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Abstract

Primitive Equations(PE) are an important model which is widely used in the geophysical
research and mathematical analysis. In the previous results, people derive PE from the
Navier-Stokes or Euler system by asymptotic analysis or numerical approximation. Here, we
give a rigorous mathematical derivation of inviscid compressible Primitive Equations from
Euler system in a periodic channel, utilizing the relative entropy inequality.
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1 Introduction

In this paper, we consider the following compressible Euler system{
∂tρ + div(ρu) = 0,
(ρu)t + div(ρu⊗ u) +∇p(ρ) = 0,

(1.1)

in the thin domain (0, T ) × Ωε, where Ωε = {(x, z)|x ∈ T2, 0 < z < ε}, x denotes the horizontal

direction and z denotes the vertical direction. Here, ρ,u, p represent the density, velocity and

pressure, respectively. The velocity can be defined as u = (v, w), where v(t, x, z) ∈ R2 and

w(t, x, z) ∈ R represent the horizonal velocity and vertical velocity respectively. Through out this

paper, we use the notations divu = divxv+∂zw and ∇ = (∇x, ∂z) to denote the three-dimensional

spatial divergence and gradient respectively. Here we suppose the pressure: p(ρ) = ργ (γ > 1).

Adopting the same scheme as [3], we perform the following rescaling

z → εz, w → εw
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while t, x, v, ρ and p are left unchanged, then get the following rescaled Euler equations in the

fixed domain Ω := T2 × (0, 1): ∂tρ + divx(ρv) + ∂z(ρw) = 0,
ρ∂tv + ρ(u · ∇)v +∇xp(ρ) = 0,
ε2

(
ρ∂twε + ρ(u · ∇)w

)
+ ∂zp(ρ) = 0,

(1.2)

We supplement the system with the following boundary and initial conditions:

(ρε,uε)|t=0 = (ρ0,u0). (1.3)

By setting ε → 0 in the compressible Euler system (1.2), we obtain the inviscid compressible PE

as the following:  ∂tρ + divx(ρv) + ∂z(ρw) = 0,
ρ∂tv + ρ(u · ∇)v +∇xp(ρ) = 0,
∂zp(ρ) = 0.

(1.4)

In the context of geophysical flows, scientists usually use the Primitive Equations(PE) to

describe and analysis the phenomena of atmosphere and ocean. One of the typical character of

PE model is that there is no information for the vertical velocity in the momentum equation

and the vertical velocity is determined by the horizontal velocity. Therefore, the mathematical

and numerical study of the problems of PE model was unsolved until 1990s when Lions, Teman

and Wang [15, 16] were first to study the PE and received fundamental results in this field. The

celebrated breakthrough result was made by Cao and Titi [5], where they first proved the global

well-posedness of PE in the three dimensional case. Readers can refer to [4, 6, 19] and references

therein for more physical background and mathematical results.

It is conventional using the Boussinesq and hydrostatic approximation to derive PE model

from incompressible Navier-Stokes equations. Therefore, how to derive it rigorously is an inter-

esting question in the mathematical community. During the last decades, deriving incompressible

PE model has progressed by concentrated the mathematical arguments and a vast amount of

published literature exists. More precisely, Azérad and Guillén [1] proved the incompressible

Navier-Stokes equations converge to PE in the sense of weak solutions. Li and Titi [14] proved

the weak solutions of incompressible Navier-Stokes equations converge to strong solutions of PE.

Donatelli and Juhasz [7] proved the convergence in downwind-matching coordinates. On the other

hand, Grenier [12] used the energy estimates and Brenier [3] used the relative entropy inequality

to prove the smooth solutions of incompressible Euler system converge to smooth solutions of

inviscid PE. However, as is well known, the atmosphere and ocean, consists mostly of air and

water, should be considered as compressible fluid. Therefore, people consider that whether we

could deduce the PE model in compressible case. Recently, Ersoy et al. [8] used the asymptotic

analysis combined with dimensionless to obtain the compressible PE model where the viscosity

coefficients are depending on the density. Necasova and her authors [11] deduce the compress-

ible PE from anisotropic Navier-Stokes equations with constant viscosity coefficient. To the the
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authors’ best knowledge, there is no result concerning on the inviscid compressible PE equa-

tions. Inspired by Brenier’s work [3], we give a rigourous mathematical justification to deduce

the inviscid compressible PE model.

