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An information-theoretic approach
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A directionality index based on conditional mutual information is proposed for application to the
instantaneous phases of weakly coupled oscillators. Its abilities to distinguish unidirectional from
bidirectional coupling, as well as to reveal and quantify asymmetry in bidirectional coupling, are
demonstrated using numerical examples of quasiperiodic, chaotic and noisy oscillators, as well as

real human cardiorespiratory data.
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Cooperative behavior of coupled complex systems has
recently attracted considerable interest from theoreti-
cians as well as experimentalists (see e.g. the monograph
[1]), since synchronization and related phenomena have
been observed not only in physical, but also in many bio-
logical systems. Examples include the cardio-respiratory
interaction [2,3] and the synchronization of neural signals
[4-9]. In such physiological systems it is not only impor-
tant to detect synchronized states, but also to identify
causal (driver-response) relationships between the sys-
tems studied. The problem of coupling direction in gen-
eralized synchronization [10] has been treated using am-
plitudes of the system observables and evaluating their
mutual predictability [4,5] or mutual nearest neighbors in
reconstructed state spaces [7,11]. Information-theoretic
approaches [8,9,12] have also been successfully applied.

Considering weakly coupled oscillators the coupling
properties of the systems studied can be inferred from
an analysis of the interrelations between the instanta-
neous phases of the oscillators, ¢1 (). These can be
estimated from (scalar) observable signals [1,13,14]. Sev-
eral methods have been proposed for the detection and
quantification of phase synchronization from experimen-
tal data [1,6,14]. Rosenblum et al. [15,16] have also
introduced methods for inferring directionality of cou-
pling, based either on Fourier approximation of phase
increments or instantaneous periods as functions of the
phases ¢1,2(t), or on mutual predictability of the instan-
taneous phases ¢1 2(t). Palus et al. [8] have introduced an
information-theoretic framework for the study of gener-
alized synchronization in experimental time series based
on evaluation of so-called coarse-grained transinforma-
tion rates (CTIRs). In this paper, CTIRs are developed
and applied to instantaneous phases ¢ 2(t) of coupled
oscillators.

The method introduced in [8]  operates
with information-theoretic tools such as the well-known
mutual information I(X;Y) of two random variables X
and Y, given as I(X;Y) = H(X)+ H(Y) - H(X,Y),
where the entropies H(X), H(Y), H(X,Y) are given in
the usual Shannonian sense [8,17]. The conditional mu-

tual information I(X;Y|Z) of the variables X, Y given
the variable Z is defined using the conditional entropies
[8,17] as

I(X;Y|Z)=H(X|Z)+ HY|Z) - HX,Y|Z). (1)

Consider two time series {z(t)} and {y(¢)} regarded
as realizations of two stationary ergodic stochastic pro-
cesses {X ()} and {Y(¢)} which represent observables of
two possibly coupled systems. Dependence structures be-
tween the two processes (time series) can be studied using
the simple mutual information I(y;z.), where we use y
for y(t) and z, for z(t + 7). I(y;z,) measures the aver-
age amount of information contained in the process {Y'}
about the process {X} in its future 7 time units ahead
(r-future thereafter). This measure, however, as well as
other dependence and predictability measures, could also
contain information about the 7-future of the process
{X} contained in this process itself if the processes {X}
and {Y'} are not independent, i.e., if I(z;y) > 0.

For inferring causality relations, i.e., the directionality
of coupling between the processes {X(t)} and {Y(¢)},
we need to estimate the “net” information about the 7-
future of the process {X} contained in the process {Y'}
itself using an appropriate tool — the conditional mutual
information I(y; z.|z). It has been shown [8,9] that using
I{y; z;|x) and I(z;y,|y) the coupling directionality can
be inferred from time series measured in coupled, but not
yet fully synchronized systems.

