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Abstract

We study four-dimensional Einstein-Maxwell �elds for which any higher-order corrections to the
�eld equations e�ectively reduces to just a rescaling of the gravitational and the cosmological con-
stant. These con�gurations are thus simultaneous solutions of (virtually) any modi�ed theory of
gravity coupled (possibly non-minimally) to any electrodynamics. In the case of non-null electro-
magnetic �elds we provide a full characterization of such universal solutions, which correspond to
a family of gravitational waves propagating in universes of the Levi-Civita�Bertotti�Robinson type.
For null �elds we �rst obtain a set of general necessary conditions, and then a full characterization
for a special subfamily, which turns out to represent electromagnetic waves accompanied by pure
radiation in the (anti-)Nariai background. The results are exempli�ed for the case of Born-Infeld,
ModMax and Horndeski electrodynamics.
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1 Introduction

1.1 Background and de�nition of universal and almost universal solutions

Attempts to cure the divergent electron's self-energy motivated early proposals for modi�ed classical
theories of electrodynamics [1�3]. Nonlinear deviations from Maxwell's theory also arise in e�ective
theories derived from quantum electrodynamics [4�7] or from string theory [8]. While �nding exact
solutions of nonlinear electrodynamics (NLE) is in general much more di�cult than in Maxwell's
theory, Schrödinger observed [9,10] that all null �elds (de�ned by FabF ab = 0 = ∗FabF

ab) which solve
Maxwell's equations automatically solve also a large set of NLE and are, in this sense, �universal�
solutions. It was subsequently pointed out that plane waves (a special case of null �elds) solve not
only NLE but also higher-derivative theories [11]. Extensions beyond the case of plane waves and
to allow for certain curved backgrounds, p-forms of higher ranks and higher dimensions have been
obtained in recent years in the case of electromagnetic test �elds [12�14]. However, it is clearly
also desirable to understand how such universal electromagnetic �elds backreact on the spacetime
geometry, i.e., to study universal solutions of modi�ed theories of gravity coupled to modi�ed elec-
trodynamics. In that direction, Kuchynka and the present author have obtained a characterization
of Einstein-Maxwell solutions for which all higher-order correction vanish identically [15]. In this
work we will go beyond the results of [15] by relaxing some of the assumptions made there, as we
explain in the following.

In the absence of matter sources, an Einstein-Maxwell solution consists of a pair (g,F ) in which
g is a Lorentzian metric and F = dA a 2-form �eld, such that the Einstein-Maxwell �eld equations
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are satis�ed, i.e.,

Gab + Λ0gab = κ0Tab, (1)

∇bF ab = 0, (2)

where Λ0 and κ0 are constants (κ0 is dimensionless in geometrized units), Gab is the Einstein tensor
and

Tab = FacF
c
b −

1

4
gabFcdF

cd. (3)

We will be interested in modi�ed theories of gravity coupled to an electromagnetic �eld, for which
the �eld equations (1), (2) are replaced by a more general system

Gab + Λgab = κEab, (4)

∇bHab = 0, (5)

where Λ and κ are again constants (possibly di�erent from Λ0 and κ0), while E is a symmetric,
divergencefree 2-tensor and H a 2-form, both constructed in terms of F , the Riemann tensor R
associated with g, and their covariant derivatives of arbitrary order (and contractions with g). In
particular, if one considers theories de�ned by a Lagrangian density of the form L = 1

κ (R − 2Λ) +

L(R,∇R, . . . ,F ,∇F , . . .), then Eab and ∇bHab will be determined by the variations 1√
−g

δSL

δgab and
1√
−g

δSL

δAa
, respectively, where SL =

∫
d4x
√
−gL (some explicit examples will be given in sections 5

and 6).
The purpose of the present paper is to identify a class of four-dimensional Einstein-Maxwell

�elds (g,F ) solutions of (1), (2) for which all possible tensors E and H that one can construct (as
described above) are such that:

1. E takes the form
Eab = b1Tab + b2gab, (6)

where b1 and b2 are spacetime constants (but may depend on the particular E being considered
and on the speci�c solution (g,F ) chosen withing the given class) and Tab is as in (3).

2. ∇bHab = 0 identically.

Pairs (g,F ) satisfying conditions 1 and 2 will be referred to as universal solutions.
The reason for condition 2 is obvious � the modi�ed Maxwell equation (5) will be automatically

satis�ed by the pair (g,F ). On the other hand, condition 1 ensures that the modi�ed Einstein
equation (4) is also satis�ed for values of the coupling constants determined by

Λ− Λ0 = κb2, κ0 = κb1. (7)

In other words, a universal Einstein-Maxwell solution (g,F ) does not only solve the Einstein-
Maxwell theory (1), (2) but also any modi�ed theory admitting �eld equations of the form (4) and
(5), provided the algebraic conditions (7) are satis�ed.1 In the vacuum limit Tab = 0, condition (6)
reduces to Eab = b2gab, which de�nes universal spacetimes in the sens of [16], i.e., those which solve
(virtually) any purely gravitational modi�ed theory.

1The spacetime constants b1 and b2 may be functions of Λ0 and possible coupling constants of the modi�ed theory, as
well as of other parameters which characterize a speci�c pair (g,F ) � see sections 5 and 6 for some explicit examples (cf.
also [16�19] in the vacuum case). It should be noted that in certain cases the algebraic equations (7) may not admit a
real solution for (Λ0, κ0) in terms of (Λ, κ). Moreover, there may be particular degenerate cases for which b1 or b2 become
singular, or b1 = 0, in which case the �seed� solution (g,F ) cannot be used to obtain a solution of the modi�ed theory (4),
(5) with the method described above (cf. again the examples in sections 5 and 6).
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As we shall discuss in section 3, in the case of null �elds it will ultimately be necessary to
relax condition 1 and allow b1 in (6) to be a spacetime function. This e�ectively means that, from
the viewpoint of the original Einstein-Maxwell theory, one needs to pick a pair (g,F ) that solves
an Einstein equation also containing an additional term that can be interpreted as pure radiation
(aligned with the null Maxwell �eld) � i.e., one should add the quantitity (κb1 − κ0)Tab to the
RHS of (1) (ultimately a�ecting only one component of the Einstein equation since F is null).
Nevertheless, it should be emphasized no pure radiation will be present in the modi�ed theory (4),
(5), which thus remains electrovac. A similar approach in the case of modi�ed gravities in vacuum
was considered in [17�20] and for certain electrovac solutions in [21,22]. Similarly as in [19], solutions
of this type can be referred to as almost universal. That is, an almost universal Einstein-Maxwell
solution containing a null F and aligned pure radiation solves any modi�ed theory admitting �eld
equations of the form (4) and (5), provided the �rst of (7) is satis�ed. Such solutions are thus only
�almost� universal because b1 may be a di�erent function in di�erent theories, which means that the
pure radiation term on the Einstein-Maxwell side can be speci�ed only once a particular modi�ed
electrovac theory has been chosen. This will be illustrated more explicitly in section 3 and, by an
example, in section 6.2

