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Using several methods for detection of causality in time series we show in a numerical study that coupled
chaotic dynamical systems violate the first principle of Granger causality that the cause precedes the effect.
While such a violation can be observed in formal applications of time series analysis methods, it cannot occur in
nature, due to the relation between entropy production and temporal irreversibility. The obtained knowledge,
however, can help to understand the type of causal relations observed in experimental data, namely can help
to distinguish linear transfer of time-delayed signals from nonlinear interactions. We illustrate these findings
in causality detected in experimental time series from the climate system and mammalian cardio-respiratory

interactions.
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Any scientific discipline strives to explain causes
of observed phenomena. Studying phenomena
evolving in time and providing measurable quan-
tities which can be registered in consecutive in-
stants of time and stored in datasets called time
series brings researchers a possibility to apply
modern mathematical methods which can de-
tect possible causal relations between different
datasets. Methods based on so-called Granger
causality have been applied in diverse scientific
fields from economics and finance, through Earth
and climate sciences to research trying to un-
derstand the human brain. Chaotic dynami-
cal systems are mathematical models reflecting
very complicated behaviour. Recently, coopera-
tive phenomena have been observed in coupled
chaotic systems due to their ability to synchro-
nize. On the way to synchronization, the question
which system influences other systems emerges.
To answer this question, researches successfully
applied the Granger causality methods. In this
study we demonstrate that chaotic dynamical sys-
tems do not respect the principle of the effect fol-
lowing the cause. We explain, however, that such
principle violation cannot occur in nature, only in
mathematical models which, on the other hand,
can help us to understand the mechanisms behind
the experimentally observed causalities.
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I. INTRODUCTION

The quest of causality, that is, the identification of
cause—effect relationships among events, variables or pro-
cesses is one of the fundamental challenges in natural
and social sciences. In modern science, penetrated by
computational approaches, a quantitative definition of
causality is required. Probably the first approach to de-
scribe causality in measurable, mathematically express-
ible terms can be traced to the 1950’s work of the father
of cybernetics, Norbert Wiener! who wrote: For two si-
multaneously measured signals, if we can predict the first
signal better by using the past information from the sec-
ond one than by using the information without it, then we
call the second signal causal to the first one. Later, this
concept has been introduced into time series analysis by
C. W. J. Granger, the 2003 Nobel prize winner in econ-
omy. In his Nobel lecture? he recalled the inspiration by
the Wiener’s work and identified two components of the
statement about causality:

1. The cause occurs before the effect; and

2. The cause contains information about the effect
that is unique, and is in no other variable.

According to Granger, a consequence of these state-
ments is that the causal variable can help to forecast
the effect variable after other data has been first used.?
This restricted sense of causality, referred to as Granger
causality, GC thereafter, characterizes the extent to
which a process X; is leading another process, Y;, and
builds upon the notion of incremental predictability. It
is said that the process Xy Granger causes process Yy if
future values of Y; can be better predicted using the past
values of X; and Y; rather then only past values of Y;.

Granger has mathematically formalized these ideas us-
ing linear autoregressive (AR) models (see Sec. ITA).



Due to possible nonlinear dependence in time series from
real-world processes, many authors have proposed vari-
ous nonlinear generalizations® of the GC principle. In the
following we will particularly discuss the generalization
of GC based on probability functionals from information
theory. The information-theoretic functionals, in their
general formulation, are applicable to a broad range of
nonlinear processes, however, we will focus on time se-
ries generated by nonlinear, possibly chaotic dynamical
systems. The observation that the chaotic dynamical sys-
tems generate information had led to an interesting and
fruitful symbiosis of ergodic theory of dynamical systems
and information theory.*® Information theory has also
been applied in the very intensive research field of the
synchronization of chaotic dynamical systems.”® We will
remind information transfer between, and adjustment of
information rates of dynamical systems on the route to
synchronization.? In the case of unidirectionally coupled
dynamical systems, the distinction between the driving
and the driven systems has been targeted by a number
of data analytic methods'® 14 which are usually also con-
sidered as methods for inference of causality.!> We will
consider examples of these methods together with the
information-theoretic generalization of the GC principle.
We will focus on bivariate time series generated by pairs
of interacting dynamical systems, therefore we will not
discuss the above Granger statement 2. In this respect
we recommend readers to familiarize with methods for
inference of causality in multivariate time series.!6 '8

In this paper we will focus on the above Granger state-
ment 1 and will study behaviour of causality detection
methods under the time reversal, as well as we will dis-
cuss quantitative characterization of time irreversibility
of studied process.

Granger causality as well as three methods for de-
tecting causality in nonlinear systems are introduced in
Sec. II. The principle that the cause precedes the effect
and its consequence for the time reversal in a simple lin-
ear process is studied in Sec. ITI. Time arrows and causal-
ity in nonlinear systems are analyzed in Sec. IV. Time
irreversibility is measured in Sec. V. Results are sum-
marized and real-world examples presented in Sec. VI.
Conclusion is given in Sec. VII.

