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Information theoretic test for nonlinearity in time series
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A diagnostic test for identifying nonlinear dynamical relationships in time series, based on mutual information and redundancy,
functionals introduced in information theory, is proposed. Its ability to distinguish (noised) multiperiodic and random time
series from time series generated by chaotic dynamical systems is demonstrated. The latter are characterized by specific behaviour
of marginal redundancies reflecting the increase of uncertainty in time due to positive information production rate.

1. Introduction

Algorithms for analysis of experimental time se-
ries, based on the inverse problem of nonlinear dy-
namical systems, can in principle serve for identi-
fication and quantification of underlying chaotic
dynamics [1,2]. Analyzing experimental and usu-
ally short and noisy data, however, ordinary esti-
mators of dimensions (see e.g. refs. [3,4]) or Lya-
punov exponents (see e.g. refs. [5,6]) can be fooled
e.g. by simple autocorrelation of the series under
study and can consider as chaotic a process which is
in fact linear and stochastic [7]. These complica-
tions evoked the necessity of developing methods
testing for basic properties of chaotic systems like
nonlinearity, independently of the dimensional or
Lyapunov exponent algorithms used [8-11].

In this paper we propose an original method for
distinguishing time series generated by continuous
nonlinear and especially chaotic dynamical systems
on one side, from noised multiperiodic and random
signals on the other side. The method is based on
evaluation of redundancies (multidimensional mu-
tual information) of the time series and its delayed
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versions in two ways: as a functional of the series
probability distribution densities and from the series
covariance matrix. We demonstrate that the former
can reflect nonlinearities in the data while the latter,
the special case of the former, is sensitive to linear
relationships only. Moreover, the general (nonlin-
ear) redundancy can measure the information pro-
duction rate - metric Kolmogorov-Sinai entropy of
the chaotic dynamical systems [12-17].

The theoretical concept of redundancies is intro-
duced in section 2. Remarks on algorithms for their
numerical estimation can be found in appendix A.
The basic ideas of the proposed test are explained in
section 3. In section 4 we demonstrate the power of
the proposed methodology using numerically gen-
erated data which are described in detail in appendix
B.

2. Mutual information and redundancies

Let x, y be random variables with probability dis-
tribution densities p,(x) and p,(y). The entropy of
the distribution of a single variable, say x, is defined
as

H(O=— [ () loglp(0)] dx. (1)
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For the joint distribution p,,(x, ¥) of x and y the
joint entropy is defined as

H(x,y)=— ” Pxy(X, y) log[pxy(x, y) ] dxdy.
(2)
The average amount of information that the variable

X bears about the variable y is quantified by the mu-
tual information I(x; y),

I(x;y)=HXx)+H(y)—-H(x,y) . (3)

Clearly, I(x; y)=0iff p,,(x, ¥) =p.(x)p,(¥), i.e. iff
x and y are statistically independent. For more de-
tails see e.g. refs. [18-20].

For n variables x,, ..., X, the extension of (2) is
straightforward,

H{xy, .oy X)) =— j Jp(x,, veey X))

Xlog[p(xy, ..., x,)1dx, ... dx,, . (4)
Then analogously as in (3) we define
R(xy; . x,)

=H(x))+..+H(x,)—H(x,, ..., X») . (5)

This difference between the sum of the individual
entropies and the entropy of the n-tuple x,,..., x,
vanishes iff there is no dependence among these
variables. Quantity (5) is called the redundancy of
X1y eeey Xpe

Besides (5) we define the marginal redundancy
R (X1, ..y Xn_1; X») quantifying the average amount
of information about the variable x,, contained in the
variables x,, ..., X,_1,

RB(X1y ooy X1 Xn)=H (X1, ooy X ) Y H(X,)
—H(xy, ., X,) . (6)

The following relation between redundancy (5) and
marginal redundancy (6) can be obtained by a sim-
ple manipulation,

R(Xps5 oo X1 X))
=R(Xy; 0 X5) = R(X15 oo X)) (7)

Let now x,, ..., x,, be an n-dimensional random vari-
able with normal distribution with zero mean and
covariance matrix C. In this special case redundancy
(5) can be computed straightforwardly from the def-
tnition [21]
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R(x15 .5 %) =1 _; log(c;i) —3 ;1 log(4,) , (8)

where ¢; are diagonal elements (variances) and A;
are eigenvalues of the nX n covariance matrix C.
Formula (8), obviously, may be associated with
any positive definite covariance matrix. Thus we use
formula (8) to define the linear redundancy
L(xy;..;x,) of an arbitrary n-dimensional random
variable x,, ..., x,,, whose mutual dependences are de-
scribed by the corresponding covariance matrix C,

L(xi i) =4 ¥ Toglea) =4 3 log(2) . (9)