For Lagrangian theories that can be seen (in a sense speci�ed in [15]) as higher-order modi�cations
of the Einstein-Maxwell theory, the special con�gurations (g,F ) for which b1 = 1 and b2 = 0 have
been fully characterized in [15] (in arbitrary dimension). These can be regarded as strongly universal
solutions (using a terminology similar to [16]) since Λ = Λ0 and κ = κ0, and corrections to the �eld
equations vanish identically (rather than just being of the special form allowed by (6)). However, this
leads to a rather restricted class of solutions, namely a speci�c Λ0 = 0 subset of Kundt spacetimes
of Petrov type III (or more special) coupled to a null F and admitting a recurrent null vector
�eld (see [15] for more details). The present paper will thus extend the analysis of [15] in various
directions, in particular to include non-null electromagnetic �elds, and also null �elds in spacetimes
of Petrov type II and D, neither of which were covered by [15].

1.2 Preliminaries

First, it is easy to see that (6) in condition 1 implies the two electromagnetic invariants

I ≡ FabF ab, J ≡ ∗FabF ab, (8)

are constant. This follows, for example, by considering the form of Eab which arises in NLE (given
below in (75)) for L = Iq and L = I + Jq (q 6= 0, 1).2

Next, since the energy-momentum tensor (3) is traceless, it follows from the assumption (6) that
all possible tensors Eab have constant trace (vanishing i� b2 = 0). This applies, in particular, to
tensors Eab constructed out of just the curvature tensor and its covariant derivatives. Thanks to
theorem 3.2 of [23], one can thus conclude that metrics satisfying condition 1 must belong to the
class of spacetimes for which all curvature invariants are constant (i.e., CSI spacetimes) [24,25].

Furthermore, four-dimensional CSI spacetimes consist of a (proper) subset of degenerate Kundt
metrics3 and of (locally) homogeneous spacetimes (theorem 2.1 of [25]). Taking advantage of this

2A related result was obtained with a di�erent method in theorem 3.2 of [14].
3Degenerate Kundt metrics [26, 27] are de�ned as a subset of Kundt metrics for which the Riemann tensor and its

covariant derivatives of arbitrary order are of algebraic type II (or more special) aligned with the Kundt vector �eld
` (cf. also the review [28]). As it turns out, a Kundt spacetime is degenerate if it is of aligned Riemann type II and
`aR,a = 0 [12]. In the following we will also bear in mind the known fact that for Einstein-Maxwell �elds in the Kundt
class, ` is automatically a principal null direction (PND) of F and a double PND of the Weyl tensor (see, e.g., chapter 31
of [29]). This implies that in the Einstein-Maxwell case a Kundt space is necessarily degenerate and the Petrov type is II
or more special.
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simpli�cation, in the rest of the paper we can thus restrict our analysis to these two subclasses,
without losing generality. In fact, for degenerate Kundt metrics it will be convenient to consider
non-null and null electromagnetic �elds separately. Furthermore, since a large amount of results for
null �elds in degenerate Kundt spacetimes of Petrov type III, N and O has been already obtained [15]
(see also [22]), in the null case we shall focus on metrics of type II (and D), leaving the complete
analysis of the types III/N/O for future work. On the other hand, no restriction on the Petrov types
will be a priori assumed neither in the non-null degenerate Kundt nor in the homogeneous case. The
plan and main results of the paper are thus as follows:

(i) section 2: we show that the metric (30) with the 2-form (31) represents the most general
universal solution (g,F ) for which F is non-null and g degenerate Kundt

(ii) section 3: when F is null and g degenerate Kundt, we �rst obtain a set of general necessary
conditions for (g,F ) to be (almost) universal (section 3.1) and of Petrov type II (D), and then a
complete characterization of the special subfamily of almost universal solutions de�ned by the
assumption DΨ4 = 0 (section 3.2) � this is represented by the metric (55) with the 2-form (47),
and H(0) determined by (65) with (64)

(iii) section 4: both in the non-null and null cases, universal and almost universal solutions with a
homogeneous g are shown to fall into the already investigated degenerate Kundt class, which
also implies that spacetimes of Petrov type I cannot occur (recall footnote 3).

In sections 5 and 6 we exemplify the previous results for the speci�c cases of NLE (in particular
Born-Infeld and ModMax theories) and Horndeski's theory, respectively. Finally, in the appendices
we prove some technicalities needed in the main body of the paper. To that end, we employ the
formalism of Geroch-Held-Penrose [30], which is brie�y summarized in appendix A. Then we analyze
separately the case of non-null and null �elds in appendices B and C, respectively. Some of the
results obtained there go beyond the purposes of the present paper and can be useful also for future
applications.

Notation R, C, S denote the Riemann and Weyl tensors and the tracefree part of the Ricci
tensor, respectively. A real 2-form is denoted by F or H, while a generic spinor (possibly complex)
by S. We will use the abbreviations �b.w.� and �s.w.� for boost and spin weight, respectively � these
are the standard notions of the Newman-Penrose (NP) [31] and Geroch-Held-Penrose (GHP) [30]
formalisms (cf. also [29, 32] and appendix A). An asterisk will denote Hodge duality. A tensor is
called a VSI (vanishing scalar invariants) tensor if all its scalar polynomial invariants (obtained by
contracting polynomials in the metric, the tensor itself and its covariant derivatives of arbitrary order)
vanish. A similar terminology is employed for tensors possessing only constant scalar invariants,
referred to as CSI tensors. When a metric or a spacetime is called VSI [CSI], it is actually meant
that its Riemann tensor is VSI [CSI].