The goal of this work is to investigate the limit process ε → 0 in the system of (1.2) converges

in a certain sense to the inviscid compressible Primitive Equations (1.4). The paper is organized

as follows. In Section 2, we introduce the relative entropy inequality, give some useful lemmas

and state the main theorem. Section 3 is devoted to the proof of the convergence.

2 Main result

2.1 Relative entropy inequality

Motivated by [3, 9], for any smooth solution (ρ,u), where u = (v, w), to the compressible

Euler system (1.2), we introduce the relative entropy functional

E(ρ,u|r,U) =
∫

Ω

[
1
2
ρ|v −V|2 +

ε2

2
ρ|w −W |2 + P (ρ)− P ′(r)(ρ− r)− P (r)]dxdz (2.1)

where r > 0, U = (V,W ) are smooth “test” functions, r, U compactly supported in Ω. Here we

have used rP ′(r)− P (r) = p(r). For simplicity, we use the notation
∫
Ω

f instead of
∫
Ω

fdxdz.

Lemma 2.1. Let (ρ,u) be a smooth solution to the compressible Euler system (1.2), and let

(r,U) be smooth solutions to the inviscid compressible PE system (1.4). Then we have

d

dt
E(ρ,u|r,U)

= −
∫

Ω

ρw(v −V)(w −W )∂zV −
∫

Ω

(v −V)(∇xp(ρ)− ρ

r
∇xp(r))

−
∫

Ω

ρ(v −V)2∇xV + ε2

∫
Ω

ρ(w −W )(∂tw − ∂tW )

+ ε2

∫
Ω

ρv|w −W |∇x(w −W ) + ε2ρw|w −W |∂z(w −W )

−
∫

Ω

[P ′(ρ)− P ′(r)](divx(ρv) + ∂z(ρw)) +
∫

Ω

P ′′(r)(ρ− r)(divx(rV) + ∂z(rW )) (2.2)

Proof. We calculate the terms in (2.1) one by one. Firstly, we compute the first items on the

right side of (2.2) as:

d

dt

∫
Ω

1
2
ρ|v −V|2dxdz =

∫
Ω

1
2
ρt|v −V|2 +

∫
Ω

ρ(v −V)(∂tv − ∂tV).

From the continuity equation (1.2)1, it is easy to find∫
Ω

1
2
ρt|v −V|2 = −1

2

∫
Ω

divx(ρv)|v −V|2dxdz − 1
2

∫
Ω

∂z(ρw)|v −V|2

=
∫

Ω

ρv(v −V)(∇xv −∇xV) +
∫

Ω

ρw(v −V)(∂zv − ∂zV). (2.3)
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And from the momentum equation (1.2)2 and (1.4)2, we have∫
Ω

ρ(v −V)(∂tv − ∂tV) = −
∫

Ω

(v −V)(ρv∇xv + ρw∂zv +∇xp(ρ)− ρV∇xV − ρW∂zV − ρ

r
∇xp(r))

= −
∫

Ω

(v −V)[ρv∇x(v −V) + ρ(v −V)∇xV

+ ρw∂z(v −V) + ρ(w −W )∂zV +∇xp(ρ)− ρ

r
∇xp(r)].

(2.4)

Combining (2.3) and (2.4), we get

d

dt

∫
Ω

[
1
2
ρ|v −V|2 =−

∫
Ω

ρw(v −V)(w −W )∂zV −
∫

Ω

(v −V)(∇xp(ρ)− ρ

r
∇xp(r))

−
∫

Ω

ρ(v −V)2∇xV. (2.5)

Similarly, by virtue of continuity equation, we obtain

d

dt

∫
Ω

ε2

2
ρ|w −W |2

=
ε2

2

∫
Ω

ρt|w −W |2 + ε2

∫
Ω

ρ(w −W )(∂tw − ∂tW )

= −ε2

2

∫
Ω

divx(ρv)|w −W |2 − ε2

2

∫
Ω

∂z(ρw)|w −W |2 + ε2

∫
Ω

ρ(w −W )(∂tw − ∂tW )

= ε2

∫
Ω

[ρv|w −W |∇x(w −W ) + ε2ρw|w −W |∂z(w −W )] + ε2

∫
Ω

ρ(w −W )(∂tw − ∂tW ).

(2.6)

Finally,

d

dt

∫
Ω

(P (ρ)− P ′(r)(ρ− r)− P (r))

=
∫

Ω

(P (′ρ)∂tρ− P ′′(r)∂tr(ρ− r)− P ′(r)∂tρ)

=
∫

Ω

[(P ′(ρ)− P ′(r))∂tρ− P ′′(r)∂tr(ρ− r)

= −
∫

Ω

[P ′(ρ)− P ′(r)](divx(ρv) + ∂z(ρw)) +
∫

Ω

P ′′(r)(ρ− r)(divx(rV) + ∂z(rW )). (2.7)

Getting (2.5)-(2.7) together, we complete the proof of Lemma 2.1.