Il. METHODS
A. Granger causality

The standard test of GC developed by Granger!'® is
based on a linear regression model
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where & are uncorrelated random variables with zero
mean and variance o2, L is the specified number of time
lags, and t = L + 1,..., N. The null hypothesis that X;

does not Granger cause Y; is supported when by, = 0 for
k=1,...,L, reducing Eq. (1) to

L
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B. Information-theoretic approach to Granger causality

Let X be a discrete random variable that can acquire
values x1,...,%my, each with corresponding probability
pi = p(a;), i =1,...m. The average amount of informa-
tion gained from a measurement that specifies one par-
ticular value z; is given by the entropy H(X):

H(X):*Zpilogpi- (3)
i=1

The joint entropy H(X,Y) of two discrete random
variables X and Y is defined analogously

mx my
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Here p(z;,y;) denotes the joint probability that X is in
state x; and Y in state y;.

The joint entropy may be expressed in terms of condi-
tional entropy H(X|Y) as H(X,Y) = H(X|Y)+ H(Y),
where

mx my
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and p(z;|y;) denotes the conditional probability.
Mutual information I(X,Y) between two random vari-
ables X and Y is then defined as

I(X;Y)=H(X)+ H(Y) - H(X,Y). (6)

The mutual information (MI) measures the strength
of dependence in the sense that: 1) I(X,Y) = 0 if and
only if X is independent of Y, 2) For bivariate normal
distributions, I(X,Y) = 1log(1 — p*(X,Y)), where p is
the correlation coeflicient between X and Y.

The information-theoretic functional used for the in-
ference of causality is called conditional mutual informa-
tion (CMI). The CMI between random variables X and
Y given Z is then defined as

I(X,Y|Z)=H(X|Z)+ H(Y|Z) - H(X,Y|Z). (7)

For Z independent of X and Y I(X,Y|Z) = I(X,Y)
holds.

Another wuseful information-theoretic tool is the
Kullback-Leibler divergence (KLD). The KLD K(p,q)
quantifies difference between two probability distribu-
tions p and ¢, and is defined as

K(p,0) = 3_pilog("). (®)



This measure is not symmetric and therefore it is not a
distance in the mathematical sense. The KLD is always
nonnegative and it is zero if and only if the distributions
p and ¢ are identical. See Cover and Thomas?° for details
on information theory.

In the above formulas, either natural logarithm or
binary logarithm may be considered and the above
measures are then given in nats or bits, respectively.

In practical applications one deals with time series
{z(t)} and {y(t)} which can be considered as realiza-
tions of stationary, ergodic stochastic processes {X (¢)}
and {Y'(¢)}. Alternatively, the time series {x(¢)} and
{y(t)} can be understood as one-dimensional projections
of trajectories of dynamical systems X = fx(X,Y) and
Y = fy (Y, X), where X and Y are vectors of dimensions
di and ds, respectively.

Palus et al.? studied synchronization of chaotic dynam-
ical systems using tools from information theory. The
route to synchronization is considered as a process of ad-
justment of information rates and the information trans-
ferred from system (process) {Y (¢)} to system (process)
{X(t)} is measured using the conditional mutual infor-
mation I(Y; X, |X), where X = X(t) and X, = X(t+7).
Analogously, the information transferred from system
{X?} to system {Y'} is measured by I(X;Y,|Y). In the
case of unidirectionally coupled systems, Palus et al.,” in-
terpreted the process of driving the slaved system by the
master system as a special case of causal influence in the
sense of Granger causality. The conditional mutual in-
formation was proposed as an information-theoretic for-
mulation and a nonlinear generalization of the Granger
causality.

Using the idea of Markov processes, Schreiber?! in-
troduced a functional of conditional probability distri-
butions called transfer entropy. Palus and Vejmelka??
show that the transfer entropy is equivalent to CMI
I(X;Y,|Y). Barnett et al.?® have shown analytically
that the transfer entropy (i.e., CMI I(X;Y,|Y)) is equiv-
alent to Granger causality for Gaussian processes.

If the measurement of information about the future
X, of the process { X'}, shifted 7 time units forward (“r-
future” thereafter), contained in the process {Y} is used
for testing the existence of a causal link from {Y'} to { X},
denoted as Y — X, Palus & Vejmelka?? show that the
vectors X and Y, can be substituted by one-dimensional
components x and y,, and the CMI in the time series
representation reads as

Iy(@); a(t +7)|e(t), ot —m),...x(t — (di — )m)). (9)

The condition in CMI (9) must contain complete informa-
tion about the state of the system X. According to Tak-
ens theorem?* the state of a d;-dimensional dynamical
system (a point in the state space) is mapped by the set of
time-lagged coordinates x(t), z(t—n), ... x(t—(d1—1)n),
where 7; is the backward time-lag used in the embedding
of system X. This time-lag can be set according to the

embedding construction recipe based on the first mini-
mum of the mutual information.2’
The causal link X — Y is tested in analogy with (9):

I(a();y(t+7)[y (@), y(t —n2), ... y(t — (d2 — 1)n2)). (10)

Wibral et al.?® introduced slightly different formulation
for CMI:

Iz (t);y(t+ 1)yt +7 - 1),
yt+7—1—1n2),...yt+7—1=(d2 — 1)n2)), (11)

in which the condition moves forward with the increasing
prediction horizon 7, while in the usual formulation, used
also by Palus & Vejmelka,?? the condition is kept in the
same position for all values of .