To express the Maxwell �eld, it will be often convenient to use the self-dual 2-form [29,32]

Fab = Fab + i∗Fab. (9)

Its algebraic complex invariant will be hereafter assumed (by the comments in the paragraph fol-
lowing (8)) to be constant, i.e.,

FabFab = 2(I + iJ) = const. (10)

In terms of F , the energy-momentum tensor (3) takes the compact form

Tab =
1

2
FacF̄ c

b . (11)
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We will be using the complex NP formalism [31], with the conventions of [29]. In a complex
frame (`,n,m, m̄), the metric reads

gab = 2m(am̄b) − 2`(anb), (12)

while the form of F and of the Maxwell equation (2) will be given in sections 2 and 3 in the non-null
and null case, respectively. In the above frame, the tracefree part of the Einstein equation (1) reads
Φij = κ0ΦiΦ̄j (i, j = 0, 1, 2), while its trace gives R = 4Λ0.

2 Degenerate Kundt: non-null �elds

2.1 Necessary conditions

In a frame adapted to the two null PNDs of F , one has [29]

Fab = 4Φ1(m[am̄b] − `[anb]), (13)

so that ` and n are repeated PNDs of the energy-momentum tensor

Tab = 4Φ1Φ̄1(m(am̄b) + `(anb)), (14)

and the only non-zero component of the traceless Ricci tensor is Φ11 = κ0Φ1Φ̄1. Since FabFab =
−16Φ2

1, by (10) one gets
Φ1 = const 6= 0. (15)

At least one of the PNDs of F is Kundt (footnote 3) � for de�niteness, let's say it is `. We thus
have

Ψ0 = Ψ1 = 0, κ = ρ = σ = ε = 0, (16)

where the last equality can be ensured by exploiting a freedom of boosts and spins, without loss of
generality.

With the above conditions, Maxwell's equation reduce to (cf., e.g., [29])

π = τ = µ = 0. (17)

This implies that ` is recurrent and that the frame in use is parallelly transported along it. A further
rescaling enables one to set also (without a�ecting the previous conditions)

α+ β̄ = 0, (18)

such that ` becomes a gradient.
By condition (6) with (14), the following symmetric 2-tensor4

∇dF(a|c∇cF̄ d
|b) = 16|Φ1|2|λ|2`a`b, (19)

4A tensor of this form appears, for example, in the Einstein equation of Horndeski's electrodynamics, cf. (91) below,
as can be seen using the identity (recall (9)) ∇d ∗Fac∇c ∗F d

b = 1
4
(∇dFac∇cF̄ d

b −∇dFac∇cF d
b + c.c.). We note that here

∇dFac∇cF d
b = 0 (thanks to (13), (16), (17)), and the additional term F ceF de

∗R∗acbd contained in (91) does not a�ect the
present discussion since it does not possess a component proportional to `a`b, as can be seen using (13), the fact that the
traceless Ricci tensor must obey Φ11 = κ0Φ1Φ̄1 (thus possessing only components of b.w. 0) and ∗R∗acbd = −Cacbd + . . .,
where the dots denote terms constructed from the Ricci tensor and the metric.
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must vanish in order for F to be universal, so that

λ = 0. (20)

We further note that the Ricci and Bianchi identities give [29]

Ψ2 = −Λ0

3
, Ψ3 = 0, DΨ4 = 0, Dν = 0. (21)

We have now enough information to introduce adapted coordinates and arrive at the explicit
form of the line element. We already observed that ` is a gradient, while eqs. (16), (17), (20) and
(18) further ensure m∧dm = 0, `∧dn = 0, `∧dm = −2β`∧m∧m̄. We can thus de�ne coordinates
(u, r, ζ, ζ̄) such that

` = −du, m = P−1dζ̄, n = −(dr +Wdζ + W̄dζ̄ +Hdu), (22)

P,r = 0, W,r = 0, W,ζ̄ − W̄,ζ = 0. (23)

An r-independent spin can be used to make P real (without a�ecting the previously obtained con-
ditions), while imposing µ = 0 (cf. (17)) additionally gives

P,u = 0. (24)

The latter condition also ensures that Maxwell's equation is satis�ed. Thanks to the last of (23), a
coordinate transformation r 7→ r + g(u, ζ, ζ̄) can be used to set

W = 0. (25)

We have thus arrived at a special subcase of the canonical Kundt line-element (cf. [29] for more
details). The component (ζζ̄) of Einstein's equations gives

H = −1

2
k1r

2 + rH(1)(u, ζ, ζ̄) +H(0)(u, ζ, ζ̄), k1 = Λ0 − 2κ0Φ1Φ̄1. (26)

The component (ur) reads 4 lnP = Λ0 + 2κ0Φ1Φ̄1 (where 4 = 2P 2∂ζ̄∂ζ is the Laplace operator in
the transverse 2-space spanned by (ζ, ζ̄)), which enables one to rede�ne the coordinates (ζζ̄) such
that

P = 1 +
k2

2
ζζ̄, k2 = Λ0 + 2κ0Φ1Φ̄1. (27)

The equation (uζ) gives H(1) = H(1)(u), which guarantees that we can rede�ne u 7→ U(u), r 7→ r/U̇
to achieve

H(1) = 0. (28)

Lastly, the equation (uu) requires 4H(0) = 0 and therefore

H(0) = h(u, ζ) + h̄(u, ζ̄). (29)

The line-element thus �nally reads

ds2 = −2dudr − 2

[
−1

2
k1r

2 + h(u, ζ) + h̄(u, ζ̄)

]
du2 +

2dζdζ̄(
1 + k2

2 ζζ̄
)2 , (30)

and the Maxwell �eld (13) becomes

F = 2Φ1

[
dζ̄ ∧ dζ(

1 + k2
2 ζζ̄

)2 − du ∧ dr

]
, (31)

together with (15) and (from (26), (27)), k1 = Λ0 − 2κ0Φ1Φ̄1, k2 = Λ0 + 2κ0Φ1Φ̄1. The relative
signs of k1, k2 and Λ0 must be such that Φ1Φ̄1 > 0 [33, 34].
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2.2 Su�ciency of the conditions

In the above section we have obtained a set of necessary conditions for an Einstein-Maxwell solution
to be universal, which led to the solution (30), (31). Let us now show that those conditions are also
su�cient, i.e., that the solution (30), (31) is indeed universal.