If formula (5) is evaluated using the correlation ma-
trix instead of the covariance matrix, then particu-
larly c;=1 for every i, and we obtain

Lxi; i X =—4 3, log(2) (10)

Furthermore, in analogy with (7) we can define the
marginal linear redundancy of x,, ..., x,,_, and x, as

L(Xy 5 s Xp_15 Xn)

=L(X1; 00 X)) =L(x1; 3 X0_1) . (11)

3. The test

Consider the typical “chaos inverse” problem:
There is an experimental one-dimensional time se-
ries Y (¢) and we want to assess whether it is chaotic
(i.e. generated by a low-dimensional nonlinear dy-
namical system in the chaotic regime) or not. The
first step is the construction of an #-dimensional se-
ries x,(¢) using the time-delay method based on the
embedding theorem of Takens [22],

x()=Y(t+(i-=1)1), i=1,..,n, (12)

where 7 is a time delay and # is the so-called embed-
ding dimension [22]. Searching for structures in the
data the redundancies of the type

R(Y(1); Y(t+1); .. Y(t+(n—-1)1)) (13)

are of interest. Assuming stationarity of the series the
redundancy
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R*(t)=R(Y(t); Y(t+1);, .. Y(t+(n-1)1))
(14)

is clearly independent of ¢.
Analogously we denote the marginal redundancy

RM(D)=R(Y(D), Y(t+1),..,. Y(t+(n-2)1);
Y(t+(n—-1)1)), (15)
the linear redundancy

L*(1)=L(Y(t), Y(t+1);... Y(t+(n=1)1)),

(16)

and the marginal linear redundancy
L ()=L(Y(), Y(t+1),.., Y+ (n=2)7),;

Y(t+ (n-1)7)) . (17)
Relations (7) and (11) can be rewritten as
R"(t)=R"(7)-R""(1) (18)
and
Fr(t)=L"(t)-L"" (1), (19)
respectively.

The linear redundancy, according to its definition
(10), reflects dependence structures contained in the
correlation matrix C of the variables under study. In
the special case, considered here, when all the vari-
ables are, according to eq. (12), lagged versions of
the series Y(t), each element of C is given by the
value of the autocorrelation function of the series
Y(¢) for a particular lag. As the correlation is the
measure of linear dependence, the linear redundancy
characterizes linear structures in the data under study.

We propos¢ to compare the linear redundancy
L"(7) with the redundancy R"(7) (or the marginal
linear redundancy #"(t) with the marginal redun-
dancy #”() ) considered as the functions of the time
lag 7. If their shapes are the same or very similar a
linear description of the process under study should
be considered sufficient. Large discrepancies suggest
important nohlinearities in links among the vari-
ables, or, recalling (12), among the studied time se-
ries and its lagged versions, i.e. in the dynamics of
the process under study.

Let us recall that equivalence of redundancy R”(7)
and linear redundancy L”(t) can be proved only for
a special type of linear processes — the processes with
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the multivariate Gaussian distribution. In the gen-
eral case, however, a possibility that differences be-
tween redundancies and linear redundancies are not
due to nonlinearity but due to a non-Gaussian dis-
tribution of the studied data, cannot be neglected.
Nevertheless, after the extensive numerical study we
can conjecture that the shapes of the 7-dependence
of redundancy R”(1) (#£"(1)) and linear redun-
dancy L*(t) (£"(1)) are approximately the same
or similar also for different kinds of linear processes.
Only for nonlinear processes the difference is qual-
itative and it is very distinct in the case of chaotic
dynamics, when the time-lag dependence of the mar-
ginal redundancy #"(t), unlike that of the marginal
linear redundancy #"(t), reflects specifically the
“production of information”, the typical property of
chaotic dynamical systems, which is quantified by
the positive metric (Kolmogorov-Sinai) entropy
[12-17].

4. Assessing the power of the test by the known
data

In applications of the proposed test we compare
shapes of redundancies as functions of the lag 7, not
particular values of the redundancies. Estimated val-
ues of R"(t) and #"(t) depend on the numerical
procedure used (“quantization”, see appendix A),
while the shapes of their 7-traces are usually consis-
tent for a large extent of numerical parameters used
in the redundancy estimations. Therefore each fig-
ure, depicting redundancies against the time lag 1, is
drawn in its individual scale. Redundancies are in
bits and time lags in number of samples. The dif-
ferent curves in each figure correspond to redun-
dancies of the different number n of variables
(embedding dimension), »n is from 2 to 5, reading
from the bottom to the top.