Based on the relative entropy inequality, we can obtain the following lemma from [9]:

Lemma 2.2. Let 0 < a < b < ∞. Then there exists c = c(a, b) > 0 such that for all ρ ∈ [0,∞)

and r ∈ [a, b] there holds

P (ρ)− P ′(r)(ρ− r)− P (r) ≥
{

C|ρ− r|2, when r
2 < ρ < r,

C(1 + ργ), otherwise,

where C = C(a, b).
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2.2 Main result

Now, we are ready to state our main result.

Theorem 2.1. Let (ρ,u) and (r,U) be smooth solutions with ρ > 0 and r > 0, respectively,

the compressible Euler equations (1.2) and the inviscid compressible PE system (1.4), and Tmax

be the life time of smooth solutions. Suppose that they emerges at the same initial data, that is

ρ|t=0 = r|t=0, u|t=0U|t=0, then for all t ∈ [0, Tmax], we have

sup
t∈(0,Tmax)

E(ρ,u|r,U) ≤ CT ε2,

where CT is independent of ε.

Remark 2.1. The compressible Euler system (1.2) can be written as a positive, symmetric,

hyperbolic system and Kato [13] proved the system possess a unique, local C1 solution with ρ > 0,

provided the initial data are sufficiently regular. We suggest readers can refer to [20] for more

results and background about compressible Euler system.

Remark 2.2. Brenier [2], Masmoudi and Wong [18] obtained the local existence of smooth solu-

tion for inviscid incompressible PE system. Liu and Titi [17] proved the local existence of strong

solutions to compressible PE model. While, the corresponding result for inviscid compressible

PE model is still not known, which is left for future study.

3 Proof of Theorem 2.1

The Theorem 2.1 can proved directly by Lemma 2.1. We just need to control the right hand

side of (2.2). Firstly, we rewrite and control the proceeding first terms at right side of (2.2):∫
Ω

(v −V)(∇xp(ρ)− ρ

r
∇xp(r)) = −

∫
Ω

(v −V)
(r − ρ)∇xp(ρ) + ρ(∇xp(ρ)−∇x(r))

r

=
∫

Ω

(v −V)(ρ− r)
∇xp(r)

r
−

∫
Ω

(v −V)
ρ

r

(
p′(ρ)∇xρ− p′(r)∇xr

)
= I1 + I2. (3.1)

We divide I1 into two parts as

I1 =
∫

r
2≤ρ≤2r

(v −V)(r − ρ)
∇xp(ρ)

r
+

∫
ρ≤ r

2 ,ρ≥2r

(v −V)(r − ρ)
∇xp(ρ)

r
.

We know that (ρ,u) and (r,U) are smooth solution with ρ > 0 and r > 0. By virtue of Lemma

2.2 and Cauchy inequality, we get∫
r
2≤ρ≤2r

(v −V)(r − ρ) · ∇xp(ρ)
r

=
∫

r
2≤ρ≤2r

√
ρ(v −V) · (r − ρ)

∇xp(ρ)
√

ρr
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≤
∫

Ω

ρ|v −V|2 + C

∫
r
2≤ρ≤2r

(ρ− r)2 ≤ CE(ρ,u|r,U), (3.2)

and ∫
ρ≤ r

2 ,ρ≥2r

(v −V)(r − ρ)
∇xp(ρ)

r
=

∫
ρ≤ r

2 ,ρ≥2r

√
ρ(v −V)(r − ρ)

∇xp(ρ)
ρr

≤
∫

Ω

ρ|v −V|2 + C

∫
ρ≤ r

2 ,ρ≥2r

1 ≤ CE(ρ,u|r,U), (3.3)

where we have used
∫

r
2≤ρ≤2r

(ρ− r)2 ≤ E and
∫

ρ≤ r
2 ,ρ≥2r

1 ≤ E(ρ,u|r,U).

For the term I2,

−I2 =
∫

Ω

(v −V)
ρ

r
(p′(ρ)− p′(r))∇xρ +

∫
Ω

(v −V)
ρ

r
p′(r)∇x(ρ− r) = I21 + I22.

