGB features. This was evident with 
MAE, the most natural and unambiguous approach used 
to measure the average error magnitude, apart from 
RMSE (Willmott and Matsuura 2005). However, with 
the image features of rgb and DGCI-rgb, both types of 
models showed relatively equal performance as assessed 
by RMSE and MAE. It appears that the type of image 
feature may play a contributing role in the performance 
of the models. The results of this study show that linear 
regression models developed for the prediction of relative 
Chl content have a similar performance as ANN models 
for the image features rgb and DGCI-rgb and are different 
from the reports of Liu et al. (2010) and Vesali et al. 
(2015). In their work with field grown rice and maize, they 
suggested that BP algorithm can predict Chl content better 
than a linear model. Noteworthy, image parameters used 
for the modeling were different from the present study. Liu 
et al. (2010) used spectral indices in the NIR region and 
the modeling approach was based on the input luminous 
factor parameters, Hue, Huestd, and Crstd similar to Vesali 
et al. (2015). The present study utilizes the image features 
based on RGB color space (RGB, rgb) and a combination 
of HSV and RGB color space model (DGCI-rgb). Such 
variations in the input data may account for the differences 
in the model performance. However, as envisaged from 
Table S3 (supplement), all the models in the present study 
were capable of predicting the Chl content with PBias < ± 
10%, which indicates the acceptability of the models. 

Conclusion: The present study described the modeling 
approaches using various color indices obtained from 
digital images captured from smartphone to predict relative 
Chl content of rice under field conditions parallel to SPAD 
measurement. The proposed method of smartphone-based 
imaging appears to be a cost effective and easy to use 
alternative to the high cost images captured from digital 
cameras and satellites. A multiple linear regression model 
and a FFNN-BP neural network model were developed 
for the prediction of Chl content using the selected image 
derived features. The input variables in the models were 
RGB, rgb, and DGCI-rgb and the output was predicted 
relative Chl content which was correlated with the SPAD-
measured Chl content. Both the models were capable of 
predicting the relative Chl content. The performance of the 
model was found to be dependent on the type of image 
features. ANN models performed better than the linear 
models with RGB color index, whereas linear regression 
models were more effective with input of rgb and DGCI-rgb 
indices. Compared to the conventional sensor-based SPAD 
meter, implementation of this smartphone-based method as 
a low cost device can be a potential alternative to estimate 
relative Chl content. The developed intelligent image 
analysis system can be used to measure Chl content within 
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the workflow of a typical cultivation system to introduce a 
decision making step towards plant photosynthetic ability 
and nutrient status. However, processing of images using 
in-built processor of the smartphone and the development 
of an app may make the system amenable for online 
estimation of relative Chl content at farmers end.
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