C. Convergent cross mapping

Convergent cross mapping (CCM)!® is based on Tak-
ens’ embedding theorem,?* exploiting the geometry of at-
tractors of coupled dynamical systems. While the CCM
method constructs a map between mutual neighbour-
hoods in state spaces of the coupled dynamical systems
under study, there has been a related research in which
statistics of mutual nearest neighbour points have been
developed.10-14

Let two dynamical systems X and Y are represented
by two time series {x(¢)}£_;, and {y(t)}£, respectively,
having finite length L € N. For the cross mapping from
X to Y, the attractor manifold My is constructed as a
set of E-dimensional vectors X (t) = (z(t),z(t —n),z(t —
m),...,xt—(E—=1)n)) fort =1+ (F—-1)ntot =1L,
ie, Mx = {X(t)}tL:H_(E_l)n. E € N is the so-called em-
bedding dimension, see the supplement of Ref!® We find
E +1 nearest neighbours of X(¢) in Mx and denote their
time indices (from closest to farthest) by ¢1,...,tg41.
These indices will be used in the construction of the
cross mapping (12) as follows. We approximate y(t),
t=14+(E—-1)m,...,Lby

E+1

g(t)|Mx = Z w;y(ti), (12)

where w; = u;/ Zf;ll uj, U; =
expl—d(X(t), X(t))/A(X (1), X (61 )] and  d(,.) s
the Euclidean distance. The cross mapping from Y to
X is defined analogously.

The skill of the cross-map estimates is quantified
by the correlation coefficient (p) between the origi-
nal {y(t)}tL:H(E_l)n and the approximated time series

{g(t)‘MX}tL:1+(E—1)n (or between {ac(t)}tL:lJr(E_l)77 and
{'%(t)‘MY}tL:IJr(Efl)n’ respectively). Considering geom-
etry of systems’ attractors and the embedding theorem
it is argued that if a causal link from X to Y exists,
then Y contains information about X and the states of



X can be faithfully reconstructed from the mutual near-
est neighbours on My and p(z,2) > 0. If the systems
are coupled undirectionally, i.e., only the link X — YV
exists, then p(z, &) > p(y,§).

D. Predictability improvement

Krakovska and Hanzely?” proposed a method which
also uses the Takens’ embedding theorem,?* however, is
a direct generalization of the GC principle for dynam-
ical systems. Again, two dynamical systems X and Y,
represented by two time series {z(t)}, and {y(t)}, are
considered. The manifold My of states of the system Y
consists of embedding vectors Y (¢) = (y(t), y(t—na2), y(t—
2n9),...,y(t — (d2 — 1)n2)), where d2 and 1, are the em-
bedding dimension and the time lag, respectively, for the
system Y. My provides the space for the predictions of Y’
without using additional information from X. The one-
point predictions Y of a large-enough statistical sample
of points over the reconstructed trajectory are computed.
The resulting errors ey (t) are given by the difference be-
tween the actual and predicted values of the time series
as |ly(t) — g(t)]].

Regarding the used method of prediction, the method
of analogues?® is applied that finds historical data similar
to the current system state and assumes that the system
will continue just as it did in the past. There are several
ways to predict the follower of point Y(t), the simplest
one being finding the time index i of its nearest neigh-
bor from past states on the reconstructed trajectory and
declaring Y (t+1) = Y(i+1). A modification, which was
used here, improves the simplest version by averaging the
followers of several neighbors while considering exponen-
tial weighting based on the distances of the neighbors
from Y(¢).

The prediction errors are evaluated for various com-
binations of possible embedding parameters. Conse-
quently, the lowest errors led us to the proper choices
of do and 72. Analogously, we get the parameters d; and
n1 for the prediction of X.

Following the GC principle, the predictions of Y us-
ing information from both X and Y are obtained using
so-called mixed-state space??3° manifold M x+y. The
state-space points in Mx .y contains some of the coor-
dinates from My and some from M. If we used the
full number of coordinates, the state corresponding to
time ¢ would be (y(t),y(t—mn2), y(t —2n2),...,y(t — (d2 —
D)na)), w.a(t), wzt—mn),w.et—2m),..., welt—(d —
1)m)), where the weight w represents the impact of sys-
tem X. The predictions of system Y in My, denoted as
Yxﬂf(t) in time ¢, are computed again using the method
of analogues.?® The corresponding error exy is given by
[ly(t) — gx+v (t)|]- The latter is, however, chosen as an
optimum when using different values of w.

In order to decide whether the addition of information
from X improves the prediction of Y, the Welch test is
used to test the null hypothesis Hy that the errors come

from independent random samples from normal distribu-
tions with equal means and equal but unknown variances
against the alternative hypothesis that the mean of errors
ex+y is less than the mean of ey. If Hy is rejected on
a 5 % significance level, then we accept that exy < ey
or, equivalently, that the inclusion of the knowledge of X
significantly improves the prediction of Y, i.e. X causes
Y (X —Y) in the Granger sense.

Causality in the opposite direction, i.e., ¥ — X is
investigated analogously — after exchanging the roles of
X and Y in the above instructions.