Using the mean value theorem, we see I21 =
∫
Ω
(v −V)ρ

r p′′(ξ1)(ρ− r)∇xρ where ξ1 = θρ + (1−
θ)r, θ ∈ (0, 1).

I22 =
∫

r
2≤ρ≤2r

(v −V)
ρ

r
p′′(ξ1)(ρ− r)∇xρ +

∫
ρ≤ r

2 ,ρ≥2r

(v −V)
ρ

r
p′′(ξ1)(ρ− r)∇xρ

By virtue of Cauchy inequality and Holder inequality, we get∫
r
2≤ρ≤2r

(v −V)
ρ

r
p′′(ξ1)(ρ− r)∇xρ

≤ C

∫
r
2≤ρ≤2r

(ρ− r)2 + C

∫
r
2≤ρ≤2r

ρ|v −V|2

≤ CE(ρ,u|r,U)

and ∫
ρ≤ r

2 ,ρ≥2r

(v −V)
ρ

r
p′′(ξ1)(ρ− r)∇xρ

≤
∫

ρ≤ r
2 ,ρ≥2r

ρ|v −V|2 + C

∫
ρ≤ r

2 ,ρ≥2r

ρ

≤ C

∫
Ω

ρ|v −V|2 + C[
∫

ρ≤ r
2 ,ρ≥2r

ργ +
∫

ρ≤ r
2 ,ρ≥2r

1]

≤ CE(ρ,u|r,U)

On the other hand, it is similar to I21 to get
∫
Ω
(v − V)ρ

r p′(r)∇x(ρ − r) ≤ E(ρ,u|r,U).

Moreover, due to the smooth solutions, it is easy to get the following

|
∫

Ω

ρ(v −V)2∇xV| ≤ CE(ρ,u|r,U).

Next, we turn to estimate the term about P . By the same token, we use Lemma to get∫
Ω

[P ′(ρ)− P ′(r)](divx(ρv) + ∂z(ρw))

6



=
∫

Ω

P ′′(ξ2)(ρ− r)(divx(ρv) + ∂z(ρw)), ξ2 = θρ + (1− θ)r, θ ∈ (0, 1)

=
∫

r
2≤ρ≤2r

P ′′(ξ2)(ρ− r)(divx(ρv) + ∂z(ρw)) +
∫

ρ≤ r
2 ,ρ≥2r

P ′′(ξ2)(ρ− r)(divx(ρv) + ∂z(ρw))

≤
∫

r
2≤ρ≤2r

|P ′′(ξ2)|(ρ− r)2|divx(ρv) + ∂z(ρw)|+ C

∫
ρ≤ r

2 ,ρ≥2r

1

≤ CE(ρ,u|r,U)

and∫
Ω

P ′′(r)(ρ− r)(divx(rV) + ∂z(rW ))

=
∫

r
2≤ρ≤2r

P ′′(r)(ρ− r)(divx(rV) + ∂z(rW )) +
∫

ρ≤ r
2 ,ρ≥2r

P ′′(r)(ρ− r)(divx(rV) + ∂z(rW ))

≤
∫

r
2≤ρ≤2r

|P ′′(r)|(ρ− r)2|divx(rV) + ∂z(rW )|+ C

∫
ρ≤ r

2 ,ρ≥2r

1

≤ CE(ρ,u|r,U)

Finally, we will control the term about vertical velocity.∫
Ω

ρ(w −W )(v −V)∂zV ≤
∫

Ω

√
ρ(v −V) · √ρ(w −W )∂zV

≤ C

∫
Ω

ρ|v −V|2 + C

∫
Ω

ρ

≤ CE + C

∫
r
2≤ρ≤2r

ρ + C

∫
ρ≤ r

2 ,ρ≥2r

ρ

≤ CE + +C

∫
r
2≤ρ≤2r

(ρ− r)2 + C[
∫

ρ≤ r
2 ,ρ≥2r

ργ +
∫

ρ≤ r
2 ,ρ≥2r

1]

≤ CE(ρ,u|r,U)

Then due to the solution is smooth solution, so that

ε2

∫
Ω

ρv|w −W |∇x(w −W ) + ε2ρw|w −W |∂z(w −W ) + ε2

∫
Ω

ρ(w −W )(∂tw − ∂tW ) ≤ O(ε2)

Therefore, combining all the above estimates together, we have

d

dt
E(ρ,u|r,U)(τ) ≤ C

∫ τ

0

h(t)E(ρ,u|r,U)(t)dt + o(ε2). (3.4)

Then applying the Gronwall’s inequality, we finish the proof of Theorem 2.1.
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