We start with noisy torus (two-periodic) time se-
ries. (For details about all the data sets see appendix
B.) Time lag 7 plots of linear redundancy L"(t) and
redundancy R"(7) computed from the torus series
jammed by 50% of uniformly distributed noise are
presented in figs. 1a and 1b, respectively. We can see
that these figures are almost the same, i.e. the linear
description of the data is sufficient. This holds also
for marginal linear redundancy %”(1) and marginal
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Fig. 1. (a) L"(7), (b) R"(7), (¢) £"(7) and (d) #"(7) computed from noisy torus series. The embedding dimensions n are 2, 3, 4 and
5 reading from the bottom to the top of each figure. (The values of L" and R" are divided by n—1.)

redundancy #£"(zt), illustrated in figs. l1c and 1d,
respectively.

On the contrary, there are differences of the qual-
itative level between £"(7) and %#"(t) computed
from chaotic time series (fig. 2). The main feature
of the (marginal) redundancies of the chaotic data
(figs. 2b and 2d) is a long time lag decreasing trend
(i.e. the decrease on the time scale greater than a pe-
riod of the data oscillations reflected in redundan-
cies). Recalling the definition of the marginal re-
dundancy (6) we can consider the value of the
quantity (const— #£"(1)) as a measure of uncer-
tainty in prediction of x, knowing X, ..., x,,_;. The
behaviour of #”(7) in figs. 2b and 2d reflects the
fact that this uncertainty increases with time in cha-
otic systems. It is the consequence of the positive in-
formation production rate - the positive metric
(Kolmogorov-Sinai) entropy of chaotic systems
[13-17]. The character of the dependence of the
marginal redundancy 2”(7) on 7 tends for embed-
ding dimensions 7 greater than the system dimen-
sion and for a certain extent of 7 [12] to a linearly
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decreasing function of the type A - Kt. The coefti-
cient K can serve as an estimate of the metric en-
tropy of the system under study as proposed by Fraser
[16,17] and Shaw [23], who introduced applica-
tions of the information theory to the nonlinear
dynamics.

The linear (marginal) redundancy is not able to
detect the above properties of the nonlinear chaotic
systems. The results presented for the Rossler (fig.
2a) and Lorenz (fig. 2¢) systems demonstrate two
types of possible “misinterpretation” of the chaotic
data by the linear methods: The Rdssler series gives
results similar to a multiperiodic signal, i.e. there is
a constant nonzero level of the linear marginal re-
dundancy or the constant finite level of uncertainty
as estimated by the linear method. The linear mar-
ginal redundancy is not able to detect the production
of information in this system. On the other hand, the
linear marginal redundancy (like the linear redun-
dancy) for the Lorenz system decreases quickly in an
exponential or power-law way resulting in the con-
stant close-to-zero level of the redundancy or the
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Fig. 2. (a) #*(t) and (b) #"(r) computed from the time series generated by the chaotic Rossler system; (c) #*(t) and (d) #"(1)
computed from the time series generated by the chaotic Lorenz system. The embedding dimensions » are 2, 3, 4 and 5 reading from the

bottom to the top of each figure.

constant high (noise-like) level of uncertainty (mea-
sured by the linear method). In this case the linear
(marginal) redundancy is not able to detect any re-
lationships in'the data from a certain (low) value of
T.

This difference can be explained by various levels
of “chaoticity” of the above two systems — the Réssler
system is “weakly” chaotic and the Lorenz system
“strongly” chaotic. To be more specific, the metric
entropy or the positive Lyapunov exponent of the
Lorenz system is more than ten times greater than
that of the Rdssler system (see e.g. refs. [5,6]).

Application of our test to the linear stochastic pro-
cesses with the same spectra as the above series (the
so-called surrogate data, see refs. [8,9]) brought in-
teresting results; marginal redundancies #”(t) and
marginal linear redundancies .#"(t) are the same and
they both are practically the same as the marginal
linear redundancies of the original data. (Clearly, this
holds also for redundancies L”(7) and R"(7).) This
means the best for nonlinearity for these processes

gave negative results consistent with the way of gen-
erating these data as linear and stochastic processes.
The more interesting fact is that the notion of line-
arity as considered here (see section 3) coincides
with randomness, i.e. using redundancies (like using
spectra) one cannot distinguish -(noised) linear os-
cillation from (filtered) noise. Nonlinear and cha-
otic oscillations, however, are clearly detectable.
“Coloured noises” is the term used for the random
processes which can be generated by backward Fou-
rier transform from a spectrum of the type 1/« and
uniformly distributed random phases. Osborne and
Provenzale [7] showed that such processes can ex-
hibit a finite correlation dimension. The value of the
dimension depends on the spectrum decay coeffi-
cient a [7,24]. This coefficient also determines the
shape of the process probability distribution: the
larger «, the smaller the dimension, but also the larger
the difference of the probability distribution from
the Gaussian one [7]. It means that some differ-
ences between #£7(7) and #"(1) of the coloured
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noises can occur for larger «, but in any case these
differences are not qualitative and, moreover, the
behaviour of #”(7) for n greater than the estimated
dimension is not like those of chaotic systems.
Therefore the coloured noises are easily discernible
from low-dimensional chaotic processes by our test,
while only by the estimation of the dimensionality
they are not.