The introduced methods will be applied to detection
of causality in idealized numerical experiments with suf-
ficiently long, noise-free time series. Therefore, and also
for the sake of simplicity, we will not present tests for
statistical significance for these methods. In the ideal-
ized examples below the detected direction of causality
will be clearly distinguishable by visual inspection and
comparison of values for the opposite directions. De-
tails for significance testing for the PI method are given
by Krakovské and Hanzely,?” Palug®! and Palus & Ve-
jmelka?? describe statistical testing for CMI using sur-
rogate data approach. Sugihara et al.'® introduced the
CCM method without statistical testing, however, in fur-
ther applications, e.g. by Tsonis et al.3? also the surro-
gate data approach is used for statistical testing of CCM
results.

IIl. THE CAUSE PRECEDES THE EFFECT

Consider probably the simplest demonstration of the
Granger causality principle — a bivariate, order one au-
toregressive model

z(t) = arz(t — 1) + &1 (1)
y(t) =by(t — 1) + crz(t — 1) + &(¢) (13)

where ;2 are independent, independently distributed
normal random deviates with zero mean and variance
o? given by o = 0.40662, a; = 0.90693, b, = 0.40693 and
Cc1 = 0.5.

In this case the time index ¢ attains natural numbers
1,2,.... The evolution of the process X depends only on
its own past, i.e. it develops independently of Y, while the
expression for y(t) contains x(t —1). Not surprisingly, the
standard GC test gives significant causality only in the
direction X — Y. The mutual information I(x(t);y(t +
7)) (solid red line in Fig. 1a) and I(y(t); z(t+7)) (dashed
black line in Fig. 1a) are not able to indicate the direction
of causality, since they both are nonzero for a range of
forward time lags 7. The correct causality X — Y is
indicated by CMI I(x(t);y(t + 7)|y(t)) (solid red line in
Fig. 1c), or by CMI I(x(t);y(t + 7)|y(t + 7 — 1)) (solid
red line in Fig. le) which are positive for a range of 7’s,
while the CMI for the direction ¥ — X (dashed black
lines in Fig. 1lc, e) are kept near the zero value.
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FIG. 1. Mutual information (a) and conditional mutual infor-
mation (10) (c) and (11) (e) between the present of process X
and the 7-future of process Y (solid red line) and between the
present of process Y and the 7-future of process X (dashed
black line) for the AR process (13). Graphs (b), (d), and
(e) are the same as (a), (b), and (c), respectively, but for
time-reversed time series {x(¢)} and {y(¢)} .

In order to better understand the Granger’s propo-
sition 1 “The cause occurs before the effect,” we re-
peat the above analysis using the time series {z(¢)} and
{y(t)} reversed in time. Having the original time series
{z(@)},1=1,..., N, its time-reverse {Z(j)} is defined as
Z(j) = (1) for j = N—i+1. While the MI I(z(t); y(t+7))
and I(y(t);z(t + 7)) of the time-reversed time series are
just swapped (Fig. 1b), the CMI’s were swapped and
changed (Fig. 1d,f). The swap of the causality direc-
tions is obvious — the existence of causality in the direc-
tion Y — X clearly emerged. It is consistent with the
Granger’s proposition 1: While going forward in time,
present values z(t) influence the future values y(t 4+ 7).
In reversed time series the present value y(¢) contains in-
formation about the future values x(t + 7). Besides the
clear effect of changing the order of the cause and the
effect, there are also minor changes in the CMI values.
The CMI for Y — X direction in the reversed time series
(Fig. 1d,f) have slightly smaller values than the CMI for
X — Y direction in the original time series (Figs. 1c,e);
and, in the reversed time series also a causality in the
X — Y direction occurs for 7 = 1. Although the later
causality is much “weaker,” comparing e.g. the related
CMI values, it has been found significant in the stan-
dard GC test. This observation is apparently the effect
of time-averaged noise terms. The reversed process X
contains some information about its future due to aver-
aged terms &; and therefore also about the future of Y.
However, the “main” direction of causality, reflected in
large CMI values spread over a number of lags 7, complies
with the Granger’s proposition 1: After reversing the or-
der of the cause and the effect the direction of causality
changed from X - Y toY — X.

IV. CAUSALITY DETECTION METHODS AND THE
ARROW OF TIME

The predictability improvement (PI) method of
Krakovsksd and Hanzely?” is a direct generalization of
the GC principle for nonlinear dynamical systems in the
sense that it infers the existence of causality in the direc-
tion X — Y by testing the improvement of prediction of
Y by using also the knowledge of the present and past
states of X. The conditional mutual information (CMI)
(10) or (11) is used to infer the causal relation in the di-
rection X — Y by measuring the conditional dependence
between the present and past states of X and a future
state of Y, i.e., the CMI evaluates the ability to predict
the future of Y using the present and past states of X.
Using the convergent cross-map (CCM) method, for the
inference of the same direction of causality, X — Y, Y
should cross-map X. On the first sight it seems con-
tradictory, however, note that CCM asks whether the
present state of Y contains information about the present
state of X. Considering coupled dynamical systems, we
can say that while the methods, which generalize the
standard Granger causality principle (PT and CMI here),
evaluate the ability of the driver (“master”) system to
forecast the driven (“slave”) system, the CCM method
evaluates the ability of the slave to nowcast the master.
Thus the CCM lacks any arrow of time in its formulation.
(The time lags n are used for embedding of scalar time
series into d-dimensional state spaces.) What it means
for the Granger’s proposition 17 Since the CCM is tai-
lored for dynamical systems, let us have a look at the
unidirectionally coupled Rossler systems studied in de-
tail by Palu$ & Vejmelka.?? The driving, master system
X is defined as