Consider now that the processes {X} and {Y'} can be
modelled by weakly coupled oscillators and that their
interactions can be inferred by analyzing the dynam-
ics of their instantaneous phases ¢ (t) and ¢o(t) [15,16].
The latter can be estimated from the measured time se-
ries {z(t)} and {y(t)}, e.g., by application of the dis-
crete Hilbert transform [1,13,14]. Rather than simply
substituting the series {z(t)} and {y(¢)} by the phases
¢1(t) and ¢=(t) (which are confined in interval [0, 27) (or
[—m, 7)), we consider phase increments

Ardre =12t +7) — d1,2(2),



FIG. 1. (a-c) Directionality index D(1,2) for noisy phase
oscillators (3) for €1 = 0.1 as a function of e; computed using
q=8 (a) and q=4 (b) equiprobable marginal bins and series
length N=1k (dashed line), N=8k (dash-and-dotted line) and
N=128k samples (full line). (c) D(1,2) for N=128k, q=S8,
averaged over time lags: 1-5 (dashed line), 1-15 (full line),
1-150 (dash-and-dotted line). Integration step is w/7. (d)
D(1,2) for coupled Rossler systems (4) with e = 0.01 as a
function of e» (dashed line) and with ez = 0.01 as a function
of €1 (full line). N=128k, q=8, lags 1-15.

and the conditional mutual in-

formation I(¢1(); Ar¢a|¢2(t)) and I(a(t); Arda|61 (1)),
in a shorter notation I(¢1; A, d2|p2) and I(¢2; Ar¢1|d1).
Now, in analogy with Rosenblum et al. [15,16] we define
a directionality index

i(152)—i2—1)
i(1=2)+i2—=1)

D(1,2) = (2)
where the measure i(1 — 2) of how the system 1 drives
the system 2 is either equal to the conditional mutual
information I(¢1; A, ¢2|¢2) for a chosen time lag 7, or to
an average of I(¢1; Ar¢a|¢p2) over a selected range of lags
7. (For motivation for averaging and the concept of the
coarse-grained information rates see [8,18].) And in full
analogy we define i(2 — 1) using I(¢2; Ar¢1]¢1). D(1,2)
should be positive if the driving from system 1 to system
2 prevails, and negative for the opposite case.

In order to test how well the directionality index (2)
works we start with the same simple model of two coupled
phase oscillators as Rosenblum and Pikovsky [15] and
Rosenblum et al. [16]:

¢1 = wi + e fi(er, p2) + &1(t)
b2 = w2 + €2 fa(d2, d1) + &a(t) (3)

Using w1,2 =1+ 01, qLQ = 0, fl’g = Sin((ﬁz,l - ¢1,2)
and mutually independent Gaussian IID noises with zero
mean and standard deviation o = 0.2 for & 2, with a
fixed coupling parameter €; = 0.1 we generated time se-
ries of the phases ¢1 2(t) for fifty different values of the
coupling parameter e5. The directionality indices D(1, 2)
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FIG. 2. (a,b) Directionality index D(1,2) (dashed line) and
mutual information I(¢1; ¢2) (full line) of the phases of unidi-
rectionally coupled Rossler systems (4) (e = 0) as a function
of €2 (a), and for e2 = 0 as a function of €1 (b). N=128k,
q=8, lags 1-15. (c,d) D(1,2) for noisy phase oscillators (3)
(full line) with w; = 0.1 and wy = 1.1 (1:11) for €; = 0.01 as
a function of e for lags 1-15 (c) and lags 10, 20, ..., 150 (d).
The horizontal dashed lines are ranges of the mean + 2SD of
D(1,2) obtained from the surrogate data.

were obtained from coarse-grained estimates of the con-
ditional mutual information. The latter were obtained
by a simple box-counting algorithm based on equiproba-
ble marginal bins (marginal equiquantization [18]). The
dependence of D(1,2) on the quantization and the series
length can be seen in Figs. 1(a,b), and its dependence
on time lags in Fig. 1(c).

Averaging I(¢1,2; Ar¢a,1|d2,1) over a short range of
lags decreases fluctuations of the estimates. For shorter
time series (N=1k=1024 samples) more coarse (q=4) es-
timates have higher variance (Fig. 1b, dashed line),
while for =8 the estimates have a higher bias for weaker
coupling (Fig. 1la, dashed line). The results for series
lengths N=8k=8192 (Figs. 1(a,b), dash-dotted line) and
N=128k=1.3x10° samples (Figs. 1(a,b), full line) reflect
well the coupling asymmetry and smoothly changes with
changing coupling parameter ez (c.f. the results in [15],
Fig. 3a.)