For a sequence of independent random variables,
usually called white noise, any redundancy should be
zero (in practical computations it is close to zero)
for any 7>0. This condition is fulfilled automati-
cally by the proposed test.

Remark. One should ask how the proposed test be-
haves when applied to other types of processes, €.g.
time series generated by Hamiltonian or near Ham-
iltonian systems, linear or nonlinear autoregressive
processes, noisy chaotic data or nonstationary data.
These questions are important and will be discussed
in a more extended paper together with examples of
physical and medical experimental data [25].

5. Conclusion

A test for detecting nonlinear dynamical relation-
ships in time series based on comparing two types of
redundancies has been proposed. On several typical
examples it has been demonstrated that this tech-
nique is able to discern chaotic from random or
noised multiperiodic time series.

The results presented are encouraging, however,
they must not be overestimated by absolutizing the
method proposed. We recommend to use it as a part
of a battery of methods and algorithms for testing
the nonlinear dynamics and deterministic chaos in
time series together with order techniques for esti-
mation of dimensions, entropies and/or Lyapunov
exponents.
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Appendix A

The linear redundancies were computed according
to eq. (10). Eigenvalues of each correlation matrix
were obtained by its decomposition using SVDCMP
routine described in ref. [26, p. 52]. The results pre-
sented here were computed using 5120 samples of
the total series length, but almost the same results
can be obtained even from several hundreds of sam-
ples of the effective series length. (A part of the se-
ries is ““spent” in the embedding reconstruction by
the time delay method. For instance, with the max-
imum lag 100 samples and dimension 5 the effective
series length is the total length minus 400.)

The aigorithm for computing the redundancy, pro-
posed by Fraser [16,17] or Fraser and Swinney [18],
is a rather complicated one. The simple box-count-
ing method we have found sufficient. The only *‘spe-
cial prescriptions”, based on our extensive numeri-
cal experience, concern the way of the data
quantization:

(a) The type of quantization: We propose to use
the marginal equiquantization method, i.e. the boxes
for box-counting are defined not equidistantly but so
that there is approximately the same number of sam-
ples in each marginal box.

(b) The number of quantization levels (marginal
boxes): We have found that the requirement for the
effective series length N using Q quantization levels
in the computation of the n-dimensional redun-
dancy is N> Q"*!, otherwise the results can be heav-
ily biased. Usually better resuits are obtained with
Q<N+ than with Q> N1/ ("*1) Redundancies
computed with @< N/ #*+D can be underestimated
in the values, but graphs of R” versus 7 are, even for
Q=4-6, similar to those obtained from long time se-
ries and Q=N!/(**1_In the case of >N/ (*+1) the
redundancies can be overestimated and the results
could be distorted in a qualitative way, e.g. the de-
pendence of redundancies on 7 is lost or t-trends in
marginal redundancies of chaotic data lead to an ab-
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surd result of negative metric entropy (see ref. [12]).
The resuits of redundancies presented here were
obtained from 1024 000 samples of the total series
length. These extensive computations were per-
formed in a study of estimations of the metric en-
tropy and are not necessary for realization of the
proposed test — a much shorter time series is suffi-
cient when only qualitative results are of interest.

Appendix B
Two-periodic noisy data were generated according
to the following formula,
Y(t) = [Rl +R2 Sln(w2t+¢] Sin(w1 t) +§ >
where R,:R,=5:4, w,:w,=10:9, ¢=1.3n, & are

random numbers uniformly distributed between —=

and Z. The term “50% of noise” means that
R,:R;:E=5:4:9.

Chaotic data were generated by numerical inte-
gration based on the Bulirsch-Stoer method [26, p.
563] of the Réssler system [27],

dx dy dz
(dt’ ar dt)—(—z—y, x+0.15y,0.24+z(x—-10)),
with initial values (11.120979, 17.496796,
51.023544), integration step 0.314 and accuracy
0.0001; and the Lorenz system [28]

(((11—):, % %—j): (10(y—x),28x—y—xz,xy—-82z/3),
with initial values (15.34, 13.68, 37.91), integration
step 0.04 and accuracy 0.0001. The component x was
used in both cases.

Coloured noises were generated by backward fast
Fourier transform [26, p. 397] of Fourier coeffi-
cients obtained from a power spectrum of type 1/ ¢
and random phases uniformly distributed between 0
and 2n. Random processes with the same spectra as
deterministic series were generated by forward FFT
of the related series followed by the randomization
of the phases and backward FFT to the time domain
as in the case of the coloured noises.
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