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Research Summary (1990–2011):

1. Plücker formulas. The standard local Plücker formulas [23]1 for a germ of
holomorphic curve in CPN connect the (1,1)-forms corresponding to certain natural
metrics on this germ of curve and their curvatures. The classical (global) Plücker
formulas can be obtained from the local formulas by integration over the curve. In
the paper [19], A. Givental proposed a generalization of the local Plücker formulas
to the case of a curve in the flag manifold of any complex semi-simple Lie group.

Namely, let F be the flag manifold of a such a group G of rank n. There is a
natural n-dimensional tangent distribution N on F corresponding to the direct sum
of all simple negative root subspaces. Let C ⊂ F be a germ of holomorphic curve
tangent to N . Consider the fundamental line bundles Li on F and the corresponding
morphisms to projective spaces πi : F −→ Pri . Choose a maximal compact sub-
group K in G. Let φi be the Hermitian metric on C induced from the K-invariant
Fubini–Studi metric on Pri by means of πi and let θi be the curvature of φi. Note
that on a complex curve C both metrics and their curvatures can be considered as
elements of the vector space Ω1,1(C) of smooth (1,1)-forms.

The local Plücker formulas conjectured by Givental have the form (θ) = A(φ),
where (φ) = (φi)

n
i=1 is the vector of metrics, (θ) = (θi)

n
i=1 is the vector of curvatures,

and A is the Cartan matrix corresponding to G. (For G = SL(n,C) this gives the
formulas from [23].) I proved these generalized local Plücker formulas in my paper (1).

2. Koszul algebras, deformations. A graded algebra A = A0 ⊕A1 ⊕A2 ⊕ · · ·
over a field k with A0 = k is called quadratic if it is generated by A1 and defined by
relations of degree 2. A graded algebra A is called Koszul [37, 4] if the only nonzero
component of the graded vector space ExtiA(k,k) is the one with the grading i for each
i ≥ 0; any Koszul algebra is quadratic. The basic deformation property of Koszul
algebras established in my book with A. Polishchuk (9) states that a deformation of
a Koszul algebra in the class of quadratic algebras is flat provided that it is flat in
the degrees 1, 2, and 3. This is a generalization of a result of V. Drinfeld [13].

In particular, it follows that there is only finite number of different Hilbert series
hA(q) =

∑
(dimAi)q

i of Koszul algebras with dimA1 fixed. We also discuss other
versions of this deformation principle. One of them applies to nonhomogeneous qua-
dratic deformations of quadratic algebras; the corresponding result generalizes the
classical Poincaré–Birkhoff–Witt theorem on the structure of universal enveloping
algebras. Another result of this kind concerns the properties of bases in quadratic
algebras formed of monomials over a base in the generator space. (The latter is in
fact a particular case of the Diamond Lemma.)

3. Nonhomogeneous quadratic duality. The category of quadratic algebras is
self-dual: to a quadratic algebra A with the space of generators A1 = V and the space
of relations R ⊂ V ⊗2 one can assign the quadratic algebra A! with the dual space of
generators A!

1 = V ∗ and the space of relations R⊥ ⊂ V ∗⊗2. In the paper (2) and the

1References in square brackets refer to the list of References below; the ones in round brackets
refer to the Publication list above. The boldfaced references point to subsections of this Summary.
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book (9) we discuss the extension of this duality to algebras with nonhomogeneous
quadratic relations (like the universal enveloping algebras).

A nonhomogeneous Koszul algebra can be defined as an algebra A with an increas-
ing filtration F such that the graded algebra grF A is Koszul. In (2) I construct a
duality between the category of nonhomogeneous Koszul algebras and the category of
Koszul algebras B endowed with a derivation d of degree +1 and an element h ∈ B2

satisfying the equations d2 = [h, ·] and d(h) = 0 and defined up to the transformation
(d, h) −→ (d + [α, ·], h + dα + α2), where α ∈ B1. These formulas remind of the
formal properties of the curvature of a vector bundle with respect to the choice of a
connection; so graded algebras with such a structure are called curved DG-algebras,
or CDG-algebras. I also define the corresponding analogues of the Chern classes.

4. Koszul algebras and probability. The dimensions of the graded components
of Koszul algebras are algebraically independent, but satisfy a huge family of polyno-
mial inequalities (generalizing the classical Golod–Shafarevich inequalities). Namely,
let ai = dimAi; then for a Koszul algebra A one has:

ai ≥ 0; aiaj − ai+j ≥ 0; aiajak − ai+jak − aiaj+k + ai+j+k ≥ 0;

aiajakal − ai+jakal − aiaj+kal − aiajak+l + ai+j+kal + ai+jak+l + aiaj+k+l

−ai+j+k+l ≥ 0;

and so on. This family of inequalities has a very nice probabilistic interpretation.
Namely, the inequalities mean that starting from a Koszul algebra one can construct
a stationary stochastic 0-1 sequence with the so-called “one-dependence” property.
A random sequence . . . , ξ−1, ξ0, ξ1, ξ2, . . . is called one-dependent if for any integer n
the collection of random variables (. . . , ξn−2, ξn−1) is independent from the collection
(ξn+1, ξn+2, . . . ). Such stochastic sequences were studied lately by probabilists in [1,
17, 43]. This work of mine is included in the book (9).