Let us now consider two coupled Réssler systems, the
same as studied in [13,14], but with different coupling
coefficients €1 # €a:

i71,2 = —w12Y1,2 — 21,2+ 61,2($2,1 - $1,2);
Y1,2 = wi,271,2 + 0.15y1 2, (4)
21,2 =0.2 + 21’2(.’13'1’2 — 10)

The frequencies w5 are defined as w; 2 = 1£0.015. The
phases of the Réssler systems (4) have been obtained us-
ing the Hilbert transform by the same way as in [14],
where the simple mutual information I(¢1;¢2) was pro-
posed for detecting phase synchronization. Here we re-
peat the numerical study of transients to phase synchro-
nization, as in [14], but for unidirectional coupling, i.e.,



either €; = 0 (Fig. 2a), or e; = 0 (Fig. 2b). We can see
that D(1,2) (dashed line) correctly identifies the driver
from the response system [19] before the coupling pa-
rameter reaches the synchronization threshold [20]. The
latter is detected by a steep increase of I(¢1; ¢2) (full line
in Figs. 2a,b) [14].

Keeping the coupling parameters before the synchro-
nization threshold we can repeat the same study as with
the oscillators (3), when one coupling parameters was
kept constant, i.e. e; = 0.01, and the other, ¢; varies
from zero to 0.03 (dashed line, Fig. 1d), and vice versa
(full line, Fig. 1d). The directionality of coupling was
exactly revealed also in this example of chaotic systems,
which were not studied yet from this point of view.

Let us return to the phase oscillators (3). We have
also studied the noise-free quasiperiodic system, as well
as more complex noisy cases with larger differences in
the natural frequencies, or with asymmetric coupling,
as treated in [16]. In all cases the directionality index
D(1,2) identified the correct coupling direction.

Since we intend to study cardiorespiratory interactions
during paced respiration, when the ratio of natural fre-
quencies can be rather large, we have studied the sys-
tems (3) with such frequency ratios as wy : we =1 : 11
(Fig. 2c,d). For relatively short time lags 7 the direc-
tionality index D(1,2) detects the correct coupling di-
rectionality for the majority of the coupling parameter
values (Fig. 2c, the full line), while for long time lags
(Fig. 2d) the directionality detection ability of D(1,2)
is lost. Looking back at the conditional mutual informa-
tion I(¢1, AT¢2|¢2) and I(¢2, AT¢1 |¢1) we can find that
their values are very low, comparable with variance of
their estimates. This leads to a large bias and variance
of the directionality index D(1,2). Therefore we need
to establish significance of D(1,2) values by a statistical
test.

We use the concept of surrogate data (see [14] and ref-
erences therein). In this case the surrogate data can be
a set of realizations (with different random initial condi-
tions) of phases of uncoupled oscillators (3). Estimating
the conditional mutual information and the directional-
ity indices for these surrogate data sets we can assess
the fluctuations of these quantities for uncoupled data
without any directionality of coupling. To present these
fluctuations, we illustrate the ranges of the mean + 25D
(standard deviations) of D(1,2) for the surrogates by the
dashed lines in Figs. 2c¢,d. In the case of large time lags
(Fig. 2d) the surrogates confirm the extremely large fluc-
tuations of D(1,2) and its bias to positive values. As a
result, the directionality index of the coupled oscillators
does not differ significantly from D(1,2) of the surro-
gates, so in this case no directionality can be inferred
(Fig. 2d). In the case of small lags, fluctuations and
bias of D(1,2) are much smaller, although not negligible
(Fig. 2c, dashed lines). The range of surrogate D(1,2)
fluctuations disqualifies values of D(1,2) for the coupled
oscillators for a small interval around the symmetry point
€2 = 0.01. Since we can see that the fluctuations of
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FIG. 3. Synchrogram (top panel), mutual information
I(¢1;¢2) (middle panel) and the directionality index D(1,2)
(bottom panel) for the phases of human cardiorespiratory
data (respiration and heartbeat, full thick lines). The ranges
of surrogate mean+2SD for I(¢1; ¢2) and D(1,2) are depicted
by thin lines in respective panels.

D(1,2) estimates for the coupled systems (full line in Fig.
2c¢) are of similar magnitude to the surrogate mean+2SD
range, comparison of the directionality index obtained
from the studied data with its surrogate range save us
from making an unreliable inference of the directionality.

