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Abstract

We study the motion of the coupled system, S, constituted by a physical pendulum, B,
with an interior cavity entirely filled with a viscous, compressible fluid, F. The presence of
the fluid may strongly affect on the motion of B. In fact, we prove that, under appropriate
assumptions, the fluid acts as a damper, namely, S must eventually reach a rest-state.
Such a state is characterized by a suitable time-independent density distribution of F

and a corresponding equilibrium position of the center of mass of S. These results are
proved in the very general class of weak solutions and do not require any restriction on
the initial data, other than having a finite energy. We complement our findings with
some numerical tests. The latter show, among other things, the interesting property that
“large” compressibility favors the damping effect, since it drastically reduces the time that
S takes to go to rest.

1 Introduction

The general problem of the motion of a rigid body with an interior, hollow cavity entirely filled
with a fluid has all along attracted the attention of engineers and applied mathematicians. The
list of major contributions only would be too long to include here, and for this we refer the
reader to the monographs [3, 4] and the references therein.

One of the remarkable phenomena that motivated this study traces back to the famous
experiments of Lord Kelvin [29]. His tests unequivocally showed that the presence of the
fluid in the cavity substantially influences the motion of the body by producing a significant
stabilizing effect. Modern primary applications of this distinctive property are, for example,
liquid sloshing dampers for vibration control of tall buildings [6] and oscillations suppressors in
spacecraft and artificial satellites [1].

In spite of its relevance, a rigorous and systematic mathematical analysis of the motion of
a body with a fluid-filled cavity has started only a few years ago [5, 12, 15–19, 24–26]. These
works have, on the one hand, produced a full explanation of experimental observations and, on
the other hand, hinted at other, new interesting features that might be supported by numerical
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or lab tests. In particular, a remarkable result proved in [15, 19] shows that, under certain
conditions, the presence of fluid can even bring the coupled system body-fluid to full rest.

At this point, it must be emphasized that in all the papers indicated above, the fluid is sup-
posed to be viscous and incompressible. Thus, more recently, in [13,14] we began to investigate
the case where the fluid is still viscous but compressible. This study has a two-fold motivation.
In the first place, to answer the natural question of the influence that compressibility may have
on the characteristics of the terminal state. Secondly, the mathematical challenge constituted
by the fact that, being the density no longer a constant, a much richer set of terminal states
may occur and, therefore, the problem of their attainability can become of primary importance.
In [13,14], we limited ourselves to the problem where the coupled system body-fluid, S, moves
in absence of external forces (inertial motions). In particular, we proved, that for “small” Mach
numbers and for initial data of restricted magnitude, the system will reach a terminal state
where the body rotates with constant angular velocity and the fluid is at rest with respect to
the body. Notice that this result is in sharp contrast with the analogous one in absence of fluid,
where the generic motion is a complicated motion a la Poinsot. This shows, in particular, the
stabilizing effect of the fluid mentioned earlier on.

In the current article we begin to analyze the situation when the coupled system S is
subject to external forces. To this end, we have chosen the classical example where the body is
a physical pendulum whose interior is filled up with a viscous barotropic fluid with a classical
constitutive law; see (2.9). Our main findings will be described next. In the first place, we
formulate the problem in the wide class of weak solutions, namely, suitably renormalized,
distributional solutions satisfying the “energy inequality” and corresponding to initial data that
are only requested to have a finite energy; see Definition 2.1. Our objective is to investigate
the behavior of these solutions as time goes to infinity and determine all possible terminal
states. It comes then natural to consider the class of steady-state solutions, C, as significant
candidates. We thus show that, in such states, S must be at rest with a corresponding (time-
independent) distribution of fluid density compatible with the vanishing of the axial component
(that is, along the axis of rotation) of the total angular momentum. These states represent all
allowed equilibrium configurations for S and are characterized by having their center of mass,
C, belonging to the vertical plane containing the axis of rotation; see Theorem 3.1. However,
unlike the incompressible case, there could be more than two configurations of S that could
furnish the same location of C, due to the fact that the density of the fluid is not constant,
thus leading to the circumstance of multiple solutions; see Subsections 3.2 and 3.4. This fact
makes the problem of attainability of steady-state solutions more complicated, also due to the
lack of uniqueness of weak solutions. In any case, we are able to prove that, provided the
cavity is convex, C is not empty, since it contains the non-empty class of minimizers of the total
energy; see Theorem 3.5. We then address the question of the asymptotic in time behavior in
the class of weak solutions. While their existence can be obtained by a rather standard method
(Theorem 4.1), their behavior for large times requires some efforts, especially for the proof of
appropriate convergence of the pressure field; see Subsections 4.1 and 4.2. As a result, we are
able to show that every weak solution tends to a steady state (equilibrium configuration), on
condition that there is only one of them with total energy not greater than that of the initial
data; see Theorem 4.4. We then check that this condition is certainly satisfied if S possesses
suitable symmetry properties. Precisely, we prove that if the cavity is a sphere with its center
on the line passing through the center of mass of the body and its projection on the rotation
axis, then whenever S is released from rest and in any position other than the straight-down
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and straight-up ones, it will eventually reach the equilibrium where its center of mass in the
straight-down position.

The above analytical findings are supported and complemented by several two-dimensional
numerical tests. Here the coupled system S consists of two concentric circles C1 and C2 ⊂ C1,
where C1\C2 is “the body” and C2 the “cavity”. The objective is to study the behavior in time
of S, for different values of the physical quantities involved and, in particular, in the limit of
very large values of the gas parameter a, that is, small Mach number (incompressible limit).
The tests show, among other things, a surprising property, namely, that compressibility acts
in favor of stability. In other words, all other parameters being fixed, S will reach the rest in a
shorter time for “large” a, rather than “small” a.

The plan of the paper is as follows. After formulating the problem in Section 2, including
the definition of weak solution, in Section 2 we prove a characterization (Subsection 3.1) and
the existence (Subsection 3.3) of steady-state solutions, along with some comments about their
uniqueness (Subsections 3.2 and 3.4). Successively, in Section 4, we study the large-time be-
havior of weak solutions and prove there our main result on the attainability of steady states.
Finally, Section 5 is dedicated to the numerical tests mentioned previously.

2 Formulation of the Problem

Let B be a finite rigid body, with an interior hollow cavity C filled with a viscous fluid. In
mathematical terms, C is an open simply connected domain of R3 completely surrounded by a
domain B in such a way that ∂C ⊂ B, C ∩B = ∅, and C ∪B is bounded, simply connected and
open.

The body B is constrained at all times to rotate around a horizontal axis, a, and we indicate
by O the orthogonal projection of the center of mass G of B on a. Our objective is to study the
motion of coupled system body-fluid and, in particular, its behavior for large times. To this
end, let F = {O, ei} be the fixed (inertial) frame with e3 and e1 directed, respectively, along
a and the downward vertical, so that, indicating by ĝ the acceleration of gravity, in the frame
F we have

ĝ = g e1 , g = |ĝ|. (2.1)

Further, let ω = ω(t) e3 be the angular velocity of B, set

A(ω) :=

 0 −ω 0
ω 0 0
0 0 0

 (2.2)

and denote by Q = Q(t), t ≥ 0, the family of proper orthogonal transformations solving the
following IVP:

Q̇ = A ·Q , Q(0) = Q0 ,

with

Q0 =

 cosϑ0 − sinϑ0 0
sinϑ0 cosϑ0 0

0 0 1

 , some ϑ0 ∈ [0, 2π).