x'l(t) = —wll‘g(t) — $3(t)
j?g(t) = wlxl(t) + 0.15$2(t)
F3(t) = 0.2 + 23 (1) [z1 () — 10]

and the driven system Y as

U1(t) = —way2(t) — ya(t) + elz1(t — 6) — ya(t)]
Y2(t) = wayi(t) + 0.15y2(t)
y3(t) = 0.2 + y3(t)[y1(t) — 10]

where w; = 1.015, wy = 0.985. The first component
of Y contains the diffusive coupling term e[z (t — §) —
y1(t)], where € is the coupling strength and § is a delay
time in which the driving information from X reaches the
driven system Y. We will start with § = 0, which is the
standard setting in many synchronization studies and can
be considered as physically relevant if the sampling time
[the time between the measurements x(¢) and z(t+1)] is
greater than 6. We integrate (see Appendix for details)
the above systems for a range of coupling strengths e,
record the components x4 () and y; (¢) and use them as an
input into the CCM analysis. The results are presented
in Fig. 2a. We can see that there is a range of € for which
the CCM skill for the direction X — Y is clearly larger
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FIG. 2. (a) Cross-mapping skills for the X — Y direction (“Y
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(dashed black line) as a function of coupling strength e for
the unidirectionally coupled Rossler systems, 6 = 0. (b) The
same as (a), but for time-reversed time series.
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FIG. 3. (a) Two largest Lyapunov exponents of the driver X
(black and blue constant lines) and the response system Y (de-
creasing curves, originally positive LE is marked by solid red
line, originally zero LE by dashed green line). (b) Averaged
conditional mutual information (10) for the X — Y direction
(solid red line) and for the opposite direction (dashed black
line). (c) The same as (b) but for time-reversed time series.
All results for the unidirectionally coupled Rdéssler systems
with 6 = 0.

than for the opposite direction. We will explain the e-
dependence of causality measure shortly below. Now we
just conclude that for a range of € the CCM is able to
distinguish the correct causality direction X — Y. The
results of the same CCM analysis, but using the time-
reversed time series, are presented in Fig. 2b. We can
see that the result is practically the same, indicating the
causality direction X — Y. This should not be surprising
considering the above discussion about the lack of any
time arrow in the CCM approach.

Palus & Vejmelka,?? also studied the unidirectionally
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FIG. 4. (a, c¢) Conditional mutual information (10) and (e)

predictability improvement as functions of forward time lag 7
for the X — Y direction (solid red line) and for the opposite
direction (dashed black line). (b, d, f) The same as (a, c, d),
respectively, but for time-reversed time series. All results for
the unidirectionally coupled Rossler systems with § = 0 and
e = 0.07.

coupled Rossler systems with 6 = 0. We refresh their
results in Figs. 3a, b. Three-dimensional chaotic sys-
tems, such as each of the above Rossler systems, are
characterized by three Lyapunov exponents®® — one pos-
itive, one zero and one negative LE. The positive and
zero LE’s for both Rossler systems are plotted as func-
tions of the coupling strength € in Fig. 3a. For the driv-
ing system X they remain constant for all values of e,
while for the driven system Y they decrease (although
nonmonotonously) with increasing e. When the positive
LE of the driven system (the solid red line in Fig. 3a)
becomes negative, the systems synchronize. Since in
the synchronized state trajectories of both systems are
topologically equivalent, it is impossible to detect the
direction of coupling, see the discussion and references
in Coufal et al.3* Thus for the systems able to synchro-
nize there is a limited range of the coupling strength e
for which the direction of coupling can be reliably de-
termined from time series. We could observe this phe-
nomenon in the case of CCM in Fig. 2 as well as for the
CMI analysis in Fig. 3b.

Now let us repeat the CMI analysis for the time-
reversed time series. We can see in Fig. 3c that after
the time reversal, the CMI, just like the CCM, detects
the same causality direction X — Y.

The CMI (10) measures the ability to improve the pre-
diction of y(t + 7) using z(t) [or vice-versa using CMI
(9)]. The results in Figs. 3b,c present the mean CMI
for lags 7 = 1,...,50 samples. The 7-dependence of the
CMI for e = 0.07 (and 6 = 0) is presented in Fig. 4a
for 7 = 1,...,530. Any dependence measure between
z(t) and y(t + 7) [or x(t + 7)] for chaotic systems van-
ishes for large 7, however, the oscillatory character of the
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FIG. 5. (a) Predictability improvement, (c) conditional mu-
tual information (10) and (e) CMI (11) as functions of forward
time lag 7 for the X — Y direction (solid red line) and for the
opposite direction (dashed black line). (b, d, f) The same as
(a, ¢, d), respectively, but for time-reversed time series. All
results for the unidirectionally coupled Rossler systems with
0 =30 and € = 0.07.