First, we observe that the curvature tensor contains only components of b.w. 0 (the Weyl Ψ2 and
the Ricci R = 4Λ0 and Φ11 = κ0Φ1Φ̄1) and −2 (i.e., Ψ4), while F only components of b.w. 0 (i.e.,
Φ1) � in both cases, those of b.w. 0 are constant. Furthermore, the covariant derivatives of F and
of the energy-momentum tensor (which is proportional to the tracefree part of the Ricci tensor) are
of the form

∇cFab = 8νΦ1`c`[amb], ∇cTab = −8Φ1Φ̄1`c`(a(νmb) + ν̄m̄b)). (32)

Together with (15) and (21), this means that both tensors (32) are 1-balanced tensors (as de�ned
in [23], cf. also appendix B). One can similarly show that also the covariant derivative of the Weyl
tensor is 1-balanced (a proof of this statement can be found in section 4.1 of [35]), therefore the
covariant derivative of the full Riemann tensor is 1-balanced as well. This implies that covariant
derivatives of arbitrary order of bothR and F possess only components of b.w. ≤ −2 (see lemma A.7
of [14] and the proof of proposition 2.9 in the same reference, and [12, 23, 35�38] for several related
earlier results). Therefore, any possible Eab can only contain terms of b.w. 0 and −2, while possible
Hab can only be of b.w. 0 (since a 2-form cannot have components of b.w. ≤ −2).

All the components of b.w. 0 are the same as those of the �background� direct-product spacetime
de�ned by setting h = 0 in (30) (cf. [14,39]) and therefore are invariant under the symmetries of the
latter (cf. [14] for related comments). This means that components of b.w. 0 of any possible tensor
that can be constructed out ofR and F (their covariant derivatives cannot contribute since have b.w.
≤ −2) will still admit the same symmetries � in particular, both their boost and spin weights will
be zero. Therefore, the b.w. 0 part of any possible symmetric 2-tensor Eab will be given by a linear
combination, with constant coe�cients, of gab and Tab (in agreement with (6)), while any possible
2-form (necessarily of b.w. 0, as observed above) will consist of a linear combination of the 2-volume
elements of the two factor spaces. It is easy to check that any such 2-form is necessarily closed and
co-closed [14], therefore the generalized Maxwell equation (5) is also automatically satis�ed.

We can thus hereafter focus only on the possible b.w. −2 components of Eab. These are propor-
tional to `a`b and thus have s.w. 0. Let us �rst note that the b.w. −2 part of R cannot contribute
to those, since it is traceless and has s.w. ∓2 (thus any symmetric 2-tensor obtained by contractions
of the b.w. −2 part of R with the b.w. 0 parts of R and F is necessarily zero � cf. [16] for related
comments). Thanks to this and to the previous observations, b.w. −2 components of Eab must thus
contain terms linear in the covariant derivatives of either R or F , suitably contracted with certain
tensor components of b.w. 0 and s.w. 0. Therefore, only terms of the covariant derivatives of R and
F possessing b.w. −2 and s.w. 0 can give rise to b.w. −2 components of Eab. However, one can show
iteratively that such terms vanish for covariant derivatives of arbitrary order, and thus the b.w. −2
components of Eab are identically zero. Such a proof can be found in appendix B.2.

To summarize, we have shown that the family of Einstein-Maxwell solutions (g,F ) given by (30)
and (31) are universal in the sense de�ned in section 1.1. It also follows from the above derivation
that they are the unique universal solutions when F is non-null.

Let us recall that in the Einstein-Maxwell theory solutions (30), (31) represent non-expanding
gravitational waves propagating in the Levi-Civita�Bertotti�Robinson, charged (anti-)Nariai and
Pleba«ski-Hacyan direct product universes [33, 40�44], to which they reduce for h = 0. They were
�rst found in [45,46] and further studied in [34,47,48] (see also [49,50] in the vacuum limit Φ1 = 0).
They are of Petrov type II(D) i� Λ0 6= 0 (i.e., i� k1 6= −k2) and of type N(O) otherwise. Since for
these solutions the covariant derivatives of F and R are both 1-balanced (as noticed above), they
cannot be used to construct any invariants. Furthermore, the frame components of b.w. 0 of both
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R and F are constant (R = 4Λ0 and (15) with the �rst of (21)), which enables one to conclude that
no non-constant invariants can be constructed, neither from R nor from F (not even mixed ones) �
in particular demonstrating that the metric is CSI (cf. section 1.2).

3 Degenerate Kundt (Petrov type II): null �elds

3.1 On the general class

In this case in an adapted frame one has [29]

Fab = 4Φ2`[amb], (33)

giving
Tab = 2Φ2Φ̄2`a`b, (34)

where the unique PND ` of F is necessarily Kundt and a multiple PND of the Weyl tensor (cf.
footnote 3), i.e.,

Ψ0 = 0 = Ψ1. (35)

In a parallelly transported frame adapted to `, one has

κ = ρ = σ = π = ε = 0. (36)

Maxwell's equation thus takes the form [29]

DΦ2 = 0, δΦ2 = (τ − 2β)Φ2. (37)

It follows that F is a balanced tensor (as de�ned in [36, 37], cf. also appendix C) together with
its covariant derivatives of arbitrary order, and therefore it is VSI [12].

Moreover, by the assumptions (cf. section 1.2), the metric is VSI i� Λ0 = 0 = Ψ2 [36], CSI
otherwise � in both cases, Ψ2 =const. From now on we will restrict ourselves to spacetimes of
Petrov type II and D, i.e., Ψ2 6= 0 will be assumed hereafter. Partial results for the types III, N and
O can be found in [15,22].