Putting

ϑ(t) :=

∫ t

0

ω(s)ds+ ϑ0 , t ≥ 0 ,
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we obtain

Q(t) =

 cosϑ(t) − sinϑ(t) 0
sinϑ(t) cosϑ(t) 0

0 0 1

 . (2.3)

Let B0, C0 be arbitrarily fixed reference configurations of B and C, respectively, and set, for all
t ≥ 0,

C(t) := {y ∈ R3 : y = Q(t) · x, x ∈ C0} ,
B(t) := {y ∈ R3 : y = Q(t) · x, x ∈ B0} ,
S(t) := B(t) ∪ C(t) .

(2.4)

Then, the equations of motion of the coupled system body-liquid in the frame F (that is, in
the y-variable) are given by [22]

∂t(rw) + div (rw ⊗w) = div Ŝ(w)−∇p(r) + r g e1

∂tr + div (rw) = 0

}
(y, t) ∈ ∪t>0 C(t)× {t}

w = ω(t)e3 × y (y, t) ∈ ∪t>0 ∂C(t)× {t}
d

dt

(
J(t)ω + e3 ·

∫
C(t)
r y ×w dy

)
= e3 ·

[(∫
S(t)

r̂ y dy

)
× ge1

]
≡ g

∫
S(t)

r̂y2 dy .

(2.5)

Here, r = r(y, t), w = w(y, t) are density and velocity fields of the fluid, while Ŝ is the viscous
part of Cauchy stress tensor. Moreover, denoting by r

B
(y) the density of B, we set

r̂ :=

{
r(y, t) if y ∈ C(t)
r
B
(y) if y ∈ B(t)

and

J(t) :=

∫
B(t)

r
B
(y)δ2(y) dy

where δ(y) = dist (y, a).
In order to convert the problem into an equivalent one where the domain of the fluid does

not change with time, we define

%(x, t) := r(Q(t) · x, t), u(x, t) := Q>(t) ·w(Q(t) · x, t), (x, t) ∈ C0 × (0,∞),

S(u) := Q>(t) · Ŝ(Q(t) · u) ·Q(t), g(t) := Q>(t) · ĝ, %
B
(x, t) := r

B
(Q(t) · x), t ∈ (0,∞) ,

so that, recalling that
Q(t) · e3 = e3 , for all t ≥ 0, (2.6)

the system (2.5), in terms of the x-variable and fields % and u, thus becomes [22]

∂t(%u) + div (%v ⊗ u) + %ωe3 × u = divS(u)−∇p(%) + % g

∂t%+ div (%v) = 0

}
(x, t) ∈ C0 × (0,∞)

u = ω(t)e3 × x (x, t) ∈ ∂C0 × (0,∞)

d

dt

(
I ω + e3 ·

∫
C0
%x× u dx

)
= e3 ·

[(∫
S0
%̂x dx

)
× g

]
,

(2.7)

4



where
v := u− ωe3 × x , (2.8)

and

%̂ :=

{
%(x, t) if x ∈ C0

%
B
(x) if x ∈ B0

,

I :=

∫
B0

%
B
(x)δ2(x) dx .

Moreover,

S(u) = 2µD(u) +

(
λ− 2

3
µ

)
I divu

where D denotes the symmetric part of ∇u, I the identity matrix, while µ > 0 and λ ≥ 0
are (constant) shear and bulk viscosity coefficients. Also, observing that, by (2.2) and (2.3),
Q̇> ·Q = A(ω). we derive

ġ = Q̇> ·Q · g = A(ω) · g ,

namely,
ġ + ω e3 × g = 0 , t ∈ (0,∞) .

For the pressure p we assume the following constitutive law

p(%) = a%γ , (2.9)

for some a > 0 and γ > 3/2. Further, we endow (2.7) with the initial conditions

%(0,x) = %0(x), %(0,x)u(0,x) = (%u)0(x)

so that, integrating (2.7)2 over (0, t) × C0 for arbitrary t ∈ R we deduce the equation of
conservation of mass for the fluid∫

C0
%(t,x) dx =

∫
C0
%0(x) dx. (2.10)

The unknowns of (2.7) are u : (0, T )×C0 → R3, % : (0, T )× (B0∪C0)→ R and g : (0, T )→ R3,
while we assume that the density %B of B is prescribed. However, instead of the unknown u,
sometime we may find it more appropriate to use the velocity v defined in (2.8).

If we formally multiply (2.7)1 by u, (2.7)4 by ω and integrate by parts, we deduce the energy
inequality:

1

2

(
I dt|ω|2 + ∂t

∫
C0
%|u|2 dx

)
+

∫
C0
S(v) : ∇v dx+ ∂t

∫
C0
P (%) dx ≤ ∂t

∫
S0
%̂x · g dx

which, after integration, leads to[
I
|ω(t)|2

2
+

1

2

∫
C0
%(t)|u(t)|2 dx+

∫
C0
P (%(t)) dx−

∫
S0
%̂x · g dx

]τ
t=0

+

∫ τ

0

∫
C0
S(v) : ∇v dxdt ≤ 0,
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where
P (%) =

a

γ − 1
%γ.

Our primary objective is to investigate the long-time behavior of the system (2.7)–(2.9) in
the class of weak solutions, which we defined next.

Definition 2.1. A quadruple (%,v, ω, g) is a renormalized weak solution to (2.7) on time in-
terval (0, T ) if 1

• The momentum equation (2.7)1 is fulfilled in a weak sense, i.e.

∫ T

0

∫
C0
%u · ∂tϕ dxdt+

∫ T

0

∫
C0
%v ⊗ u : ∇ϕ dxdt−

∫ T

0

∫
C0
%ωe3 × u ·ϕ dxdt

+

∫ T

0

∫
C0
p(%) divϕ dxdt−

∫ T

0

∫
C0
S(u) : ∇ϕ dxdt

= −
∫ T

0

∫
C0
% g ·ϕ dxdt−

∫
C0

(%u)0 ·ϕ(0) dxdt (2.11)

for all ϕ ∈ C∞c ([0, T )× C0), ϕ|∂C0 = 0.

• The continuity equation is fulfilled in a renormalized weak sense, i.e.

∫ T

0

∫
C0
b(%)∂tϕ dxdt+

∫ T

0

∫
C0
b(%)v · ∇ϕ dxdt

+

∫ T

0

∫
C0

(b(%)− b′(%)%) div v ϕ dxdt = −
∫
C0
%0ϕ(0) dx (2.12)

for all ϕ ∈ C∞c ([0, T )× C0) and any b ∈ C1[0,∞), |b′(z)z| ≤ c
√
|z|.

• The equations (2.7)3,4 are fulfilled.

• The energy inequality

E(%(τ),u(τ), ω(τ), g(τ)) ≤ E
(
%0,

(%u)0

%0

, ω0, g0

)
−
∫ τ

0

∫
C0
S(v) : ∇v dxdt

is fulfilled for almost all τ ∈ [0, T ), where

E(%,u, ω, g) := I
|ω|2

2
+

1

2

∫
C0
%|u|2 dx+

∫
C0
P (%)− P ′(%)(%− %)− P (%) dx

−
∫
S0
%̂x · g dx ,

(2.13)

and % = 1
|C0|

∫
C0 % dx is constant in time due to (2.10).