In any experimental application, estimation of the di-
rectionality index should be accompanied by an assess-
ment of its significance. Otherwise an incorrect direction-
ality could be concluded due either to variance or bias in
the estimate of the directionality index. The surrogate
data test is one possible approach. In many practical ap-
plications, however, it is the only available one. Various
types of bivariate surrogate data useful in the study of
coupled systems are discussed in [14]. A special type re-
lated to a specific application is presented below, where
we analyze data from human cardiorespiratory interac-
tions.

The cardiorespiratory coupling during spontaneous
and paced respiration was analyzed in a group of young
healthy subjects. The data were noninvasively recorded
for 12 minutes, while the subjects were lying comfort-
ably. The cardiac activity was assessed by recording
the electrocardiogram (ECG) and a piezoelectric sensor
was used to measure excursions of the thorax and hence
the respiratory activity. A sampling rate of 400 Hz was
used for both signals. (For details of measurements see
[21]) The phases of cardiac activity were estimated using
the marked events method, by marking R-peaks. The
phases of the respiratory oscillations were obtained by
application of Hilbert transform to the respiratory signal.
The results will be presented in detail elsewhere; here we
briefly illustrate the potential of the proposed approach.
The directionality index D(1,2) (1 — respiratory, 2 — car-
diac system) was estimated in moving 40-second windows
with 50% overlap, using 4 quantization levels and time



lags from 20 to 200, increased by 20 (samples).

In the same windows, but using 16 quantization levels,
the simple mutual information I(¢;; ¢2) of the instanta-
neous phases ¢1(t), ¢2(t) was calculated in order to as-
sess presence of phase synchronization [14]. Significance
levels for both D(1,2) and I(¢1; ¢2) were established us-
ing sets of 30 realizations of surrogate data. The latter
were constructed by random permutations of R-R inter-
vals, thus producing artificial heartbeat data with the
same frequency histograms as the original data. Due to
the randomization of the R-peak positions, however, any
possible association with the respiratory rhythm was de-
stroyed. The respiratory data remained unchanged, so
that the significance levels depend on the character of
the respiratory dynamics in each window.

The synchrogram [2], the mutual information I(¢1; ¢2)
and the directionality index D(1,2) for an example of
spontaneous respiration are illustrated in Fig. 3. Two
episodes of phase synchronization between the heartbeat
and respiratory rhythms, visible in the synchrogram as
almost horizontal lines (at times of approximately 240
and 500 seconds), are detected by I(¢1; ¢2) (thick line in
Fig. 3, middle panel) lying outside from the surrogate
range (mean+2SD of the surrogates, depicted by thin
lines). The necessity of establishing the significance level
(here as the mean plus two standard deviations of the sur-
rogate set) is obvious — even relatively large positive val-
ues of I(¢1; ¢2) do not necessarily reflect the presence of
synchronization (but the bias and variance of estimates)
unless I(¢1; ¢2) is larger than the significance level given
by the surrogate mean and variance.

The same holds also for the values of the directional-
ity index D(1,2) (thick line in Fig. 3, bottom panel),
estimates of which are severely biased towards positive
values, as confirmed by the surrogate mean+ 2SD ranges
(thin lines). Nevertheless, in a large part of the record-
ing, D(1,2) is larger than its significance level, indicating
that the respiration is driving the cardiac system, as was
recently reported by Rosenblum et al. [16]. It is also no-
ticeable that D(1,2) falls into the surrogate range, i.e.,
no directionality can be inferred, in the two synchronous
intervals [20], detected by I(¢1; ¢2) as well as seen in the
synchrograms (Fig. 3).

Note that the tools introduced above have a firm
mathematical basis in information theory, and their
coarse-grained estimates can be computed more effi-
ciently [18,22] than measures used by other authors.

In conclusion, an information-theoretic approach for
detecting the directionality of coupling from the phases
of interacting oscillators has been proposed and tested.
Its ability to reveal and quantify possible asymmetry in
the coupling has been demonstrated using both numer-
ical and real data examples. The problem of assessing
the significance of estimated directionality indices is dis-
cussed for the first time in this context and solutions were
proposed.
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