5. Koszul algebras, counterexample. The Hilbert series hA(q) =
∑

(dimAi)q
i

and hA!(q) of quadratic dual Koszul algebras A and A! (see 3) satisfy the identity
hA(q)hA!(−q) = 1. It was an open question for a long time if any quadratic algebra A
satisfying this identify is Koszul [2, 4]. Counterexamples were found independently
(and in completely different ways) by me (3) and J.-E. Roos [39]. My construction
is based on the properties of Koszul algebras with respect to the operation of Segre
product A ◦B =

⊕
Ai⊗Bi and the quadratic dual operation A •B invented in [32].

6. Exceptional collections. A collection of objects E1, . . . , En in a k-linear
triangulated category D is called exceptional if one has Hom(Ei, Ej[∗]) = 0 for i > j
and Hom(Ei, Ei[∗]) = k. And exceptional collection is called strictly exceptional
if Hom(Ei, Ej[s]) = 0 unless s = 0 for any i and j. Exceptional collections in the
derived categories of coherent sheaves on algebraic varieties were studied by Rudakov,
Gorodentsev, Kapranov, Bondal [21, 22, 9, 10] and others.

In (4), I show that any strictly exceptional collection generating the derived cate-
gory of coherent sheaves on a smooth projective variety with rkK0(X) = dimX + 1
(such as a projective space or an odd-dimensional quadric) consists of locally free
sheaves (not complexes) up to a common shift. The condition rkK0(X) = dimX+ 1
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seems to be necessary, since otherwise the desired class of exceptional collections is
not preserved by mutations.

7. Galois cohomology and Koszulity. Let l be a prime number, F be a field
containing a primitive l-root of unity, and GF = Gal(F/F ) be the Galois group of F .
Then there is a homomorphism KM

∗ (F )/l −→ H∗(GF ,Z/l), called the norm residue
homomorphism, from the Milnor K-theory ring of the field F modulo l to the Galois
cohomology ring. The famous Milnor–Kato conjecture [34, 26] (known also as the
Bloch–Kato conjecture) claims that it is an isomorphism. A complete proof of that
was recently obtained by by V. Voevodsky, M. Rost, et. al. [44].

In my joint paper with A. Vishik (5) we show that the whole conjecture follows
from its (mostly long known due to Merkurjev–Suslin and Rost) low-degree part
provided that the Milnor K-theory algebra KM

∗ (F )/l is Koszul. Namely, it is enough
to consider the case when the Galois group is a pro-l-group. Let G be pro-l-group
and H = H∗(G,Z/l) be its cohomology algebra. Assume that H2 is multiplicatively
generated by H1, there are no nontrivial cubic relations in H3, and the “quadratic
part” of the algebra H is Koszul. Then we prove that the algebra H is quadratic.

This is true for the cohomology of an arbitrary pro-nilpotent algebra (or nilpotent
coalgebra). This result is yet another version of the basic deformation property of
Koszul algebras, this time applied to nonhomogeneous relations with terms of the
degrees 2, 3, 4, 5, . . . (see 2).

8. Noncommutative gluing. In the paper [27], D. Kazhdan and G. Laumon
constructed certain abelian categories of importance in the representation theory.
The categories are obtained by gluing together several copies of the categories of
perverse sheaves on the principal affine space of a semi-simple Lie group. The gluing
procedure they used is a “noncommutative” analogue of the one that recovers the
category of coherent sheaves on a variety covered with a set of open subvarieties
from the categories of sheaves on the open pieces. This kind of construction was also
studied by A. Rosenberg [40] in the context of Noncommutative Algebraic Geometry.

In order to be able to define certain Euler characteristics, Kazhdan and Laumon
had to make a conjecture that their category has a finite homological dimension. Be-
cause of the above analogy, it was expected for a long time that the gluing procedure
should preserve the finite homological dimension property in general. In the end
of 1996, A. Polishchuk and I finally found that this is not true. Moreover, even the
localization does not always preserve finite homological dimension in the noncommu-
tative case (7). On the other hand, we were able to prove [36] that each individual
Ext-space in the Kazhdan–Laumon category is finite-dimensional, which was also
conjectured in [27].

9. Bogomolov’s conjecture and Koszulity. It is expected that the absolute
Galois groups of fields GF = Gal(F/F ) should have very special homological proper-
ties, the statement of the Milnor–Kato conjecture (see 7) being only a part of them.
In particular, a conjecture of F. Bogomolov [8] claims that the commutator subgroup
of the maximal quotient pro-l-group of GF should be a free pro-l-group for any prime l
and any field F containing an algebraically closed subfield. In the paper (8) (which
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is an enhanced version of my Ph. D. thesis) I propose an extension of Bogomolov’s
conjecture to arbitrary fields.