Rossler system makes this decay very slow. The CMI -
dependence reflects basic quasi-oscillatory period around
20 samples (see Appendix for the sampling time) and
a slower quasi-periodicity. Figure 4c zooms the pattern
from Fig. 4a for 7 = 1,...,50 and for the same range
of values of the prediction horizon 7 the results for the
predictability improvement method are given in Fig. 4e.
Although the 7-dependence for CMI and PI differs, both
CMI and PI clearly detect the causality in the X — Y
directions. For the figures 4a, c, e, their counterparts
for the time-reversed time series are Figs. 4b, d, f, re-
spectively. Again, the time reversal did not change the
detected direction of causality in either method.

One can think that the above result could be caused
by the instantaneous driving with 6 = 0. Let us integrate
the unidirectionally coupled Rossler systems with a dis-
tinctively nonzero coupling delay § = 30 samples. The
results for € = 0.07 for the predictability improvement
and the conditional mutual information (10) and (11)
are presented in Fig. 5. Wibral et al.?% introduced the
CMI (11) as a measure for inferring the coupling delay.
The discussion of this problem can be found in Coufal
et al.>* and will not be repeated here. We just conclude
that both CMI formulations give qualitatively the same
result: The causality direction X — Y does not change
after the time reversal. And the same result is obtained
using the PI method.

Figure 6 summarizes the results for the Rossler systems
with the time-delayed unidirectional coupling X — Y
for the studied range of coupling strength e. The CMI
is again presented as the mean for lags 7 = 1,...,50,
PI used 7 = 1 and CCM cross-maps the states of both
systems in the same time. For all the methods, even for
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FIG. 6. (a) CCM skill, (c) predictability improvement, and
(e) conditional mutual information (10) as functions of cou-
pling strength e for the X — Y direction (solid red line)
and for the opposite direction (dashed black line). (b, d, f)
The same as (a, c, d), respectively, but for time-reversed time
series. All results for the unidirectionally coupled Réssler sys-
tems with § = 30.

the Rossler systems with the time-delayed coupling, the
direction of causality after the time reversal remains the
same as in the original time series recoded in forward
time evolution. This behaviour has been confirmed also
in other unidirectionally coupled chaotic dynamical sys-
tems, e.g. identical and non-identical Henon systems or
the Rossler system driving the Lorenz system, examples
defined and studied by Palus & Vejmelka.??

The violation of the Granger causality principle 1 that
the cause precedes the effect, in the case of the coupled
Rossler systems, has also been observed using the infor-
mation flow and causality method of Liang®33¢ which is
entirely independent of the methods considered above.
A number of methods for inference of causality from
experimental data, based on the estimation of a prede-
fined model, have been proposed, for instance, dynamic
causal modelling,??, fitting of a phase-dynamic model,®
dynamical Bayesian inference,® or maximum likelihood
methods.?% It is an interesting question how would such
methods evaluate causality in time-reversed time series,
however, we leave this question for future research.

An interested reader would naturally ask how would
the standard GC test behave if applied to time-reversed
time series from chaotic systems, or, vice-versa, what
would be the results of the CCM and PI methods ap-
plied to the AR model and time-reversed AR model time-
series? Unfortunately, we cannot report such results,
since the standard GC test typically fails when applied to
nonlinear time series such as the used output of the cou-
pled Rossler systems. On the other hand, the CCM and
PI methods employ the geometry of attractors of dynam-
ical systems and cannot bring consistently correct results
when applied to stochastic systems such as the used AR
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FIG. 7. The Kullback-Leibler divergence K(p~,p") between
the forward and backward joint probability distributions for
the driving system X (dotted black line) and the driven
system system Y (solid red line) as a function of coupling
strength e for the unidirectionally coupled Rossler systems.
The gray line and whiskers present mean F 2 standard devi-
ations of KLD for a set of Fourier transform surrogate data.

model. Recently, Krakovskd et al.*! have analyzed six
methods for causality detection, including the three used
here, and evaluated their performance when applied on
different types of data, including an AR model and cou-
pled chaotic systems. The failures of methods designed
for a specific type of a systems and applied to a differ-
ent one are described in terms of false positive or false
negative results.

V. TEMPORAL ASYMMETRY AND IRREVERSIBILITY

In 1996, Palus*? proposed to evaluate the Kullback-
Leibler divergence K(p~—,p*) between the probability
distributions p~ = p(x(t),z(t + 7),...,z(t + (m —
D7), z(t + m7)) and p©~ = p(z(t + m7),z(t + (m —
D7), ...,z(t + 7),2(t)) in order to quantify the tempo-
ral asymmetry of a time series {x(¢)}. This measure in-
dicated that the temporal asymmetry might be one of
nonlinear properties of normal human electroencephalo-
gram.*?

Recently, an exact relationship has been derived be-
tween dissipation and the distinguishability of a process
from its time reverse, quantified by the KLD between
probability densities of forward and backward system
states.344 This relation says that the dissipation results
from the asymmetry between the forward and backward
evolutions of a system: it is zero only when p~ = p*.
The above expression is also consistent with a pro-
posal, linking the time-asymmetry of the Kolmogorov-
Sinai entropy to the entropy production of the dynamical
system.?® The result of Gaspard®® provides an interpre-
tation of the entropy production as a manifestation of the
time-reversal symmetry breaking. In the following devel-

opment, Rolddn and Parrondo?® showed that the above
defined KLD K (p~,p* ) applied to stationary time se-
ries provides information about the entropy production
of the physical mechanism generating the series, even if
one ignores any detail of that mechanism.