In a Kundt CSI spacetime of Weyl type II and traceless-Ricci type N, a subset of the Ricci and
Bianchi identities gives [29] (using (35), (36))

Dγ = τα+ τ̄β + Ψ2 −R/24, Dν = τ̄µ+ τλ+ Ψ3, Dµ = Ψ2 +R/12, (38)

Dα = 0 = Dβ, Dλ = 0, δ̄τ = −(β̄ − α− τ̄)τ + Ψ2 +R/12 (39)

τΨ2 = 0, δ̄Ψ3 −DΨ4 = −2αΨ3 + 3λΨ2, DΨ3 = 0, DΦ22 = 0. (40)

The latter equation su�ces to show that S and its covariant derivatives of arbitrary order are
1-balanced (cf. also lemma B.4 of [15] for a more general result). Using also the commutator
[δ,D] = (ᾱ+ β)D [29], from the second of (40) one �nds

D2Ψ4 = 0. (41)

Since for type II one has Ψ2 6= 0, the �rst of (40) implies

τ = 0, (42)

which means that ` is recurrent.
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Then (38)�(40) further give

Ψ2 +R/12 = 0, D2γ = 0, D2ν = 0, Dµ = 0, (43)

the �rst of which also reads alternatively Ψ2 = −Λ0/3 6= 0.
Following the same steps as in [35] one can therefore argue that ∇kC is balanced for any k ≥ 1

(while C is not, since of type II). Furthermore, we note that for any k ≥ 1 ∇kC is 1-balanced
(and thus ∇kR is 1-balanced since S also is, see above) i� DΨ4 = 0, which thus characterizes a
geometrically privileged subcase (to be analyzed in section 3.2).

Recalling that the spacetime in question must be recurrent Kundt and solve the Einstein-Maxwell
equations sourced by (33) (and thus necessarily be aligned with ` [29]), the metric can be written
as [29,51,52]

ds2 = −2du
(
dr +Wdζ + W̄dζ̄ +Hdu

)
+ 2P−2dζdζ̄, (44)

with [52]5

W = P−2ḡ(u, ζ̄), H = −r2 Λ0

2
+ rH(1) +H(0), P = 1 +

Λ0

2
ζζ̄ (45)

2H(1) = −Λ0P
−1
(
ζḡ + ζ̄g

)
+ g,ζ + ḡ,ζ̄ , (46)

and the Maxwell �eld (33) is given by

F = −2f̄(u, ζ̄)du ∧ dζ̄, (47)

where the complex functions g and f are arbitrary. In a null tetrad [29]

` = −du, m = P−1dζ̄ − PWdu, n = −dr − (H + P 2WW̄ )du, (48)

eq. (47) corresponds to (33) with
Φ2 = P f̄(u, ζ̄). (49)

We also note that the form (45) of W implies

λ = 0. (50)

Eqs. (44)�(47) ensure that all components of the Einstein equation (1) are satis�ed, except for
the one along `a`b, i.e., the component Φ22 = κ0Φ2Φ̄2 in NP notation � hence at this stage also
pure radiation aligned with F is present. If one imposes also Φ22 = κ0Φ2Φ̄2, then the real function
H(0) = H(0)(u, ζ, ζ̄) must obey a second order linear PDE that in GHP notation can be written
compactly as (using (36), (42), (50))6

ðν − þ′ µ− µ2 = κ0Φ2Φ̄2. (51)

However, in the following we will not impose (51) and thus H(0) will remain, for now, unconstrained.
The reason for this is related to the comments about almost universal solution given in section 1.1,
as will be made more explicit in section 3.2.

5A di�erent gauge choice is possible such that H(1) = 0 (at the price of changing the form of W ), cf. [49, 53].
6Hereafter the symbols þ, þ′, ð and ð′ denote the standard derivative operators de�ned in the compact GHP formalism

[30], which is reviewed in appendix A. The explicit form of (51) in terms of ordinary partial derivatives, which will not
be needed in the rest of the paper, can be found in [29, 52]. For the sake of de�niteness, let us only mention here that,
in the spacetime (44)�(46), the function H(0) appears in (51) only through the term ðν = 1

2
4H(0) + . . ., where where

4 = 2P 2∂ζ̄∂ζ is the Laplace operator in the transverse 2-space spanned by (ζ, ζ̄), and the ellipsis denotes quantities which
vanish when g = 0 (as will be relevant in section 3.2).
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By setting g = f = H(2) = 0 in (44)�(47) one obtains the (anti)-Nariai vacuum �background�
[41], which is a direct product of two 2-dimensional spaces with identical Gaussian curvature and
therefore [38] a universal spacetime. The b.w. 0 part of the curvature tensor (with components Ψ2

and R) of the full metric (44) is the same as the one of the (anti)-Nariai background (since it does
not contain the functions W , H(1) and H(2), as noted in [39]). By the result of [38] just mentioned,
this means that components of Eab of b.w. 0 reduce to terms proportional to the metric and are
thus harmless. It also follows that no components of Hab of b.w. 0 (which could only come from
the curvature tensor, since F is balanced) are possible � otherwise the �square� of such terms would
produce a symmetric 2-tensor not proportional to the metric, contradicting [38]. One can thus focus
on components of Eab and Hab of negative b.w.. For simplicity, in the rest of this section we will
restrict ourselves to the special subcase (identi�ed above) with DΨ4 = 0. We recall that even in the
vacuum case a conclusive answer for the generic case DΨ4 6= 0 has not been obtained yet [35] � this
will thus deserve a separate investigation.

3.2 Special subclass DΨ4 = 0

3.2.1 Necessary conditions

From now on we thus assume the additional condition DΨ4 = 0. It is not di�cult to see [52] that
for the metric (44)�(46) one has DΨ4 = 0⇔ g,ζζζ = 0, so that here we can take

g = a0(u) + a1(u)ζ + a2(u)ζ2. (52)

With (45) this gives(
1 +

Λ0

2
ζζ̄

)3

(W,ζ̄ − W̄,ζ) =

(
1− Λ0

2
ζζ̄

)
(ā1 − a1) + ζ̄(2ā2 + Λ0a0)− ζ(2a2 + Λ0ā0). (53)

Next, a transformation of the form7

ζ ′ =
c(u)ζ + d(u)

c̄(u)− Λ0

2 d̄(u)ζ

(
cc̄+ Λ0

2 dd̄ 6= 0
)
, (54)

under which
(
1 + Λ0

2 ζζ̄
)−2

dζdζ̄ =
(
1 + Λ0

2 ζ
′ζ̄ ′
)−2

dζ ′dζ̄ ′, can be used to set ā′1 − a′1 = 0 and 2ā′2 +
Λ0a

′
0 = 0. In the new coordinates one thus has (after dropping the primes) W = ϕ,ζ , where ϕ =(

1 + Λ0

2 ζζ̄
)−1

(ā0ζ+a0ζ̄+a1ζζ̄) is a real function. This enables one to make a further transformation
r′ = r + ϕ to set W ′ = 0, i.e., g′ = 0 [29, 52]. This also gives H ′(1) = 0 (recall (46)) and the �nal
form of the metric is thus (dropping again the primes)

ds2 = −2dudr +
(
r2Λ0 − 2H(0)

)
du2 +

2dζdζ̄(
1 + Λ0

2 ζζ̄
)2 , (55)

with (47) unchanged (up to suitably rede�ning f after (54)).
Let us also note that one now has

µ = 0, Ψ3 = 0, (56)

7This is discussed thoroughly in [52] in the context of type D spacetimes. Note, however, that this part of the analysis
of [52] applies also to spacetimes of type II provided they satisfy DΨ4 = 0, therefore there is no need to repeat here all
the details.
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which will be useful in the following (these conditions can be obtained from the general expressions
given in [29]).