1Recall (2.8) .
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Remark 2.2. As shown in [13], a sufficiently smooth weak solution defined as above solves, in
fact, (2.7) pointwise.

Remark 2.3. Our definition of weak solution allows us to deduce a weak formulation for a
larger class of test functions. Precisely, take

ϕ = ϕ0 + ηe3 × x where ϕ0 ∈ C∞c ([0, T )× C0) and η ∈ C∞c ([0, T )). (2.14)

We multiply (2.7)4 by η to get

Iω̇ η −
∫
C0
η ∂t(%u)× x · e3 dx =

∫
S0
η %̂x dx× g · e3 . (2.15)

Since, by definition,

I e3 =

∫
B

%Bx× (e3 × x) dx ,

the term on the left hand side of (2.15) is equal to∫
S0
∂tη(%̂u) · (e3 × x) dx ,

where u is extended to ωe3 × x on B0. Further, the right hand side of (2.15) can be rewritten
as ∫

S0
η %̂g · (e3 × x) dx ,

so that, (2.15) can be equivalently formulated as follows

∂t

∫
S0
η(%̂u) · (e3 × x) dx−

∫
S0
∂tη (%̂u) · (e3 × x) dx =

∫
S0
η %̂ g · (e3 × x) dx (2.16)

Next, we observe that

∫
S0
η %̂ωe3 × u · (e3 × x) dx =

∫
S0
η %̂ ωe3 × (v + ωe3 × x) · (e3 × x) dx

=

∫
S0
η %̂(e3 × v) · (ωe3 × x) dx =

∫
C0
η %(v2,−v1, 0) · (ωe3 × x) dx.

Furthermore,

∫
S0
%̂(v ⊗ u) : ∇(ηe3 × x) dx =

∫
C0
%η(v ⊗ u) : ∇(e3 × x) dx =

∫
C0
%ηviuj∂i (x2,−x1, 0)j dx

=

∫
C0
%η(−v1u2 + v2u1) dx =

∫
C0
%η(v2,−v1, 0) · (ωe3 × x) dx ,

from which we deduce

−
∫
S0
%̂(v ⊗ u) : ∇(ηe3 × x) dx+

∫
S0
%̂ωe3 × u · (ηe3 × x) dx = 0 (2.17)
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Also, we observe that since S is a symmetric tensor whereas ∇(e3 × x) is antisymmetric, we
get ∫

C0
S(v) : ∇(ηe3 × x) dx = 0.

Thus, adding (2.11) with ϕ = ϕ0, (2.16) and (2.17), we obtain

∂t

∫
S0
%̂u ·ϕ dx−

∫
S0
%̂u · ∂tϕ dx−

∫
S0
%̂(v ⊗ u) : ∇ϕ dx

+

∫
S0
%̂ωe3 × u ·ϕ dx+

∫
S0
S(v) : ∇ϕ dx =

∫
S0
%̂g ·ϕ dx, (2.18)

where ϕ is a test function of the form (2.14). Note that the energy inequality may be deduced
formally from (2.18) by taking ϕ = u.

3 Steady states

One may expect that, for sufficiently large times, the generic weak solution may approach some
steady state (namely, a time-independent solution of (2.7)) in a suitable topology. This will be
investigated in Section 4. Therefore, the main goal of this section is to find and characterize
all possible steady states, in the class of renormalized weak solutions. Before performing this
study, however, we would like to make some simple but important remarks concerning the class
of irrotational solutions to (2.7), that is, those for which ω(t) = 0 for all t ≥ 0.

From what we presented at the beginning of the previous section, in those motions where
ω(t) ≡ 0, we have

Q(t) = Q0 , for all t ≥ 0, (3.1)

implying that
y = Q0 · x, (3.2)

and, moreover,

% = r(Q0 · x), u = Q>0 ·w(Q0 · x), %
B

= r
B
(Q0 · x), g = Q>0 · ĝ . (3.3)

We notice that, by (2.4) and (3.1), in such a case the position of the body (as well as that
of the cavity) is time independent in the original frame F . We also notice that the system of
equations (2.5) (or, equivalently (2.7)) might seem overdetermined. However, this is not the
case, because, in general, we cannot expect that motions with ω(t) ≡ 0 may occur for any Q0

(that is, any orientation of B). Therefore, Q0 (namely, ϑ0) becomes a further unknown, which
thus makes the problem well-defined.
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3.1 Characterization

With these premises, we now turn to the characterization of steady-state solutions. From (2.7)
we derive that they must satisfy the following set of equations

div(%v ⊗ u) + %ωe3 × u +∇p(%)− div S(u) = % g

div(%v) = 0

u = ωe3 × x

e3 ·
(∫
S0
%̂x dx

)
× g = 0

ωe3 × g = 0.

(3.4)

We work with a renormalized weak solution, i.e. a quadruple (%,v, ω, g) (recall v = u−ωe3×x)
which satisfies (3.4) and

div(b(%)v) + (%b′(%)− b(%)) div v = 0, ∀ b ∈ C1(R)

in distributional sense. The system (3.4) is complemented with the conservation of mass (2.10):∫
C0
%(x) dx =

∫
C0
%0(x) dx := M . (3.5)

We also recall that the gravity has prescribed magnitude, i.e.,

|g| = |g0| ≡ g . (3.6)

Now, since g · e3 = 0, from the last equation in (3.4) we get ω = 0, and so, arguing exactly as
in [13, Lemma 1], we show that v = 0. Consequently, (3.4) reduces to a system of only two
relevant equations:

∇p(%(x)) = %(x)g in C0,

e3 ·
(∫
S0
%̂(x)x dx

)
× g = 0 .

(3.7)

Since ω = 0, by what we just proved and what we remarked at the beginning of this section,
by (3.1)–(3.3) we deduce

% := rs(Q0 · x), %̂ := r̂s(Q0 · x), u ≡ w ≡ 0, g = Q>0 · ĝ , (3.8)

for some Q0 to be found, where, from (3.7)1, rs satisfies

∇xp(rs(Q0 · x)) = rs(Q0 · x) g,

and where we have emphasized that the derivatives are taken with respect to the x-variable.
Employing (3.2), (3.8) and (2.1) in the latter, we show (derivatives now taken with respect to
the y-variable)

Q>0 · [∇yp(rs(y))− rs(y) g e1] = 0 ,
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which, recalling that p(rs) = a rγs , is in turn equivalent to

drγ−1
s

dy1

=
γ − 1

a γ
g .

Integrating both sides of this equation, and assuming that the cavity is convex we conclude

rs = rs(y1) =

[(
a γ

γ − 1
g y1 + c

)
+

] 1
γ−1

, (3.9)

for some constant c ∈ R.
We next investigate the class of all possible Q0 compatible with steady-state solutions, that

is, the equilibrium configurations of the pendulum. From (3.7)2 and (3.8) we obtain

e3 ·
[∫
S0
r̂(Q0 · x)x× g dx

]
= 0 . (3.10)

In this integral we now perform the change of variable (3.2). Thus, taking into account (3.8)4,
(2.6), (3.9) and that

x× g = (Q>0 · y)× (Q>0 · ĝ) = Q>0 · (y × ĝ) ,

we show that (3.10) is equivalent to

e3 ·

[∫
Seq
r̂(y)y × ĝ dy

]
= 0 , (3.11)

where
Seq := Beq ∪ Ceq ,
Beq := {y ∈ R3 : y = Q0 · x, x ∈ B0} ,
Ceq := {y ∈ R3 : y = Q0 · x, x ∈ C0} .