First of all, I present counterexamples showing that the algebraically closed subfield
condition cannot be simply dropped. However, it seems to be OK to replace it with
the weaker condition that F contains the roots of unity of orders ln for all n. For
arbitrary fields, the conjecture is formulated as follows. Let Rl(F ) denote the field
obtained by adjoining to F all roots of orders ln, for all n, from all elements of F . The
strong version of the conjecture claims that the Sylow pro-l-subgroup of the absolute
Galois group of Rl(F ) is a free pro-l-group. The weaker version, closer to the original
Bogomolov’s conjecture, states that the maximal quotient pro-l-subgroup of the same
absolute Galois group is a free pro-l-group.

In the paper (8), I propose a hypothesis about the Milnor K-theory ring of a field
which implies both the Milnor–Kato and extended Bogomolov’s conjecture (weaker
version). Here I assume that the field F contains a primitive l-root of unity if l is
odd, and contains a square root of −1 if l = 2. The hypothesis says that the ideal
Jl(F ) generated by the Steinberg symbols in the exterior algebra

∧∗
Z/l(F

∗/F ∗l) (i. e.,

the kernel of the map from the exterior algebra to the Milnor algebra modulo l)
should be a Koszul module over the exterior algebra. I also notice that the analogous
condition on the ideal JQ(F ) generated by the Steinberg symbols in the exterior
algebra with rational coefficients of a field F of finite characteristic is equivalent to the
combination of Goncharov’s conjecture that the subalgebra L≥2(F ) of the graded pro-
Lie algebra L(F ) describing the category of mixed Tate motives over F with rational
coefficients is a free pro-Lie algebra [20] with a corollary to a well-known Beilinson–
Parshin conjecture [18] saying that the Milnor algebra with rational coefficients of a
field of finite characteristic is a Koszul algebra.

10. Tate motives with finite coefficients. The Beilinson–Lichtenbaum con-
jecture [3, 31, 42] describes the Ext-spaces between the Tate motives with torsion
coefficients Z/m(i) in terms of the Galois cohomology of the basic field F . In view of
this conjecture, it is natural to expect that the category of mixed Tate motives with
torsion coefficients should also admit a description in terms of the Galois group; such
a problem was posed by A. Beilinson in [3]. The following results, announced in my
conference talk (6), are conditional modulo the Beilinson–Lichtenbaum conjecture.
Their generatizations to Artin–Tate motives were published in (14).

Unlike for the rational coefficients, in the torsion coefficient case the category of
all the successive extensions of the Tate objects is never abelian. However, it is has a
canonical structure of an exact category in Quillen’s sense; so one can define the Ext-
spaces with respect to this category. Furthermore, I show that this exact category
is equivalent to the categoryof filtered GF -modules (M,V ) over Z/m such that the
quotient modules griV M are direct sums of the cyclotomic modules µ⊗im .

The next natural question is whether the Ext-spaces between the Tate objects
computed in this exact category are isomorphic to those in the triangulated category
of motives, i. e., those predicted by the Beilinson–Lichtenbaum conjectures. Assuming
that F contains the m-roots of unity, I prove that the Ext-spaces coincide if and only
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if the Galois cohomology algebra H∗(GF ,Z/l), where m = lr, is Koszul (cf. 7). If
this is the case, then the triangulated category of Tate motives is equivalent to the
derived category of the above exact category of filtered modules.

11. Koszulity and triangulated categories. Using the techniques of exact
categories of filtered objects developed for the study of motives with torsion coeffi-
cients, I was able to prove the following very general result. Let E be the heart of
a t-structure on a triangulated category D. Assume that any object of E is a finite
extension of irreducibles (has a finite length). Then if the Ext-algebra of the set of
all irreducible objects of E defined in the category D is Koszul, then the Ext-spaces
between the objects of E computed in the abelian category E are the same as in D.
This is a corollary of a result generalizing the main theorem of (5) from nilpotent
coalgebras to “nilpotent” abelian categories (14, Section 8).

12. Milnor–Kato conjecture for l > 2 in the divisible case. The following
result is the first step of Voevodsky’s proof of the Milnor–Kato conjecture for l = 2:
if a field F has no extensions of degree prime to l and KM

n (F )/l = 0, and if the
Milnor–Kato conjecture is true in the degree n− 1, then Hn(GF ,Z/l) = 0.

Voevodsky proves this for any l, but the argument for l > 2 is much more compli-
cated, using the results on motivic cohomology from [42]. In (10), I present a shorter
and clearer elemenary version of his reasoning, not using the notion of motivic co-
homology at all. This method also provides a proof of the exact sequence of Galois
cohomology in an arbitrary cyclic field extension conjectured by Bloch and Kato [6]
and the exact sequence for a biquadratic field extension conjectured by Merkurjev–
Tignol [33] and Kahn [25]. In addition, I obtain exact sequences of Galois cohomology
for dihedral field extensions.