As mentioned in the paragraph below (50), an Einstein-Maxwell solution without pure radiation
would correspond to determining H(0) from (51). For W = 0 = H(1) the latter simply becomes
4H(0) = 2κ0Φ2Φ̄2, whose solution reads [47]

H(0) = κ0

∫
fdζ

∫
f̄dζ̄ + h(u, ζ) + h̄(u, ζ̄), (57)

with h(u, ζ) arbitrary. We will, however, allow for arbitrary aligned pure radiation in the Einstein-
Maxwell theory and thus will not assume (57) but rather keep H(0) unspeci�ed at this stage (it
will be �xed in a theory-dependent way by (65), see the comments following it). In passing, let us
note that for the metric (55), apart from Ψ2 = −Λ0/3, the only other Weyl component is given by
Ψ4 = P (PH(0)),ζ̄ζ̄ .

3.2.2 Su�ciency of the conditions

We have obtained above a set of necessary conditions for an Einstein-Maxwell solution with a null
�eld and DΨ4 = 0 to be universal or almost universal, which led to the solution (55), (47). To be
precise, the latter is an Einstein-Maxwell solution only once H(0) is taken as in (57) � for a generic
H(0), an additional term representing aligned pure radiation is also present (as already mentioned
in section 1.1). We shall now argue that the necessary conditions obtained in section 3.2.1 are also
su�cient for (55), (47) to describe an almost universal solution. We emphasize again that a di�erence
with respect to the universal solutions of section 2 is that here the function H(0) cannot be be �xed
a priori in the Einstein-Maxwell theory (i.e., as in (57)) but can be speci�ed only once a particular
theory has been chosen (whereby the solution (55), (47) is only �almost� universal � cf. [17�19,21,22]
for a similar approach in other contexts).

As noticed at the end of section 3.1, we only need study components of negative b.w.. Since
here ∇kR is 1-balanced (for k ≥ 1) and F is balanced (cf. section 3.1), components of H can only
be constructed linearly in terms of F and its covariant derivatives (and the complex conjugates of
those). As it turns out, however, any such term necessarily has s 6= 0 if b = −1 (this is proven in
appendix C.2), which means that the divergence of such terms in necessarily zero (since a vector
with b = −1 can only have s = 0) and therefore ∇bHab = 0 identically, as we needed to ensure.

Concerning possible components of Eab of negative b.w., one has to consider separately those of
b.w. −1 (which may admit s = ±1) and −2 (with s = 0). The former can only consist of terms
linear in F , its covariant derivatives and their complex conjugates (appropriately contracted with the
metric and/or the Weyl tensor � only the b.w. 0 part of the latter giving a non-zero contribution).
The latter may be constructed out of terms quadratic in F and its covariant derivatives (namely,
products of two terms of b.w. −1)8 or terms linear in S or linear in the covariant derivatives of F or
of R (both in general contain also terms of b.w. −2). We note that terms linear in the Weyl tensor
cannot contribute here, since those with b = −2 have necessarily s = ±2 6= 0.

Let us �rst show that components of Eab of b.w. −1 are identically zero. These consist of terms
linear in (covariant derivatives of) F contracted with arbitrary powers of the b.w. 0 part of the
curvature tensor, resulting in a term with weights (−1,−1) which is, in addition, invariant under
the Sachs symmetry [30,32] ` 7→m, m 7→ −`, m̄ 7→ n, n 7→ −m̄ (as follows from the discussion in
appendix C.2). The only 2-tensor with such properties is (up to an overall factor) F itself, which
is antisymmetric and cannot thus contribute to components of Eab of b.w. −1, as we wanted to

8To be precise, by a term quadratic in F we actually mean a product FF̄ , which indeed has (−2, 0) if F has (−1,−1)
(and similarly for terms quadratic in the covariant derivatives).
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prove. A similar discussion applies to terms with weights (−1,+1) constructed out of F̄ (cf. again
appendix C.2 and, in particular, footnote 24).

As for components of Eab of b.w. −2, they must necessarily have s = 0, since they can only
be terms proportional to `a`b. It follows from the discussion in appendix C.2 that terms linear
in the covariant derivatives of F cannot contribute, since those do not possess components with
(b, s) = (−2, 0). Terms quadratic in F and its covariant derivatives do instead contribute, as we now
detail. Obviously the only possible term quadratic in F is FacF̄ c

b = 4Φ2Φ̄2`a`b. When considering
terms quadratic in ∇kF it is useful to �rst note that9

∇cFab = −FabΦ−1
2 (kc þ′−mcð′)Φ2. (58)

From appendix C.2 it follows that, in the product of a term linear in ∇kF with a term linear in
∇hF̄ , products of components with weights, respectively, (−1,−1) and (−1,+1) (possible only if k
and h are both even) will be either zero or again proportional (via a power of Λ0) to Φ2Φ̄2`a`b. For
example, using (58) one �nds

Fac�F̄ c
b = 8Λ0Φ2Φ̄2`a`b, �Fac�F̄ c

b = 16Λ2
0Φ2Φ̄2`a`b. (59)

However, ∇kF may also contain components with (−1, s) and s < −1, which are of the form (C14)
and thus give rise also to components (−2, 0) proportional to ð′jΦ2ðjΦ̄2 in products ∇kF∇hF̄ (with
0 ≤ j ≤ min{k, h} and j, k, h having the same parity). One has, for example (cf. Lemma D.3 of [15]),

∇dFac∇dF̄ c
b = 4ð′Φ2ðΦ̄2`a`b, (60)

and

∇dFac�(∇dF̄ c
b ) = 20Λ0ð′Φ2ðΦ̄2`a`b, ∇e∇dFac∇e∇dF̄ c

b = 4(ð′2Φ2ð2Φ̄2 + Λ2
0Φ2Φ̄2)`a`b. (61)