(3.12)

The relation (3.11) expresses the vanishing of the axial component of the angular moment of
the coupled system S at equilibrium in the fixed frame F . By keeping in mind (3.9) and (2.1),
we show that (3.11), in turn, is equivalent to the following one∫

Ceq
rs(y1)y2 dy +

∫
Beq

r
B
(y)y2 dy = 0 , (3.13)

which tells us that the center of mass C of the coupled system must belong to the vertical plane
containing the rotation axis a. Now, in any such equilibrium configurations Seq, the position

yC (≡
−→
OC) in the fixed (inertial) frame is given by

yC =
1

M

(∫
Ceq
rs(y1)y dy +

∫
Beq

r
B
(y)y dy

)
,

with M = M + m, and m mass of B. Since we chose O as the orthogonal projection of the
center of mass G of B on a ≡ e3, we have∫

Beq

r
B
(y) y3 dy = 0 .

Therefore, collecting the above results we conclude with the following characterization of steady
states.
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Theorem 3.1. The quadruple (%s,us := vs +ωse3×x, ωs, gs) is a renormalized weak solution
to (3.4) if and only if the following conditions (i)–(iii) are met:

(i) ωs = 0, us ≡ 0.

Setting y = Q0 · x:

(ii) %s = rs(y1), where rs(y1) is given in (3.9), and ĝs = ge1 ;

(iii) The rotation matrix Q0 is determined by the request that the center of mass C of S is
located in the vertical plane, V, containing the rotation axis a, and precisely at the point
yC that, in the fixed (inertial) frame, is given by

yC =
1

M

[(∫
Ceq
rs(y1)y1 dy +

∫
Beq

r
B
(y) y1 dy

)
e1 +

(∫
Ceq
rs(y1)y3 dy

)
e3

]
, (3.14)

with Beq and Ceq given in (3.12).

Finally, the constant c in (3.9) is obtained by the condition∫
Ceq
rs(y1) dy = M . (3.15)

3.2 Some relevant consequences of Theorem 3.1

We would like to analyze some interesting conclusions that can be drawn as corollary to the
previous theorem.

We begin to observe that from (3.14) it follows that, in general, in the equilibrium configu-

ration, yC ≡
−→
OC is not aligned with ĝ (namely, e1). In fact, this alignment occurs if and only

if ∫
Ceq
rs(y1)y3 dy = 0 . (3.16)

The validity or invalidity of (3.16) may depend on the location of the cavity with respect to
O (or, equivalently, G) and its shape. In particular, (3.16) holds if G and Ceq are such that
(·, y3) ∈ Ceq ⇒ (·,−y3) ∈ Ceq, but may not hold otherwise. A simple example is shown in the
following figure.

Figure 1.: (a) B is a homogeneous spherical shell with the cavity (blue) being the inner sphere.

In this case yC and ĝ are parallel with same orientation; (b) B is a homogeneous sphere with an

off-centered interior spherical cavity (blue). yC and ĝ are not parallel.
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We shall next consider the case when the system S possesses some suitable symmetries.
Precisely, let G 6= O, and suppose the cavity C is a body of revolution around the axis e :=−→
OG/|

−→
OG|. Moreover, denote by α ∈ [0, 2π) the angle between e and ĝ.

(1) Consider the configurations of B (in the inertial frame) where e is parallel to ĝ, namely,
e = ±e1 corresponding to α = 0, π. Clearly, these are (the only two) equilibrium configurations,
B±eq, for B, since we have ∫

B±eq

rB(y)yi dy = 0 , i = 2, 3 . (3.17)

However, when B is in either one of the configurations B±eq, the coupled system S is in equilib-
rium as well. In fact, denoted by C±eq the positions of C when B = B±eq, owing to the symmetry
properties of C, we deduce ∫

C±eq
rs(y1)yi dy = 0 , i = 2, 3 . (3.18)

Therefore, (3.14) follows from (3.17) and (3.18).

(2) Let us comment about the possible uniqueness of the above “vertical” configurations.
To this end, denote by G = G(α) the center of mass of C with the density distribution given in
(3.9). In view of Theorem 3.1(iii), equilibrium configurations for α ∈ (0, 2π) may exist if and
only if C(α) ∈ V, namely,

wα := [M
−→
OG(α) +mB

−→
OG] · e2 = 0 , (3.19)

with mB mass of B. Since w0 = wπ = 0, this suggests that, for suitable rs (that is, a, γ and
M) and C, the location of G(α) may vary with α in such a way that (3.19) is satisfied also
for α close to 0, π, thus entailing the existence of some other equilibria, around α = 0, π; see
Remark 3.7. However, the latter circumstance is ruled out if C has suitable symmetry. For
example, assume that C is a ball centered at O′, and set R = |O′O|. Because rs = rs(y1) and
of the symmetry properties of C, it follows that G(α) belongs to the straight line parallel to e1

and passing through O′, for any α ∈ [0, 2π). So, denoting by {O′, e′1} the frame with origin at

O′ and e′1 parallel to and oriented as e1, we have
−−→
O′G = `′e′1 (≡ `′e1), for some `′ ∈ R. Notice

that `′ is independent of α. Setting ` := |OG|, we then infer

−→
OG =

−−→
OO′ +

−−→
O′G = (R cosα + `′)e1 − R sinαe2 ,

−→
OG = `(cosαe1 − sinαe2) ,

and, consequently, condition (3.19) becomes

(M R +mB `) sinα = 0 , (3.20)

that is satisfied if and only if α = 0, π, which means that the configurations discussed in (1)
are the only possible equilibria for S.

(3) If G lies outside the cavity C, there exists a “critical angle,” αc > 0, such that no
equilibrium is allowed for α ∈ (αc, π − αc). In fact, let Γ be the smallest cone having vertex at
G and containing C. Then, on the one hand, C must belong to the segment GG which, on the
other hand, must be in the interior of Γ or, at most, overlap with one of its generatrices. Thus,
αc is precisely the least value of α for which Γ ∩ V = ∅.

12



Suppose now G = O and let C be a ball centered at O. Then, clearly,∫
Beq

rB(y)y dy = 0 , (3.21)

for all Beq. Moreover, by symmetry,∫
Ceq
rs(y1)yi dy = 0 , i = 2, 3 , (3.22)

for all Ceq. From (3.21) and (3.22) we deduce that (3.13) is satisfied in every position of S,
implying the existence of a continuum of equilibrium configurations.

Throughout this section, we have provided explicit examples of solutions to the steady-state
problem (3.7), as a consequence of their characterization furnished in Theorem 3.1. However,
at this stage, we do not know if (3.5)–(3.7) admits a solution for every given B and C. The
(positive) answer to this question will be furnished in the following subsection.

3.3 Existence

Objective of this subsection is to show existence to the problem (3.5)–(3.7). The main question
to address here is not to find the distribution of density (this was already done in the previous
subsection) but, instead, to provide the existence of an orientation of S with respect to g
compatible with a steady state (equilibrium configurations) or, equivalently, the matrix Q0

introduced in the previous section.
To reach this objective, we notice, as before, that the first equation in (3.7) entails

% = γ−1

√(
γ − 1

aγ
x · g + c

)
+

(3.23)

for some constant c ∈ R. We also recall that we are assuming C convex, and thus supp % has
just one connected component; see [10].