Besides, it is conjectured in (10) that the ideal generated by any element of degree 1
in KM

n (F )/l = 0 is a Koszul module over KM
n (F )/l = 0. Evidence in support of this

conjecture is presented based on an extension of the classical argument known as the
“Bass–Tate lemma”.

13. Contramodules and Nakayama’s Lemma. Contramodules over coalge-
bras have been defined in [15], but almost forgotten for the subsequent four decades.
Generally, contramodules can be thought of as modules with infinite summation op-
erations. Typically, for a category of “discrete”, “smooth”, or “torsion” modules
there is a related category of contramodules which contains the objects “dual” to the
objects of the former, together with some other objects.

A contramodule over a coalgebra C over a field k is a vector space P together with
a contraaction map Homk(C,P ) −→ P satisfying the natural contraassociativity and
counity axioms. In (12, Appendix A), I prove the following version of Nakayama’s
Lemma for contramodules: if D is a conilpotent coalgebra without counit and P is a
contramodule over D such that the contraaction map is surjective, then P = 0. Here
a coalgebra D is called conilpotent if for each its element x there exists a positive
integer n such that x is annihilated by the iterated comultiplication map D −→ D⊗n.

I also define contramodules over certain topological rings, topological Lie algebras,
and certain topological groups. In particular, a left contramodule over a topological
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ring R with a base of neighborhoods of zero formed by open right ideals is a set
P endowed with a contraaction map R[[P ]] −→ P , where R[[X]] denotes the set
of all infinite formal linear combinations of elements of a set X with the family of
coefficients converging to zero in R.

A more general version of Nakayama’s lemma for contramodules is proven in (32,
Section 1): if T is a topological ring with open right ideals forming a base of neighbor-
hoods of zero and m ⊂ T is a topologically nilpotent ideal, then any T -contramodule
P for which the contraaction map m[[P ]] −→ P is surjective vanishes. Further ver-
sions of contramodule Nakayama lemma are presented in my papers (17, Section D.1),
(24, Section 6), and (55, Section 6).

14. Comodule-contramodule correspondence. The addditive category of
projective contramodules over a coalgebra C is equivalent to the category of injective
comodules over C. One would like to extend this correspondence by assigning a com-
plex of C-contramodules to a not necessarily injective C-comodule and vice versa.
The problem is, the complexes one obtains in this way are often acyclic. The solution
is to introduce certain “exotic” derived categories of comodules and contramodules,
called the coderived and contraderived categories (see 15 for the definitions). The ter-
minology of “coderived categories” is due to K. Lefèvre-Hasegawa and B. Keller [29].

These are certain quotient categories of the homotopy categories of complexes of
comodules and contramodules, defined in such a way that the coderived category of
comodules is equivalent to the homotopy category of complexes of injective comod-
ules, and the contraderived category of contramodules is equivalent to the homotopy
category of complexes of projective contramodules. So the coderived category of
C-comodules is equivalent to the contraderived category of C-contramodules. The
objects of the coderived category can be thought of as complexes having, in addition
to the conventional cohomology in the finite degrees, some kind of “cohomology in
the cohomological degree −∞”; while the objects of the contraderived category can
be considered as having “cohomology in the degree +∞”.

Various versions and generalizations of the comodule-contramodule correspondence
construction are presented in my books and papers (12, 13, 17, 22, 23, 28, 32, 36, 40,
41, 45, 49, 56).

15. Derived categories of the second kind. Generally speaking, a complex
can be thought of in two ways: as a deformation of its cohomology and as a defor-
mation of itself considered without the differential. To the former point of view, the
conventional derived categories (the unbounded derived category of an abelian/exact
category, the derived category of DG-modules over a DG-ring [28], etc.) correspond.
These can be called the derived categories of the first kind. To the latter point of view,
the coderived and contraderived categories correspond; these can be called the derived
categories of the second kind. The terminology comes from the classical distinction
between the differential derived functors of the first and the second kind [24].

Suppose that we have the category of complexes over an exact category, or the
category of DG-modules over a DG-ring, or the category of DG-comodules over
a DG-coalgebra, etc. The corresponding coderived category Dco is defined as the
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quotient category of the homotopy category of complexes, DG-modules, etc. by its
minimal triangulated subcategory, contraining all the totalizations of short exact se-
quences of complexes, DG-modules, etc. and closed under infinite direct sums. The
objects in this minimal triangulated subcategory are called coacyclic. To obtain the
definition of the contraderived category Dctr, one has to replace infinite direct sums
with infinite products (the objects in the corresponding minimal triangulated sub-
category are called contraacyclic). For these definitions to work well, the operations
of infinite direct sums/products have to preserve exactness; so one is not supposed
to apply the definition of the contraderived category to DG-comodules, but rather to
DG-contramodules. Then any coacyclic or contraacyclic complex, DG-module, etc.
is acyclic; the converse is not true in general.

