Novinky
Na čem pracujeme: Analýza vzniku klastru meteorů z roje zářijových epsílon Perseid
Tým astronomů z Oddělení meziplanetární hmoty ASU velmi podrobně zkoumal deset meteorů tvořících tzv. klastr, tedy částečky, které pocházely z jednoho tělesa, jež se rozpadlo teprve krátce před vstupem do zemské atmosféry. S využitím unikátních dat ukazují, že rozpad mateřského tělesa vyvolalo nejspíše tepelné pnutí v materiálu.
Případy, kdy byly pozorovány krátce trvající spršky rojových meteorů, tzv. klastry, jsou vzácné, a ještě vzácnější jsou jejich zachycení na minimálně dvou různých pozorovacích stanicích, což umožňuje určit dráhu v atmosféře i meziplanetárním prostoru těchto těles a jejich vstupní rychlosti. V historii je takových případů skutečně jen několik jednotek. O jednom z nejzajímavějších napsal zprávu Pavel Koten z ASU v roce 2017, v níž poukázal na jasné těleso následované osmicí slabých meteorů. Tato událost nastala 9. září 2016 před půlnocí a všechna tělesa patřila do roje zářijových epsílon Perseid (Mezinárodní meteorářská organizace tento roj označuje zkratkou SPE). Vícestaniční pozorování umožnilo určit trajektorii těchto těles a z vyhodnocení výpočtů vyplynulo, že se musí jednat o geneticky spřízněná tělesa.
Nyní se pracovní tým k této události vrátil a podíval se na ni více v detailu, tentokrát pod vedením Davida Čapka. Od původní práce se podařilo identifikovat další fragment, takže celkově se klastr skládá z jednoho hlavního tělesa následovaného devíti menšími odlomky. Vypočtená předatmosférická hmotnost hlavního tělesa činí lehce přes 66 gramů, celková hmotnost úlomků pak nedá dohromady ani 0,05 g. Hlavní fragment je tedy více než tisíckrát hmotnější než ostatní úlomky, což činí tuto skupinu meteorů také zajímavou.
Na základě dostupné statistiky autoři nejprve odhadli, zda je možné, že malých úlomků je ve skutečnosti více, byly však pod detekčním limitem pozorovacích přístrojů. Z výpočtů se zdá, že je to nejen možné, ale i vysoce pravděpodobné. Autoři odhadli, že z hlavního tělesa se celkově oddělilo 0,16 g úlomků, ty pozorované tedy tvoří sotva třetinu této hmotnosti. Bylo jich však zřejmě vyšší množství a jednotlivé hmotnosti byly příliš malé na to, aby je bylo možné dostupnými přístroji zachytit.
Přesné vyhodnocení drah těles umožnilo vypočítat jejich prostorovou blízkost. Ukazuje se, že malé fragmenty se v prostoru nacházely v objemu s rozměry 66×67×50 km a že tento ohraničující objem byl posunut oproti největšímu tělesu o 27 km ve směru od Slunce. Na základě podobnosti těchto těles s tělesy jiných meteorických rojů bylo možné odhadnout vlastnosti materiálu, jmenujme například hustotu nebo pevnost v tahu. Toto jsou důležité veličiny pro posouzení historie klastru a důvodů jeho vzniku.
Je totiž zřejmé, že všechna tělesa mají společný původ. Jejich trajektorie se rozešly především působením tlaku slunečního záření, které různým částečkám udělovalo různé pohybové zrychlení a vyvolalo tak rozptyl fragmentů. Naštěstí je možné tento fyzikální proces popsat pomocí soustavy matematických rovnic. Tu by obecně bylo velmi obtížné vyřešit, protože jejich počet je menší než počet neznámých veličin, které se v těchto rovnicích vyskytují, ovšem soustavu bylo možné uzavřít kvůli specifické konfiguraci systému tělísek. Ten se totiž sestává z jednoho dominantního tělesa a devíti malých tělísek. Z toho vyplývá, že rychlost úniku tohoto fragmentu od mateřského tělesa bude zcela zanedbatelná oproti rychlostem úniku zbývajících fragmentů a není třeba ji tedy uvažovat, což ze systému rovnic odstraní přebývající proměnné. Řešením soustavy rovnic lze získat v prvé řadě věk klastru tělísek. S uvážením nepřesností určených veličin vstupujících do soustavy rovnic je nejlepší hodnotou věku 2,28 dne s nejistotou 0,44 dne. Původní těleso se tedy rozpadlo jen krátce před srážkou se Zemí. Z rovnic bylo možné určit také rychlosti úniku, které vycházely v rozsahu hodnot 0,1 až 0,8 m/s.
Tyto nové odvozené údaje byly klíčové k odhalení důvodu rozpadu mateřského tělesa. V zásadě přicházejí v úvahu tři možnosti. Tou první je rozpad odstředivou silou v důsledku rychlé rotace tělesa. Malá tělesa mohou být roztáčena srážkami s prachovými částicemi v meziplanetárním prostoru nebo tlakem slunečního záření na těleso nepravidelného tvaru. Pokud se vezme v úvahu rychlost úniku fragmentů od tělesa, která by odpovídala rychlosti kriticky rotujícího tělesa, lze vypočítat hodnotu odpovídajícího namáhání. Tato hodnota je ale přinejlepším 730krát menší než je předpokládaná pevnost materiálu tělesa v tahu, takže tuto hypotézu lze bezpečně považovat za téměř vyloučenou.
Druhou možností je přirozeně destruktivní kolize mateřského tělesa s jiným. Vyvrženiny jsou běžným doprovodným jevem při vzniku kráterů, takže tento model by přirozeně vysvětlil existenci malých fragmentů. Srážkové experimenty prováděné v laboratořích však ukazují, že výletové rychlosti jsou obvykle mnohem vyšší než odvozené rychlosti úniku malých fragmentů klastru. Je třeba si přiznat, že rovnice připouštějí vyšší rychlosti úniku pro případ, že k rozpadu došlo buď mnohem dříve nebo mnohem později než v uváděných 2,28 dne před vstupem do atmosféry. Pro dřívější rozpad (a tedy vyšší věk klastru) by pak ale neodpovídaly směry, s nimiž fragmenty mateřské těleso opustily. S pozorováními konzistentní by mohl být snad impakt mladší než 10 hodin před vstupem do atmosféry, toto řešení nelze vyloučit, ale vzhledem k okolnostem jej lze považovat za málo pravděpodobné.
V poslední řadě zůstává hypotéza, že malé fragmenty se od mateřského tělesa odlouply v důsledku tepelného namáhání mateřského tělesa kvůli nerovnoměrnému ohřevu. Tato hypotéza je nejvíce konzistentní s pozorováními. Nerovnoměrný ohřev může snadno způsobit pukání tělesa a následné odlupování povrchových částí. Tato hypotéza je konzistentní jak se známými tepelnými vlastnostmi asteroidálního materiálu tak s odvozenými nízkými rychlostmi úniku.
Práce ukazuje, že astrofyzika je občas detektivní prací. Že je třeba pečlivě sesbírat co nejkompletnější pozorovací materiál, velmi precizně jej zpracovat a do úvah o viníkovi zapojit i předchozí případy již řešené jinými autory. Výsledek této mravenčí činnosti pak stojí za to.
Michal Švanda
Citace práce
D. Čapek, P. Koten, P. Spurný a L. Shrbený, Ejection velocities, age, and formation process of SPE meteoroid cluster, Astronomy & Astrophysics v tisku, preprint arXiv:2207.14029
Kontakt: RNDr. David Čapek, Ph.D., david.capek@asu.cas.cz