Denote by P the projection R3 → R3, P : (x1, x2, x3) 7→ (x1, x2, 0). The second equation in
(3.7) then yields that g is parallel to P

(∫
S %̂(x)x dx

)
.2 Thus, setting

l := P
(∫

B

%B(x)x dx

)
,

we infer that (3.5)–(3.7) is equivalent to the following system of four equations∫
C

γ−1

√(
γ − 1

aγ
x · g + c

)
+

dx−
∫
C
%0 dx = 0

dg − P

(∫
C

γ−1

√(
γ − 1

aγ
x · g + c

)
+

x dx

)
− l = 0

|g|2 − |g0|2 = 0

(3.24)

2For simplicity of notation, in what follows we set S0 ≡ S, B ≡ B0, and C ≡ C0.
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for four unknowns: g = (g1, g2, 0) ∈ R3, c ∈ R, and d ∈ R.
In view of the above and of what established in the previous subsection, we can then state

the following lemma.

Lemma 3.2. Let v, %, ω and g be a renormalized weak solution to (3.4). Then v = 0, ω = 0, %
is given by (3.23) and g satisfies (3.24).

Remark 3.3. We would like to explain the meaning of the parameter d. Equation (3.24)2 can
be rearranged as

dg = P

(∫
C

γ−1

√(
γ − 1

2γ
x · g + c

)
+

x dx

)
+ l.

As we know from previous subsection (see (3.14)), the right-hand side of this equation is the

vector
−→
OC, with C center of mass of the whole system at equilibrium. Thus, d 6= 0 means

that
−→
OC and g must be parallel. Moreover, d positive means that the g and

−→
OC have the

same orientation (C is below the hinge), whereas d negative means the opposite (C is above the
hinge).

By using the standard theory associated to the Euler–Lagrange equations, we can show the
following result.

Lemma 3.4. Let %s ∈ Lγ(C) and gs ∈ R2 × {0} be a minimizer of the functional

I : (%, g) 7→ E(%, 0, 0, g)

with I defined on the set

{% ∈ Lγ, g ∈ R2 × {0}, % ≥ 0, |g| = |g0|,
∫
C
%(x) dx =

∫
C
%0(x) dx}.

Then %s and gs solve the system (3.23) and (3.24).

Proof. In particular, for fixed %s, gs is a minimizer of the smooth functional

I%s : g 7→ I(%s, g)

where, for simplicity, we assume g ∈ R2 as only the first and second components of g matter.
We also assume that g satisfies the constraint (3.6). Then the standard results for Lagrangian
multipliers yields

−P
(∫
S
%̂(x)x dx

)
− 2λgs = 0

for some λ ∈ R. We get (3.24)2 assuming % is given by (3.23) and d = −2λ. Likewise, for fixed
gs, %s is a minimizer of the functional

Igs : % 7→ I(%, gs)

where % ranges in the nonempty closed convex set

K :=

{
% ∈ Lγ,

∫
C
% dx =

∫
C
%0 dx, % ≥ 0 on C

}
.
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According to [2, Corollary 2.184 & Example 2.186], the minimizer %s satisfies

0 3 ∂Igs(%s) +NK(%s) (3.25)

where ∂ denotes Frechét derivative and NK(%s) is the normal cone defined by

NK(%s) :=

{
η ∈ Lγ′ , ∀f ∈ K

∫
C
η(x)(f(x)− %0(x)) dx ≤ 0

}
.

We now analyze the structure of NK . First, let η be a constant. Then∫
C
η(x)(f(x)− %s(x)) dx = 0 for all f ∈ K ,

which implies that every constant function belongs to NK . Next, let η ∈ NK , and let us show
that η|supp %s must be a constant. Suppose otherwise. Without loss of generality, we may
assume

∫
supp %s

η dx = 0. Consequently, there exist ε > 0 and sets A,B ⊂ supp %s of positive

measure such that η|A > ε, η|B < −ε, %s|A∪B > ε and |A| = |B|. Take f = %s + ε(χA − χB)
where χS is the characteristic function of the set S. Then∫

C
η(x)(f(x)− %(x)) dx > 0 ,

which yields that η is not in NK : a contraddiction. Summing up, we can thus state that every
function in NK is constant on supp %s and every constant belongs to NK . Consequently, (3.25)
yields

P ′(%s)− P ′(%)− x · gs + λ = 0 on supp %s ,

for some λ ∈ R. Since P ′(%s) = aγ
γ−1

%γ−1, this equation implies (3.23) with c = (P ′(%)−λ)(γ−1)
aγ

.

We are now in a position to show our existence result.

Theorem 3.5. Suppose C convex. Then (3.5)–(3.7) has at least one solution.

Proof. In view of Lemmas 3.2 and 3.4, we only have to prove that the functional

%, g 7→ E(%, 0, 0, g)

has at least one minimizer in the set

A := {(%, g) ∈ Lγ(C)× (R2 × {0}), % ≥ 0,

∫
C
% dx =

∫
C
%0 dx, |g| = |g0|}.

We begin to show that for a fixed g, the functional

Ig : % 7→ E(%, 0, 0, g)

defined on

A0 := {% ∈ Lγ(C), % ≥ 0,

∫
C
% dx =

∫
C
%0 dx}
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attains there a minimum. Consider the function

P∞(z) =

{
P (z)− P ′(%)(z − %)− P (%), for z ∈ [0,∞),
+∞, for z ∈ (−∞, 0).

and redefine Ig in the following way

Ig : % 7→
∫
C

(P∞(%) + %x · g) dx.

Owing to [11, Theorem 6.54], this functional is lower semicontinuous, and since A0 is convex
and closed, we obtain the existence of a minimizer by the direct method of calculus of variations;
see [11, Section 3.2]. Next, consider the function

f : g 7→ min
%
E(%, 0, 0, g) ,

defined in E := {g ∈ R2 × {0}, |g| = |g0|} with values in R. In order to show the theorem, it
remains to prove that f attains a minimum in E. Since E is compact, it suffices to check that
f is continuous there. The definition of E yields

|E(%, 0, 0, g1)− E(%, 0, 0, g2)| ≤ c|g1 − g2|

with c independent of % (but dependent on %0), from which it follows that

min
%
E(%, 0, 0, g1) ≤ min

%
E(%, 0, 0, g2) + c|g1 − g2|.

Interchanging the role of g1 and g2, we deduce the opposite inequality, which furnishes the
desired continuity and thus completes the proof of the theorem.

3.4 Further comments about uniqueness

We shall now provide a result regarding the uniqueness of the “vertical” equilibrium configu-
rations that relates to what discussed in Section 3.2(1). To this end, set

Π(g) = P

(∫
C

γ−1

√(
γ − 1

aγ
x · g + c

)
+

x dx

)
where the constant c is determined uniquely by (3.24)1. The following result holds.

Theorem 3.6. Assume the cavity C is such that, for any g ∈ R2 × {0}, |g| = |g0|,

〈Π(g), l〉 > 0 . (3.26)

Then, the corresponding d is not 0. Assume, further, we are in a class of solutions such that

|d| > δ2 > 0 , (3.27)

and
|Π(g1)− Π(g2)| ≤ δ1|g1 − g2| , (3.28)

for some δ2 > 2δ1 > 0. Then, there are at most two solutions to (3.24), one with d < 0 and the
other with d > 0.