Let us estimate K(p~,p* ) for the above unidirec-
tionally coupled Réssler systems using a simple equi-
quantal binning algorithm.? The estimates for n-tuples
x(t),z(t + 7),...,x(t + (n — 1)7) for n = 3,4,5 and
different values of 7 give qualitatively consistent results
(the same shape of curves although different values). Be-
cause of the inherent estimator bias, the “instrumental
zero,” or the range for K(p—,p* ) values for time sym-
metric processes, were estimated using the Fourirer trans-
form surrogate data, used also for testing the statistical
significance of CMI estimates by Palus & Vejmelka.??
K(p~,p*) for both systems as the function of the cou-
pling strength € is plotted in Fig. 7. We see that all values
for the Rossler systems are distinctively higher than the
range of the surrogate data, that is, the observed dynam-
ics breaks the time-reversal symmetry. Due to dissipa-
tion and a positive entropy production rate the studied
chaotic dynamics is not reversible in time so that the
backward run of the process cannot occur naturally.

K(p~,p*) for the driving system X is constant for
all values of € (just the straight line is perturbed by the
variance of the estimator). K(p~,p* ) for the driven
system Y reflects the decreasing behaviour of its posi-
tive LE (Fig. 3) till the synchronization threshold and
then it starts to rise and reached the K (p—,p* ) value of
the system X when the system Y becomes fully slaved
to X. This is a nice example how information-theoretic
measures relate various properties of chaotic dynamical
systems — the level of time irreversibility is related to the
entropy production which is related to the exponential
divergence of trajectories measured by the positive LE
according to the theorem of Pesin.*” The levels of irre-
versibility of the synchronized systems adjust to a com-
mon value, in compliance with our original concept of
synchronization as a process of adjustment of informa-
tion or entropy production rates.%48

VI. SUMMARY OF RESULTS AND THEIR
APPLICATION

In the above numerical study we have demonstrated
that the chaotic dynamical systems violated the Granger
causality principle 1 that the cause precedes the effect.
On the other hand, a short excursion to measuring time-
irreversibility explained that chaotic processes are not
reversible in time. In other words, such a process, ob-
tained by the time reversal of a chaotic process, cannot
occur in nature. Then, what is the scientific value of
the presented results? Besides better understanding of
different causality detection methods, the time reversal
can help researchers in understanding mechanisms under-
lying causal interactions observed in experimental data.
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FIG. 8. (a) Conditional mutual information (10) as function
of time lag 7, characterizing the causal influence of (a, b) the
climatic El Nifo mode on the Arabian Sea mode (solid red
line) and in the opposite direction (dashed black line); and
(c, d) the respiratory rhythm on the heart rhythm (solid red
line) and in the opposite direction (dashed black line). The
results for the original (forward time) data are in (a) and (c),
the results for the time reversed time series in (b) and (d).

Let us have a look at two examples of detected causality
already described in scientific literature.

Runge et al.* presented a method for detecting causal-
ity in multivariate time series and identified a number
of causal links in the Earth climate system based on the
analysis of global near-surface air pressure field. The con-
tinuous spatio-temporal pressure field is originally rep-
resented by a very high-dimensional data with approxi-
mately 40 thousand variables. Using a dimensionality re-
duction algorithm according to Vejmelka et al.,’° about
sixty climate variability modes were extracted. Each
mode, represented by a single time series, is localized
in a particular Earth region and is typically related to a
climate phenomenon occurring in that region. The mode
related to the El Nino Southern Oscillation (ENSO) main
area and phenomenon has been found influencing many
other regions worldwide. One such causal link leads to
the mode located in the Arabian Sea (see Figs. 5, 6 in
Vejmelka et al.’® and Fig. 3 in Runge et al.*?). Let
us analyze the monthly time series®® related to these
two climate variability modes. The CMI analysis con-
firms that the main direction of causality leads from the
ENSO mode to the Arabian Sea mode (solid red line in
Fig. 8a). After the time reversal (Fig. 8b) also the causal-
ity direction reversed. This behaviour has been observed
in the linear AR model (13), i.e. the observed causality
corresponds to a linear transfer of a time-delayed sig-
nal. Hlinka et al.>! add to our result their observation,
that the direction of causality in the global air temper-
ature field basically agrees with the prevailing direction
of winds in the same areas. Thus the causality, or infor-
mation transfer®® in the global climate system is a conse-

quence of the transport of air masses and related energy.
(There are, however, highly nonlinear phenomena in the
Earth climate, which might behave differently, but will
not be discussed here; e.g., the ENSO dynamics itself,
or interactions of the annual cycle®? with slower climate
oscillations® in mid-latitudes.)