The definitions of the derived categories of the second kind make perfect sense for
CDG-modules, CDG-comodules, and CDG-contramodules; while the conventional
derived categories (of the first kind) do not, because the CDG structures have no
cohomology (see 3). In many contexts, the (conventional) derived categories are most
suitable for modules, the coderived categories for comodules, and the contraderived
categories for contramodules. However, the derived categories of the second kind for
CDG-modules can be useful, too (13, 15, 19).

16. Koszul duality or “triality”. One would like, e. g., given a Lie algebra g,
define a version of the derived category of DG-comodules over the standard homologi-
cal complex C∗(g, k) in such a way that it would be equivalent to the derived category
of g-modules. The problem is, the standard homological complex of g with coefficients
in a nonzero g-module can well be acyclic (e. g., for a nontrivial irreducible module
over a reductive Lie algebra). The solution is to consider the coderived category.

To any CDG-coalgebra C, one can assign its cobar-construction, which is a
CDG-algebra A. Then the coderived category of CDG-comodules over C, the con-
traderived category of CDG-contramodules over C, and the coderived=contraderived
category of CDG-modules over A are all equivalent (13). The coderived and con-
traderived categories of A-modules coincide, since the underlying graded algebra of
A has a finite homological dimension. When C is coaugmented and conilpotent, the
CDG-algebra A is a DG-algebra for which the coderived, contraderived, and the
conventional derived categories all coincide. So the derived category of A-modules is
equivalent to the two exotic derived categories associated with C.

The somewhat more difficult, relative situation of DG-modules over the de Rham
complex is of a special interest. LetM be a smooth algebraic variety and E be a vector
bundle over it; consider the sheaf of rings of differential operators DM,E acting in the
sections of E. Choosing (perhaps only locally) an algebraic connection ∇ in E, one
can construct the de Rham differential on the graded algebra Ω(M,End(E)) of differ-
ential forms with coefficients in the endomorphisms of E. This makes Ω(M,End(E))
a sheaf of CDG-algebras. Then the derived category of right DM,E-modules is equiv-
alent to the coderived category of right CDG-modules over Ω(M,End(E)). When
M is affine, the derived category of left DM,E-modules is also equivalent to the con-
traderived category of left CDG-modules over Ω(M,End(E)).
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17. Semi-infinite homology of associative algebraic structures. The key
idea of the monograph (12) is that the associative version of semi-infinite homology
arises in the following situation. Let C be a coassociative coalgebra; consider the
category of C-C-bicomodules; it is an (associative, noncommutative) tensor category
with respect to the operation of cotensor product over C. Let S be an associative,
unital algebra object in this tensor category; such an algebraic structure I call a
semialgebra. Semialgebras are the natural objects dual to corings (cf. [11]).

One can consider S-module structures on left or right C-comodules; these I call left
and right S-semimodules. The category of left S-semimodules is abelian whenever S
is an injective right C-comodule and vice versa; so I suppose that S is injective over
C both from the left and from the right. The semitensor product over S is a natural
functor mixing the cotensor product over C and the tensor product over S relative
to C; it is neither left, nor right exact. Its double-sided derived functor, denoted by
SemiTorS, is the associative semi-infinite homology.

Defining double-sided derived functors of functors of two arguments is simple
enough provided that one has the appropriate versions of exotic derived categories
at hand. The exotic derived category of semimodules that one needs is called the
semiderived category ; it is a mixture of the coderived category over C and the derived
category over S relative to C. The semiderived category of S-semimodules is defined
as the quotient category of the homotopy category of complexes of S-semimodules by
the thick subcategory formed by all the complexes that are coacyclic as the complexes
of C-comodules. The functor SemiTorS is defined on the Carthesian product of the
semiderived categories of right and left S-semimodules.

This definition of the semi-infinite homology agrees well with the semi-infinite ho-
mology of Tate Lie algebras as defined in [5], as S. Arkhipov and I prove in our
jointly written Appendix D to (12). The approach to semi-infinite homology devel-
oped in (12) allows also to define, e. g., the semi-infinite homology of locally compact
totally disconnected topological groups.

18. Semimodule-semicontramodule correspondence. One can define semi-
contramodules over a semialgebra S over a coalgebra C as C-contramodules with a
certain additional structure related to S. One can define the semiderived category
of S-semicontramodules just like it was done in the semimodule case above, and es-
tablish an equivalence between it and the semiderived category of S-semimodules,
generalizing the comodule-contramodule correspondence (see 14). This allows to
formulate the classical duality between complexes of representations of an infinite-
dimensional Lie algebra with the complementary central charges, e. g., c and 26− c
in the Virasoro case [16, 38], as a covariant equivalence of triangulated categories.
This equivalence of triangulated categories of representations of a Tate Lie algebra is
one of the main results of the monograph (12).