16



Proof. We begin to notice that condition (3.26) is guaranteed once we know, for example, that
every x ∈ C satisfies 〈x, l〉 > 0. From (3.24) we get

|d| = |Π(g) + l|
|g0|

,

which, by (3.26), implies |d| > 0. We distinguish the two cases d > 0 and d < 0, and begin
to treat the case d > 0 first. Let g1, c1, d1 and g2, c2, d2 be two solutions to (3.24). Employing
(3.28), we infer

|d1 − d2| =
||Π(g1) + l| − |Π(g2) + l||

|g0|
≤ |Π(g1)− Π(g2)|

|g0|
≤ δ1

|g0|
|g1 − g2| .

On the other hand, from (3.24)2 we show

0 = 〈d1g1 − d2g2 − (Π(g1)− Π(g2)), g1 − g2〉 =

d1|g1 − g2|2 + (d1 − d2)〈g2, g1 − g2〉 − 〈Π(g1)− Π(g2), g1 − g2〉

≥ (δ2 − 2δ1)|g1 − g2|2 ≥ (δ2 − 2δ1)|g1 − g2|2

and thus, assuming d > 0 and δ2 − 2δ1 > 0, there is at most one solution. Note that the same
conclusion holds also in the case d < 0.

Remark 3.7. The assumptions of Theorem 3.6 are rather significant. In fact, they ensure
that the center of mass of the whole system does not vary too much for different directions
of gravity. We now show that these assumptions are somehow also necessary, by bringing an
example that shows that, if they are violated, the conclusion of the theorem is not true. Let
consider C = (−1, 1)× (−1, 1)× (−1, 1), γ = 2, and a = 1

2
. The total mass is assumed to be 4.

Furthermore, the body is such that l = (1, 0, 0). Then g1 = (1, 0, 0) and g2 = (−1, 0, 0) are two
solutions for which the appropriate c1 and c2 is both equal to 1. However, for g1 we have

Π(g1) + l = (11/3, 0, 0) =
11

3
g1

and for g2 we have

Π(g2) + l = (−5/3, 0, 0) =
5

3
g2

and we have two solutions for which d > 0 (namely, d1 = 11
3

and d2 = 5
3
). Notice that in this

case, δ1 = 2, |d| = 11/3, so that |d| < 2δ1, and (3.28) is violated, for all δ2 > 2δ1.

4 Global behavior of weak solutions

For simplicity, in what follow we set C0 ≡ C. We begin by stating an existence result of weak
solutions.

Theorem 4.1. Let C be of class C2+ν, for some ν > 0, and let %0 ∈ Lγ(C), γ > 3/2, with
%0|B = %c, %c ∈ R. Further, let u0 : S → R3 be such that %0|u0|2 ∈ L1(C) and u0|B = ωe1 × x
for some ω ∈ R. Then there exists a weak solution to (2.7) in the sense of Definition 2.1 on
the time interval (0, T ), arbitrary T > 0.
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Remark 4.2. The proof of this theorem is omitted, since it can be obtained by simply combining
the arguments used in [7] in the case when the motion of B is prescribed with those of [14],
where the motion of B is a further unknown. The crucial point is to show uniform estimates to
derive the regularity of the pressure by using the Bogovski operator that allows for the passage
to the limit in the pressure term. A detailed treatment of this issue can be found in [14] and [8].

Remark 4.3. The regularity on C stated in the theorem could be relaxed to assume C to be just
of class C0,1 (or even less regular). The method may be found in [23].

4.1 Global estimates

Hereinafter we assume that % and u is a weak solution in the sense of Definition 2.1. Moreover,
we assume C is of class C0,1 and γ > 3

2
. We recall that, from the energy inequality, we deduce

the following estimates

ess supt∈(0,∞)‖%(t, ·)‖γ ≤ c

sup
t∈(0,∞)

|ω(t)| ≤ c

ess supt∈(0,∞)‖%(t, ·)|u|2(t, ·)‖1 ≤ c

‖u‖L2((0,∞)×C) ≤ c

‖∇u‖L2((0,∞)×C) ≤ c

for some c > 0. In order to perform the long-time analysis of our solutions we need some other
uniform bounds that we are going to derive. First, we observe that from (2.7)5 we get at once

|g(t)| = |g(0)| for all t ∈ (0,∞). (4.1)

We next define the sequence

(%n(t),vn(t), ωn(t)) := (%(n+ t),v(n+ t), ω(n+ t))

and investigate its behavior as n → ∞. Throughout, we shall use the letter c to denote an
arbitrary constant independent of n. We begin to show higher integrability properties of the
density, by adapting a method from [20, Section 7.9.5]. Consider the test function

ϕ(t,x) = ψ(t)Φ(t,x), Φ = B

(
Sα(bk(%n))−−

∫
C
Sα(bk(%n)) dt

)
where ψ ∈ C∞c (−1, 2), B is the Bogovski operator, Sα is a mollifying operator with respect to
time and

bk(%) =

{
%ν for % ∈ [0, k)
kν for % ∈ [k,∞)
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for some ν ∈ (0, 2
3
γ − 1]. Such a ϕ is an admissible test function for (2.7). We thus obtain

∫ 2

−1

ψ

∫
C
p(%n)Sα(bk(%n)) dxdt =

∫ 2

−1

∫
C
ψp(%n)

(
−
∫
C
Sα(bk(%n)

)
dxdt

+

∫ 2

−1

∫
C
ψS(vn) : ∇Φ dxdt+

∫ s

−1

∫
C
ψ%ng · Φ dxdt−

∫ 2

−1

∫
C
ψ%nvn ⊗ un : ∇Φ dxdt

−
∫ 2

−1

∫
C
%nun · Φ∂tψ dxdt−

∫ 2

−1

∫
C
%nun · ∂tΦψ dxdt+

∫ 2

−1

∫
C
ψ%nωne3 × un · Φ dxdt

Every term above, except for the last one, may be estimated similarly as it is done in [20, Section
7.9.5.2]. The last term may be estimated as follows (compare with the estimate of term J5

in [20, Section 7.9.5.2])

∣∣∣∣∫ 2

−1

∫
C
%nωne3 × unΦ dxdt

∣∣∣∣ ≤ c

∫ 2

−1

∫
C
|ψ|%n|ωn|2|Φ| dxdt+ c

∫ 2

−1

∫
C
|ψ|%n|ωn||vn||Φ| dxdt

≤ c‖ψ‖L1‖Sα(bk(%n))‖
L∞(L

6γ
5γ−3 )

.

Thus, one may let α→ 0 and k →∞ and, in the same fashion as [20], to deduce∫ 1

0

∫
C
%γ+ν
n dxdt ≤ c.

Furthermore, from the energy and Korn’s inequalities we easily derive∫ τ+1

τ

∫
C
|∇vn|2 dxdt→ 0

as τ →∞. As a result, along a subsequence,

%n → %s weakly in Lγ+ν((0, 1)× C)

vn → vs ≡ 0 weakly in L2(0, 1;W 1,2(C))

ωn → ωs weakly∗ in L∞(0, 1)

p(%n)→ p(%)s weakly in L1+γ/ν((0, 1)× C).

(4.2)

The functions %s, vs, ωs and p(%)s solve (3.4) and thus ωs = 0. Notice that p(%)s denotes a
weak limit of p(%n) and since p is nonlinear, it is not necessarily true that p(%)s = p(%s). We
shall address this issue in the next subsection.