Musizza et al.>* analyzed interactions between brain,
heart and respiration in rats undergoing anaesthesia. In
the vigilant state, the most pronounced causal link has
been found in cardio-respiratory interactions in which the
phase of the respiratory rhythm influences the phase of
the heart rhythm. An example of this causality together
with establishing its statistical significance has also been
presented by Palus & Vejmelka.?? The CMI applied to
the respiratory and heart rhythms phases shows a causal
link in the direction respiration — heart (solid red line
in Fig. 8c) persisting up to the lag about half a sec-
ond. After the time reversal (Fig. 8d) the direction of
causality did not change. As this behaviour has been
observed in nonlinear, chaotic dynamical systems, the
present result can be considered as an additional support
for understanding the cardio-respiratory interactions as
a system of coupled nonlinear oscillators, coined by Ste-
fanovska et al.?®%% However, we stress “support,” not
evidence. Even linear AR processes of higher order can
produce different behaviour than the example (13). For
instance, consider an AR2 process in which X drives Y
by the term z(t — 1). For modelling the time reversed
process, we express x(t — 2) and y(t — 2) as functions
of z(t),z(t — 1),y(¢),y(t —1). Then X — Y also in the
time reversed version. For the evidence of a nonlinear
dynamical origin of a process and its interactions suit-
able nonlinearity tests®”»®® should be also included in the
analysis.

We can also observe the “linear transfer” behaviour
of coupled dynamical systems, however, in a very spe-
cific condition. Such a condition happened in the above
Rossler systems. A close inspection of CMI in Figs. 3b,c,
and especially in Figs. 6e,f where the effect is amplified
by the time delayed coupling, shows that the direction of
causality, established by CMI, reversed after the time re-
versal of the time series for coupling strength beyond the
synchronization threshold. The explanation of this obser-
vation lies in a specific type of synchronization reached by
the analyzed Rossler oscillators. It is called the lag syn-
chronization® in which the states of two oscillators are
nearly identical, but one system lags in time to the other.
Thus, in the lag synchronization state for ¢ > 0.125, in
spite of the nonlinear dynamical origin of the signals,
their relation corresponds to a transfer of a time-delayed
signal.

VIl. CONCLUSION

Inference of causality from time series is a challenging
problem when analyzing behaviour of various complex
systems. In many cases the working hypothesis is that



the studied data have been generated by coupled dynami-
cal systems. Therefore we focused on three known causal-
ity detection methods applied to dynamical systems:
conditional mutual information?? (CMI, also known as
transfer entropy?!), convergent cross-mapping'® (CCM),
and the predictability improvement?” (PI) method. Two
methods (CMI, PI) have been proposed as a nonlinear
generalization of Granger causality'® (GC) since the uni-
directional coupling in which one system drives another
has been considered as a special case of GC.? Comparing
the methods on theoretical level we concluded that the
CCM is a method for detecting coupling between dynam-
ical systems, but it is not a method for detecting causality
in the Granger sense, since it ignores the time sequence of
the cause preceding the effect. Indeed, the application of
the CCM on the time series reversed in time brought the
same results as the original time series recorded forward
in time. The CMI method, when applied to a canonical
example of GC in an autoregressive model of order 1, con-
firmed its roots in the GC principle: After time-reversal
of the AR time series also the direction of causality re-
versed. However, when both CMI and PI were applied
to time series from chaotic dynamical systems, they be-
haved as the CCM: the same direction of causality as for
the original data was also detected for the reversed time
series. This violation of the Granger causality principle
that the cause precedes the effect is probably due to dy-
namical memory of dynamical systems. Analysis of time
irreversibility of the studied processes, however, showed
that chaotic systems are not reversible in time. There-
fore the observed violation of the causality principle can
occur only in a numerical study but not in real-world
systems. The time reversal in causality analysis can help
to distinguish between a linear transfer of a time-delayed
signal and nonlinear interactions of dynamical systems.
Any detection of causality, however, should be accompa-
nied by a battery of time series analysis methods, namely
tests for nonlinearity and synchronization should be per-
formed, as well as standard spectral analysis enhanced by
time-frequency analysis since causal links can occur in or
between different time scales of multiscale processes.5°
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APPENDIX

The parameters of the AR model (13) were chosen such
that the model provides long runs of nontrivial station-
ary time series. Equivalent results can be obtained also
for different sets of parameters. The first 50,000 iter-
ations were discarded as possible transients and follow-
ing 131,072 samples were recorded and used for the CMI
computations.

The unidirectionally coupled Réssler systems were in-
tegrated using the ode8 (Dormand-Prince) solver in the
MATLAB® Simulink® environment. The fixed step
size 0.0785 was used in the integration, and the data
were downsampled to each fourth giving the sampling
step 0.314. For the case § = 0 also the alternative nu-
merical integration based on the adaptive Bulirsch-Stoer
method®' was used. The latter method uses adaptive
integration step, however, the final sampling time 0.314
was prescribed, which leads to approximately 20 samples
per period. Data from both integration methods give
equivalent results. After the initialization, 5000 sam-
ples were discarded and the following 131,072 samples
were recorded and used for the CMI computations. The
subset of the first 50,000 samples was used for PI and
CCM computations. The first system was initialized us-
ing coordinates from the Rossler attractor (11.120979,
17.496796, 51.023544), for the second these values were
multiplied by a random number between 0.5 and 1.5 [e.g.
y1(0) = 11.120979 * (ran(iseed) + 0.5)]. The experiments
with the Bulirsch-Stoer method were repeated for differ-
ent sets of random initial conditions. Due to discarding
of the transient data, all runs gave equivalent results, i.e.,
the presented results do not depend on initial conditions.

The parameters of the systems were chosen as in the
previous study.??
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