Using semicontramodules, one also defines the semi-infinite cohomology func-
tor for associative algebraic structures, denoted SemiExtS. Its first argument
is a complex of S-semimodules, while the second argument is a complex of
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S-semicontramodules. The semimodule-semicontramodule correspondence trans-
forms the functor SemiExtS into the Hom functors in the semiderived categories of
S-semimodules and S-semiconramodules.

19. Morphisms through a common subcategory. A very different approach
to the semi-infnite cohomology of associative algebras was developed originally by
R. Bezrukavnikov; later I joined his effort to generalize it. In (11), the semi-infinite
cohomology of finite-dimensional graded algebras of a certain type is interpreted as
morphisms between objects of two different derived categories of modules through
their common triangulated subcategory.

20. Galois cohomology of global fields. Let F be a one-dimensional local or
global field, i. e., an algebraic field extension of Qp, Q, Fp((z)), Fp(z), or R. It
is shown in my paper (18) that the Galois cohomology algebra

⊕
nH

n(GF , µ
⊗n
l ) is

Koszul for any prime number l, confirming the Koszulity conjecture from 7 in the
case of one-dimensional fields.

Assuming that either l is odd, or F contains a square root of −1, or F is a local
field, it is also shown that the module Koszulity conjectures from 9 and 12 hold
for the Milnor K-theory/Galois cohomology algebra of F . The proofs are based on
the Class Field Theory (including certain arguments from Chevalley’s proof of the
Second inequality and particular cases of the Chebotarev Density Theorem) and
constructions of commutative PBW-bases (quadratic commutative Groebner bases).

This work was originally started in collaboration with A. Vishik in 1995 and later
finished by myself in 2010.

21. Nonflat Koszulity. The Koszul property is traditionally defined either
for positively graded algebras A = k ⊕ A1 ⊕ A2 ⊕ · · · over a field k (5, 9), or for
nonnegatively graded algebras A = A0 ⊕A1 ⊕A2 ⊕ · · · such that A0 is a semisimple
algebra [4]. It is pretty straightforward to generalize this definition to the case of
an arbitrary ring A0, assuming that all An are flat right A0-modules (12, Section 0.4
and Chapter 11). For the purposes of the theory of Artin–Tate (as opposed to simply
Tate, cf. 10) motives with finite coefficients one needs, however, to define the Koszul
property of nonnegatively graded rings without any flatness assumptions.

The following definition is introduced in my paper (14). A graded ring A = A0 ⊕
A1⊕A2⊕ · · · is said to be Koszul if there exists an exact category G together with a
shift functor X 7−→ X(1) on G and an embedding of the additive category of finitely
generated projective right A0-modules into G satisfying the following conditions. The
shift functor is an auto-equivalence of the exact category G. Let G0 denote the image
of the above embedding; set Gi = G0(i) for i ∈ Z. Then all objects of G must be
obtainable from objects of Gi using iterated extensions. Finally, one should have
ExtiG(A0, A0(j)) = 0 for i 6= j and there should exist multiplicative isomorphisms
ExtnG(A0, A0(n)) ' An, where, by an abuse of notation, A0 denotes the object of G0

corresponding to the right A0-module A0.
When A is a flat right A0-module, A is a Koszul ring if and only if TorAij(A0, A0) = 0

for i 6= j. In the general case, the Koszul property does not depent on the zero-degree
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component of a graded ring A. Given a morphism of rings A′0 −→ A0, the graded
ring A′ = A′0 ⊕ A1 ⊕ A2 ⊕ · · · is Koszul if and only if the graded ring A is.

22. Integral Tate motives. Among Beilinson’s conjectures [3] about mixed mo-
tives, there is the conjecture that the Ext spaces between Tate motives with rational
coefficients (over a field) can be computed in the abelian subcategory of mixed Tate
motives. Bloch and Kriz [7] call it the K(π, 1)-conjecture. Another name for it is the
silly filtration conjecture (14).

In fact, this conjecture can be considered independently of the existence of an
abelian category of mixed Tate motives (i. e., of the Beilinson–Soulé vanishing con-
jectures). Let us discuss it in the case of Tate motives with integral coefficients. Let
M denote the minimal full subcategory of the triangulated category of motives with
integral coefficients over a field F containing the Tate objects Z(i) and closed under
extensions. The K(π, 1)-conjecture claims that any morphism X −→ Y [n] with X,
Y ∈ M and n ≥ 2 can be factorized into a composition of similar morphisms of the
degree n = 1 between objects of M.