4.2 Limit of the pressure term

We will prove that p(%)s = p(%s). To this end, it is sufficient to adapt the method from [9,
Section 4]. Let

G(z) = zα, 0 < α < min

{
1

2γ
,

ν

2(ν + γ)

}
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and consider a function b(z) = G(p(z)) in (2.12) to deduce

|〈∂tG(p(%n)), ϕ〉| =∣∣∣∣∫ 1

0

∫
C
G(p(%n))vn∇ϕ dxdt+

∫ 1

0

∫
C
(G(p(%n))−G′(p(%n))%n)ϕv dxdt

∣∣∣∣ ≤ c‖ϕ‖1,q1 ,

for some q1 > 1 and for ϕ ∈ C∞c ((0, 1)× C). Consequently

Divt,x(G(p(%n), 0, 0, 0) is precompact in W−1,q1
loc ((0, 1)× C).

We know that

|〈∇p(%n), ϕ〉| =
∣∣∣∣−∫ 1

0

∫
C
p(%n) divϕ dxdt

∣∣∣∣ ≤ c‖ϕ‖1,q2 .

for some q2 > 1 and for ϕ ∈ C∞c ((0, 1)× C). Thus

Curlt,x(p(%n), 0, 0, 0) is precompact in W−1,q2
loc ((0, 1)× C)

The well known div-curl lemma (see [28]) yields

G(p(%n))p(%n)→ G(p(%)s)p(%)s. (4.3)

According to [27, Theorem 6.2] there exists a parametrized family of probabilistic measures νt,x
on [0,∞) such that

%s(t,x) =

∫ ∞
0

ρ dνt,x(ρ).

and, according to (4.3), we also have∫ ∞
0

ραγ+γ dνt,x(ρ) =

∫ ∞
0

ραγ dνt,x(ρ)

∫ ∞
0

ργ dνt,x(ρ). (4.4)

where we assume for simplicity that p(%) = %γ. Fix (t,x) and set θαγ :=
∫∞

0
ραγ dνt,x(ρ). Then

(4.4) yields ∫ ∞
0

(
ργα+γ − θγαργ − θγ(θαγ − ραγ)

)
dνt,x(ρ) = 0,

which transforms into ∫ ∞
0

(ργ − θγ)(ραγ − θαγ) dνt,x(ρ) = 0.

The integrand is strictly positive for all ρ 6= θ and since νt,x is a probabilistic measure, we get
νt,x = δ%s(t,x) where δα is a Dirac mass at point α. Consequently,

%n → %s strongly in Lq((0, 1)× C),

for all q ∈ [1, γ + ν) yielding p(%)s = p(%s).
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4.3 Large-time behavior

In view of what we have proved in the previous subsections, we may now proceed to the limit
in (2.7) and deduce that %s, ωs, gs solve (3.4). Furthermore, (4.2) allows us to pass to a limit
also in the energy as follows

lim
tn→∞

∫ tn+1

tn

E(%(t),u(t), ω(t), g(t)) dt = E(%s, 0, 0, gs) .

We will assume that there is only one solution to (3.7) fulfilling the condition

E(%s, 0, 0, gs) ≤ E(%0,u0, ω0, g0) .

In such a case, as there is only one possible limit, we immediately get g(t) → gs as t → ∞.
Due to (2.7)2 we have ∂t% ∈ L2(W−1,2) and, consequently %(t)→ %s as t→∞.

We have just proved the following theorem.

Theorem 4.4. Let C be a Lipschitz domain and let the initial conditions %0,v0, ω0 and g0

be the same as in Theorem 4.1. Assume that there is just one solution to (3.4) for which
E(%s,0, 0, gs) ≤ E(%0,u0, ω0, g0). Then every renormalized weak solution to (2.7) tends to
(%s,0, 0, gs). More precisely,

%(t)→ %s weakly in Lγ as t→∞,

v(tn + t)→ 0 strongly in L2(0, 1;W 1,2(C)) as tn →∞,

ω(t)→ 0 as t→∞,

g(t)→ gs as t→∞.

As a simple application of this theorem, consider the case when the cavity C is a sphere S
with its center O′ belonging to the straight line OG, G 6= O. Then, from Section 3.2(3), we
know that there are two and only two equilibrium configurations, namely, with the pendulum
either in the straight-down or straight-up position. More precisely, these configurations are
characterized by two numbers σ+ > 0 and σ− < 0, such that

−−−→
OC± = σ± e1, (4.5)

corresponding to the case when the center of mass C of the coupled system S is below (C+) or
above (C−) the hinge. Let us denote by (%+

s , g
+
s ) and (%−s , g

−
s ) the two associated steady-state

solutions, and set E± := E(%±s ,0, 0, g
±
s ). Thus, %+

s = %−s ≡ rs, with rs given in (3.9), and∫
S+

P (%+
s )− P ′(%)(%+

s − %)− P (%) dx =

∫
S−
P (%−s )− P ′(%)(%−s − %)− P (%) dx ,

where S+ [resp. S−] denotes the position of the sphere in the straight-down [resp. straight-up]
configuration of S. Moreover, ∫

B

%̂x · g = gM
−→
OC · e1 .

Collecting all the above, using (4.5) and recalling (2.13), we show

E+ − E− = −gM (σ+ + σ−) < 0 . (4.6)
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Therefore, if we choose the initial data in such a way that

E+ < E(%0,u0, ω0, g0) < E− , (4.7)

then every (renormalized) weak solution will converge for large times to (%+
s , g

+), namely,
the pendulum will eventually reach the configuration with its center of mass in its lowest
position. This will certainly happen, if we start the pendulum from rest (u0 ≡ 0, ω0 = 0)
and pick (%0, g0) 6= (%±, g±), that is, the pendulum is initially away from either straight-down
and straight-up configurations.3 In fact, from Lemma 3.4 we know that any minimizer of
E(%,0, 0, g) is a solution to (3.5)–(3.7) and, by Theorem 3.5 that the set of minimizers is not
empty. However, from the results of Section 3.2(3) and (4.6), we deduce that (%+, g+) is the
only minimizer, which proves our claim.

5 Numerical results

As we mentioned in the introductory section, in [15] a problem analogous to the one treated
here was investigated under the assumption that the fluid filling the cavity was incompressible.
One interesting point to investigate is whether there is any quantitative difference between the
two problems. For example, how the characteristic time taken to reach the terminal state (the
rest) depends on the compressibility of the fluid. Unfortunately, an analytic study of such a
question is, to date, beyond our grasp. However, we have performed numerical tests that may
suggest the answer. Objective of this section is to present these findings.

For simplicity, we assume that the flow is two-dimensional – this is a reasonable assumption
as the physical phenomenon may hint to neglect the third dimension.

We propose a mixed finite volume – finite element method for the approximation of the
system (2.7) that we are going to describe next.

5.1 The mixed finite volume – finite element scheme

To begin, let Ch be a regular and quasi-uniform triangulation of the cavity C and Fh be the set
of all interior faces of Ch. Further, we write h = maxK∈Ch hK as the mesh size, where hK is the
diameter of an element K ∈ Ch. We denote by Qh the space of piecewise constant functions
and by Vh the piecewise linear Crouzeix–Raviart element space:

Qh =
{
v ∈ L1(C)| vK is a constant ∀ K ∈ Ch

}
,

Vh =

{
v ∈ L2(C) | vK is a piecewise affine function ∀ K ∈ Ch;

∫
σ

[[v]] dSx = 0 ∀ σ ∈ Fh
}
,

where [[·]] |σ represents the jump over the interface σ. To specify the homogeneous Dirichlet
boundary condition, we define

V0,h =

{
ϕ ∈ Vh |

∫
σ

ϕdSx = 0 ∀ σ ∈ ∂C
}
.