Finally, theorem C.3 in appendix C.2 implies that terms linear in the traceless Ricci tensor or in
the covariant derivatives of the Riemann tensor can only contribute to Eab with a linear combination
of terms of the form 4kΦ22 for k ≥ 0 (or, equivalently, ð′kðkΦ22). For example one �nds

Cabde;cfC
bfde = 4Λ2

0`a`cΦ22, C ;bd
abcd = `a`c 4 Φ22,

C ;bde
abcd e = `a`c(42 + 2Λ04)Φ22. (62)

Combining the results obtained above, we have shown that, in the spacetime (55) with (47), any
rank-2 tensor constructed from F , R and their covariant derivatives of arbitrary order takes the
form

Eab = λ0gab + 2`a`b

( N1∑
k=0

ak 4k Φ22 +

N2∑
j=0

cjð′jΦ2ðjΦ̄2

)
, (63)

where N1, N2 ∈ N, λ0, ak and cj are constants, and Φ22 = 1
2 4H(0). This is clearly of the required

form (6) (recall (34)), as we wanted to prove.
However, the coe�cient b1, given by

b1 = (Φ2Φ̄2)−1

( N1∑
k=0

ak 4k Φ22 +

N2∑
j=0

cjð′jΦ2ðjΦ̄2

)
, (64)

9Cf. footnote 6 and appendix A for details on the GHP notation. Let us only mention here that in the spacetime (55)
one has ð′Φ2 = (PΦ2),ζ̄ = (P 2f̄),ζ̄ (which is necessarily non-zero since Λ0 6= 0 6= f), and higher-order derivatives can be

expressed as ð′k+1Φ2 = P−k(P k+1ð′kΦ2),ζ̄ .
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will in general be a spacetime function. This means that (1) will not, as it stands, be compatible
with (4) � namely, one should add 2Φ2Φ̄2(κb1 − κ0)`a`b to the RHS of (1) (which is precisely the
additional pure radiation term already mentioned in sections 1.1 and 3.1). This a�ects only one
component of the latter, which thus reads

4H(0) = 2κb1Φ2Φ̄2, (65)

and can be solved (at least in principle) to determineH(0) and thus to fully characterize the spacetime
metric (55). We note that while the result (63)�(65) is theory-independent, once a particular theory
has been speci�ed, the corresponding Einstein equation (4) will dictate the speci�c form of the tensor
Eab and thus the precise values of the constants appearing in (63)�(65). The obtained solution of (65)
will thus be speci�c to the considered theory. This should be contrasted with the class of (strongly)
universal solutions with Λ0 = 0 obtained in [15], which can be fully speci�ed as solutions of the
Einstein-Maxwell theory (i.e., also �xing the function H(0), with no need to include additional pure
radiation) and then automatically solve also higher-order theories (in other words, there one has
Eab = Tab identically for any of the possible theories speci�ed in [15]).

We �nally observe that the solutions (55), (47) with (65) represent in the Einstein-Maxwell
theory electromagnetic waves accompanied by aligned gravitational waves and pure radiation in the
(anti)-Nariai universe [46, 47, 50]. On the other hand, they are also solutions of any modi�ed �eld
equations (4), (5), in which case the pure radiation term is absent. The spacetime is generically
of Petrov type II and becomes of type D i� (PH(0)),ζζ = 0.10 For these solutions, no non-zero
invariants can be constructed using F , while all curvature invariants are constant (in other words,
F is VSI and the metric is CSI).

4 Locally homogeneous spacetimes

By de�nition, a homogeneous spacetime admits a transitive group of motions. It follows from the
discussion in section 12.1 of [29] (see also, e.g., [55]) that in the case of a multiply-transitive group
of motions, either: (i) the spacetime is Kundt (after excluding certain metrics not compatible with a
Maxwell �eld); or (ii) there exists a simply-transitive subgroup G4. In case (i), imposing the Einstein
equation (1) implies that the spacetime is degenerate Kundt (see also footnote 3), and one is thus
reduced to the analysis of sections 2 and 3. We can therefore restrict ourselves here to the case when
the group is (or contains) a simply-transitive G4. Using a complex null tetrad of invariant vectors,
the spin coe�cients and the curvature components are constant (cf., e.g., [29, 56�58]). Therefore, a
Lorentz transformation with constant parameters enables one to align the (invariant) frame to the
energy-momentum tensor of the Maxwell �eld, and thus to F itself (recall Φij = κ0ΦiΦ̄j).

4.1 Non-null �elds

Using the frame described above, the Maxwell �eld is given by (13) and its energy-momentum tensor
by (14), where Φ1 is a constant by (10) (this means that F shares the symmetries of the metric, i.e.,
it is inheriting). From Maxwell's equation [29] one readily obtains

ρ = π = τ = µ = 0, (66)

10A result of [54] states that Einstein-Maxwell solutions of type D with a null Maxwell �eld do not exist in the Kundt
class, when the only contribution to the energy-momentum tensor comes from the Maxwell �eld. However, this does not
apply here precisely because we have allowed also for pure radiation.
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using which one can compute11

∇dF(a|c∇cF̄ d
|b) = 16|Φ1|2

(
|λ|2`a`b + |σ|2nanb + κ̄νmamb + κν̄m̄am̄b

)
. (67)

The above quantity must vanish in order to ful�ll the assumption (6), thus giving

λ = σ = κ̄ν = 0. (68)

Therefore either κ = 0 or ν = 0, meaning (with (66)) that either ` or n is a Kundt vector �eld.12

This case is thus already contained in section 2.
In passing, let us note that Ozsváth [57] obtained an Einstein-Maxwell solution with a homoge-

neous metric (of Petrov type I) admitting a simply-transitive G4 and an inheriting, non-null Maxwell
�eld (recently shown to be the unique such solution [59]). One can verify that it is not a universal
solution, precisely because the above tensor (67) is non-zero.