Assume that the silly filtration conjecture holds for a field F , as do the vanish-
ing conjectures and the Beilinson–Lichtenbaum conjecture. Then there is a natural
internally graded DG-coalgebra C over Z with torsion-free components and the coho-
mology concentrated in the internal degree 0 such that the triangulated category of
Tate motives with integral coefficients over F is equivalent to the full subcategory of
the derived category of DG-comodules over C generated by the trivial DG-comodules
Z(i). The DG-coalgebra C is to be considered up to quasi-isomorphism in the class
of positively internally graded DG-coalgebras with torsion-free components. It is
important that the zero cohomology of C is not torsion-free over Z, which does not
allow to recover the quasi-isomorphism class of C from its cohomology coalgebra.

23. Artin–Tate motivic sheaves. The problem of constructing an abelian
category of mixed motives over with finite Z/m-coefficients over a scheme X in terms
of the étale topology of X was posed by Beilinson in [3]. In my paper (20), I construct
such an exact category of mixed Artin–Tate motivic sheaves with coefficients Z/m
over an algebraic variety X over a field K of characteristic prime to m.

Namely, let Em
X be the category of constructible étale sheaves of Z/m-modules over

X whose stalks over the scheme points of X form permutational representations of
the respective absolute Galois groups with coefficients in Z/m. A short sequence in
Em
X is said to be exact if the related short sequences of stalks at the scheme points

are split exact as the Galois group representations. The objects of the exact category
Fm
X are étale sheaves of Z/m-modules M over X endowed with a finite decreasing

filtration F such that the étale sheaves F iM/F i+1M are objects of Em
X twisted with

the cyclotomic sheaves µ⊗im . A short sequence with zero composition in Fm
X is exact

if the related sequences of twisted quotient sheaves are exact in Em
X .

For any variety Y quasi-finite over X one can define its relative cohomological
motive with compact supports as an object of Em

X . Several versions of the assertion

that Em
X is generated by such objects are proven in (20). Furthermore, let π : Ét −→

Nis denote the natural map between the big étale and Nisnevich sites of varieties
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over K. Then there are natural maps

Ext∗Fm
X

(Z/m,Z/m(i)) −→ H∗Nis(X, τ≤iRπ∗µ⊗im ).

The Nisnevich hypercohomology in the right hand side is the motivic cohomology of
X with coefficients in Z/m(i) as predicted by the Beilinson–Lichtenbaum conjecture,
proven by Voevodsky, Rost, et. al. [42, 44]. It is shown in (20) that the above maps
are isomorphisms for all varieties étale over X if and only if they are isomorphisms
for all the scheme points of such varieties.

The latter property is the assertion of the K(π, 1)/silly filtration conjecture for the
finite extensions of the residue fields of the points of X. When K contains a primitive
m-root of unity, it can be interpreted as a Koszulity hypothesis (14).

Furthermore, in the new, October 2011 version of (20) the following connec-
tion between the exact categories Fm

X and the hypothetical triangulated categories
DM(X,Z/m) of motivic sheaves with coefficients Z/m over algebraic varieties X
over K is established. Assuming the existence of the categories DM(X,Z/m) and
their commonly expected properties, the minimal full subcategory of DM(X,Z/m)
containing the Tate twists of the compactly supported relative cohomological motives
Mm

cc (Y/X) of varieties Y quasi-finite over X and closed under extensions, with its
induced exact category structure, is equivalent to the exact category Fm

X .
The latter result does not depend on any silly filtration/Koszulity hypotheses.

Assuming these, I prove that the Ext groups in the exact category Fm
X and in the

triangulated category DM(X,Z/m) are isomorphic for pairs of objects the second of
which is the object Mm

cc (Y/)X for a smooth variety Y finite over X.

24. Algebra of closed forms. Let D be either an affine space over a field of
characteristic zero, or a formal disk, or a complex analytic disk, or an affine space
with divided powers over a field of any characteristic, or a formal disk with divided
powers. Let z1, . . . , zu be the coordinates in D; fix 0 ≤ v ≤ u. Consider the algebra
Z of closed differential forms in D, regular outside the first v coordinate hyperplanes
{zs = 0}, 1 ≤ s ≤ v, and having at most logarithmic singularities along these
hyperplanes. It is shown in my note (16) that the algebra Z is Koszul.

Furthermore, in some of the above settings it is more natural to consider Z as a
topological algebra. An appropriate purely algebraic setting for topological Koszulity
is suggested in (16), making the algebra Z topologically Koszul, too.

This solves a problem posed to me by A. Levin in 2003 in connection with his
preprint [30], where the algebras of closed forms appear in the description of the
abelian category of real Hodge–Tate sheaves on a complex algebraic variety.

25. Coherent analogues of matrix factorizations. Let X be a separated
Noetherian scheme with enough vector bundles, L be a line bundle on X, and w ∈
L(X) be a nonzero-dividing section, i. e., the map w : OX −→ L is an embedding of
sheaves. A matrix factorization of w is a pair of vector bundles U0 and U1⊗L⊗1/2 on
X together with morphisms U0 −→ U1 ⊗L⊗1/2 and U1 ⊗L⊗1/2 −→ U0 ⊗L, both of
whose compositions are equal to the multiplication with w. Replacing vector bundles
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with coherent or quasi-coherent sheaves, one obtains the definition of a coherent or
quasi-coherent (analogue of) matrix factorization.