Now we are ready to introduce the following mixed finite volume – finite element method.

3Actually, if S is initially in one of these two positions with u0 and ω0 both vanishing, it will stay there for
all times.
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Numerical method (compressible solver). Let ∆t be the time increment, g0
h = g(0),

ω0
h = ω(0), and let (%0

h,u
0
h) be the projection of the initial data (%,u)(0) onto the space

Qh × Vh. Then, for k = 1, . . . , Nt = T/∆t we seek (%kh,u
k
h, g

k
h, ω

k
h) ∈ Qh × Vh × R2 × R as

solutions to the following system of algebraic equations

Dtg
k
h + ωk−1

h e3 × g
k+1/2
h = 0, (5.1a)

where g
k+1/2
h =

gk−1
h +gkh

2
and Dtv

k
h =

vkh−v
k−1
h

∆t
;∫

K

Dt%
k
h dx+

∫
∂K

%k,up
h vk−1

h · ndSx = 0 for all K ∈ Ch , (5.1b)

where vh = uh − uB,uB = ωhe3 × x, n is the outer normal vector, and %uph is the so-called
upwind value of the density given by

%uph =

{
limδ→0 %h(x + δn) if vh · n ≥ 0,

limδ→0 %h(x− δn) otherwise;

1

2

∫
C

(
Dt(%

k
hu

k
h) ·ϕ + %k−1

h Dtu
k
h ·ϕ + %khv

k−1
h · ∇ukh ·ϕ− %khvk−1

h · ∇ϕ · ukh
)

dx

+

∫
C
%khw

k−1
h e3 × ukh ·ϕ dx+

∫
C

(
S(ukh) : ∇ϕ− p(%kh) divϕ

)
dx =

∫
C
%khg

k+1/2
h ·ϕ dx,

for all ϕ ∈ V0,h; (5.1c)

IB33Dtω
k
h +Dt

(∫
C
%khx× ukh dx

)
· e3 =

∫
B+C

%khx dx× g
k+1/2
h · e3.

Remark 5.1. The scheme (5.1) enjoys the following properties for all k = 1, . . . , Nt:

• Conservation of mass. Indeed, summing up over all elements leads to the mass conserva-
tion. ∫

C
%kh dx =

∫
C
%k−1
h dx = · · · =

∫
C
%0
h dx.

• Conservation of gravity in the sense of (4.1), i.e.,

|gkh| = |gk−1
h | = · · · = |g

0
h|,

which can be easily obtained by multiplying (5.1a) with g
k+1/2
h =

gk−1
h +gkh

2
.

• Positivity preserving of density. We have %kh > 0 provided %0
h > 0, for which we refer the

proof to [21, Lemma 4.1].
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5.2 Numerical experiments

We take the pendulum as a circular plate with a circular cavity in the center

B =

{
x |R0 ≤

√
(x1 − L)2 + x2

2 ≤ R1

}
, C =

{
x |
√

(x1 − L)2 + x2
2 ≤ R0

}
,

with R0 = 0.1, R1 = 0.2, and L be the length of the pendulum, see Figure 2. In our numerical
experiments we set γ = 5/3, µ = 100, and η = 0 if not otherwise mentioned. Further, we
denote %B as the density of the body B, %0 = 1

|C|

∫
C %(0) dx as the averaged initial density of the

fluid in the cavity C and R% = %B/%0 as the ratio of the densities. The initial data are set as
%(0) = 1,u(0) = 0, ω(0) = 0, g(0) = (cosϑ0, sinϑ0) with ϑ0 = π/45.

x1

x2

g

L

R0R1

ϑ

Figure 2: Pendulum with a cavity.

5.2.1 Experiment 1: influence of gas parameters of the compressible solver (5.1)

We show in Figure 3 - Figure 5 the evolution of pendulum position (angle ϑ) for different values
of density ratio R%, gas parameter a, and pendulum length L. First of all, in all these numerical
experiments we observe the effect of the dissipation due to the viscosity of the fluid. Moreover,
we see larger dissipation effects for:

1. smaller density ratio R% (fixed gas parameter a and pendulum length L) in Figure 3;

2. smaller gas parameter a (fixed density ratio R% and pendulum length L) in Figure 4;

3. smaller pendulum length L (fixed density ratio R% and gas parameter a) in Figure 5.

5.2.2 Experiment 2: comparison with an incompressible solver

To compare the damping effects of compressible and incompressible fluids, we also introduce
an incompressible solver which replaces the Navier–Stokes part of the compressible solver (5.1),
that is (5.1b)–(5.1c), by it incompressible counterpart, while keeping the method of gh and ωh
unchanged.
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Figure 3: Evolution of pendulum position (angle ϑ) for different density ratio R% with fixed gas
parameter a = 10 and pendulum length L = 0.4.

Figure 4: Evolution of pendulum position (angle ϑ) for different gas parameter a with fixed
density ratio r = 1 and length L = 0.4.

Figure 5: Evolution of pendulum position (angle ϑ) for different pendulum length L with fixed
density ratio r = 1 and gas parameter a = 10.

Incompressible solver. Let u0
h, g

0
h, ω

0
h be given in the same way as the compressible solver.

Let %C be the density of the incompressible fluid in the cavity C. For k = 1, . . . , Nt we seek
(pkh,u

k
h, g

k
h, ω

k
h) ∈ Xh×Vh×R2×R such that the following system of algebraic equations hold:

Dtg
k
h + ωk−1

h e3 × g
k+1/2
h = 0,

%C

∫
C

(
Dtu

k
h ·ϕ +

1

2
vk−1
h · ∇ukh ·ϕ−

1

2
vk−1
h · ∇ϕ · ukh

)
dx+ %C

∫
C
wk−1
h e3 × ukh ·ϕ dx

+

∫
C

(
S(ukh) : ∇ϕ− pkh divϕ− qh divukh

)
dx =

∫
C
%Cg

k+1/2
h ·ϕ dx, ∀ qh ∈ Xh, ϕ ∈ V0,h,

IB33Dtω
k
h +Dt

(∫
C
%Cx× ukh dx

)
· e3 =

(∫
B

%Bx dx+

∫
C
%Cx dx

)
× g

k+1/2
h · e3,

where Xh := {v ∈ L2(C)| vK is a constant ∀ K ∈ Ch;
∫
C v dx = 0}.
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We show in Figure 6 the evolution of pendulum positions (represented by the angle ϑ)
obtained by the compressible solver and the incompressible solver. Here we have used same
parameters for both solvers: L = 0.4, µ = 100, η = 0, %B = 1, and initial fluid density %C = 1.0.
Note that the only difference relies on the gas parameter a(= 0.1, 20, 100) in the compressible
solver, which is not needed in the incompressible solver. Here, let us point out that larger gas
parameter a means smaller Mach number. Obviously, Figure 6 tells that compressible fluids
brings more damping.

Figure 6: Comparison of numerical solutions of compressible solver (a = 0.1 a = 20 and
a = 100) and incompressible solver.
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