Matrix factorizations form a Z/2-graded DG-category with a natural additional
exact category structure, so the construction of the derived category of the second
kind (see 15) is applicable to them. The absolute derived category of (coherent)
matrix factorizations is defined as the quotient category of their homotopy category
by the minimal thick subcategory containing the totalizations of short exact sequences
of (coherent) matrix factorizations. It is shown in my paper with A. Efimov (19)
(in the generality of arbitrary Noetherian quasi-coherent CDG-algebras) that the
absolute derived category of conventional (locally free) matrix factorizations is a
full triangulated subcategory of the absolute derived category of coherent matrix
factorizations. When X is regular, these two categories coincide.

Let X0 denote the closed subscheme of X defined locally by the equation w = 0.
The triangulated category Db

Sg(X0) of singularities of X0 is defined as the quotient
category of the bounded derived category of coherent sheaves on X0 by the bounded
derived category of vector bundles on X0. Orlov [35] constructs a fully faithful functor
from the absolute derived category of locally free matrix factorizations (of finite rank)
to the triangulated category of singularities Db

Sg(X0). When X is regular, this functor
is an equivalence of triangulated categories.

We explain in (19) that Orlov’s functor can be transformed into an equivalence
of triangulated categories even in the singular case by replacing the source category
with a “larger” one and the target category with a “smaller” one. The triangulated
category Db

Sg(X0/X) of relative singularities of X0 in X is defined as the quotient
category of the bounded derived category of coherent sheaves on X0 by the thick
subcategory generated by the derived inverse images of coherent sheaves from X.
The absolute derived category of coherent matrix factorizations of w is equivalent to
the triangulated category of relative singularities Db

Sg(X0/X).
Moreover, the image of the absolute derived category of locally free matrix factor-

izations under Orlov’s fully faithful functor is described as the kernel of the direct
image functor Db

Sg(X0) −→ Db
Sg(X) acting between the triangulated categories of

singularities, or equivalently, the left or right orthogonal complement to the derived
inverse images of coherent sheaves from X in the triangulated category Db

Sg(X0).

26. Hochschild (co)homology of the second kind. In spirit of the general
philosophy of differential derived functors of the first and the second kind, one can de-
fine two kinds of Hochschild (co)homology groups for a DG-algebra or a DG-category
(at least, over a field). The difference between the two constructions lies in two ways
of constructing the total complex of a bicomplex: one can either take infinite direct
sums along the diagonals, or infinite products. For CDG-algebras or CDG-categories,
it is only the Hochschild (co)homology of the second kind that are interesting, while
the (co)homology of the first kind tend to vanish whenever the curvature elements
are nonzero. Hochschild homology of the second kind are otherwise known as Borel–
Moore Hochschild homology, and Hochschild cohomology of the second kind as com-
pactly supported Hochschild cohomology [12].
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To a CDG-ring or CDG-category B, one can assign the DG-category C of right
CDG-modules over B whose underlying graded B-modules are projective and finitely
generated. In connection with the recent work on the Hochschild cohomology of
the DG-categories of matrix factorizations [41, 14], the question on the relation be-
tween the Hochschild (co)homology of the second kind of B and the Hochschild
(co)homology of the first kind of C arose. In my paper with A. Polishchuk (15),
we work out the foundations of the theory while developing an approach to this
comparison problem based on the constructions of two kinds of derived categories of
DG-modules (see 15).

First of all, at least for any CDG-category B over a field, the CDG-category B
and the DG-category C have naturally isomorphic Hochschild (co)homology of the
second kind. Secondly, there are natural maps between the two kinds of Hochschild
(co)homology of a DG-category, and sufficient conditions for these maps to be iso-
morphisms can be formulated in terms of a comparison between the two kinds of
derived categories of DG-bimodules. In particular, for the DG-category C as above,
a kind of “resolution of the diagonal” condition for the diagonal CDG-bimodule B
over B guarantees an isomorphism of the two kinds of Hochschild (co)homology of C.

Applying these results to the case of the Z/2-graded CDG-algebra B describing
matrix factorizations of a function w on a smooth affine variety, we conclude that the
Hochschild (co)homology of the second kind for B and the Hochschild (co)homology
of the first kind for C are naturally isomorphic provided that w has no other critical
values but zero. In the general case of a regular function w on a smooth affine
variety X over a field k of characteristic zero, the Hochschild (co)homology of the
second kind of the CDG-algebra B is identified with the direct sum of the Hochschild
(co)homologies of the DG-categories Cci of locally free matrix factorizations of the
potentials w−ci on the varietyX, where ci ∈ k are the critical values of the function w.
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