4.2 Null �elds

Using the invariant frame mentioned above, the Maxwell �eld is given by (33). The Maxwell equation
(or the Mariot-Robinson theorem [29]) then gives

κ = 0 = σ, (69)

i.e., ` is geodesic and shearfree. Thanks to Φ00 = Φ01 = Φ02 = 0, the Goldberg-Sachs theorem [60]
(cf. also theorem 7.1 of [29]) further gives

Ψ0 = 0 = Ψ1, (70)

while the Sachs equation (cf. the NP equation (7.21a) of [29]) reduces to

0 = ρ2 + (ε+ ε̄)ρ. (71)

With the previous results and Φ11 = Φ12 = 0, the Bianchi equation (7.32k) of [29] takes the form

0 = (ρ+ ρ̄− 2ε− 2ε̄)Φ22, (72)

which thus requires ρ+ ρ̄− 2ε− 2ε̄ = 0. However, compatibility of the latter with (71) gives

ρ = 0, (73)

so that ` is Kundt. This case therefore belongs to the discussion of section 3, as far as spacetimes
of Petrov type II and D are concerned. Let us only mention here that certain homogeneous Kundt
(plane wave) metrics of type N and O in the presence of a null Maxwell �elds and Λ0 = 0 (cf.
theorem 12.1 of [29]) are known to describe universal solutions [15].

11This is the same tensor computed for the degenerate Kundt case in (19) and, mutatis mutandis, comments similar to
those given in footnote 4 apply also here.

12Further analysis reveals that in fact both κ = 0 and ν = 0 (cf. [57] for related computations) � this is however not
relevant to the present discussion.
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5 Example I: nonlinear electrodynamics (NLE)

Nonlinear modi�cations of Maxwell's theory were originally proposed in order to cure the divergent
electron's self-energy, most famously by Born and Infeld [2,3]. An overview of more general NLE can
be found, e.g., in [61]. For simplicity, here we mostly restrict ourselves to NLE minimally coupled
to Einstein's gravity (but some comments on Einstein-Weyl gravity are also given in section 5.2.1).
The theory is thus given by

S =

∫
d4x
√
−g
[

1

κ
(R− 2Λ) + L(I, J)

]
, (74)

where L is a (in principle arbitrary) function of the two algebraic invariants (8). In (4) and (5) one
thus has (see, e.g., [61, 62])

Eab = −2L,ITab +
1

2
gab(L− IL,I − JL,J), (75)

Hab = L,IF
ab + L,J

∗F ab, (76)

with Tab as in (3).
On a solution of the Maxwell equation, by (2) and F = dA one has ∇bF ab = 0 = ∇b∗F ab.

Recalling also that for the �elds considered in this paper the invariants I and J are constant (cf. (10)),
it is obvious that (5) is satis�ed identically, while the tensor (75) is precisely of the required form (6),
with both b1 and b2 (which can be read o� from (75)) being constants.13 In other words, the �eld
equations (4), (5) of any theory (74) are satis�ed identically by the pairs (g,F ) identi�ed in sections 2
and 3 (namely (30), (31) and (55), (47) with (57)), provided the algebraic constraints (7) admit a
real solution. Violations of the latter occur, e.g., in special theories such that, for a given solution
(g,F ), one of the quantities L, L,I or L,J becomes singular, thus giving rise to ill-de�ned terms
in (75) or in (76) � see section 5.2 below for an example. Another exception arises when (on a given
solution) L,I = 0, so that b1 = 0 in (6) (as happens, e.g., for stealth �elds [63]). In the following
sections 5.1 and 5.2 the general results just described will be exempli�ed in the case of two speci�c
theories of NLE that are of particular interest.

It should be observed that, in the case of null �elds, it was already known to Schröedinger
[9, 10] that any (76) solves (5), while the validity of condition (6) was subsequently pointed out
in [62, 64, 65].14 Our results extends also to non-null �elds and to theories of gravity other than
Einstein's (although in this section we have exempli�ed only the latter).

We further note that the simple structure of the �eld equations of NLE enables one to easily
identify other Einstein-Maxwell solutions that also solve NLE (but are not universal), in addition
to those of sections 2 and 3. An example with a non-null �eld and a non-Kundt metric is given by
the homogenous solution obtained by Ozsváth mentioned in section 4 [57,59]. Examples with a null
�eld are contained, e.g., in the Robinson-Trautman family [29].

13We emphasize this is a very special situation for which b1 =const also in the null case (i.e., eq. (75) with (34) means
that in (63) one has ak = 0 for k ≥ 0 and cj = 0 for j ≥ 1) so that (g,F ) can be taken to be an Einstein-Maxwell solution
also there � without the additional pure radiation that needs to be included in the general discussion of sections 1.1 and
3.2.

14The articles [9,10,62,64,65] focused on a subset of nonlinear theories of electrodynamics such that the �pathological�
cases mentioned above do not occur (typically by requiring that in the limit of small I and J the linear Maxwell theory
is recovered, i.e., L ≈ −I/2).
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5.1 Born-Infeld theory

The celebrated NLE of Born and Infeld [3] is given by

L(I, J) = 2b2 (1− L0) , L0 =

√
1 +

I

2b2
− J2

16b4
, (77)

where b is a constant parameter with the dimension of an inverse length (such that Maxwell's theory
is recovered for b→∞). Then (75) takes the form (6) with

b1 =
1

L0
, b2 = b2

(
1− 1

L0
− I

4b2L0

)
. (78)

5.1.1 Non-null �elds

For the Einstein-Maxwell solution (30), (31) one has (cf. (10), (13)) I = −4(Φ2
1 + Φ̄2

1) and J =
4i(Φ2

1 − Φ̄2
1), where Φ1 is a complex constant. Reparametrizing the latter as

Φ1 =
1√
2
ρ0e

iθ0/2, (79)

constraints (7) become

Λ− Λ0 = κ0b
2

√(1− ρ2
0

b2
cos θ0

)2

− ρ4
0

b4
− 1 +

ρ2
0

b2
cos θ0

 , κ = κ0

√(
1− ρ2

0

b2
cos θ0

)2

− ρ4
0

b4
,

(80)
where the parameter θ0 re�ects the consequences of a duality rotation. Type D and O solutions of
this type (i.e., (30) with h = 0) in the Born-Infeld electrodynamics were already obtained in [66]
(see also [67] for more general NLE).15

5.1.2 Null �elds

When I = 0 = J one has (on-shell) L0 = 1, so that b1 = 1, b2 = 0 and (7) reduces to

Λ = Λ0, κ = κ0, (81)

i.e. any Einstein-Maxwell solution with a null �eld (and in particular the one given by (55), (47),
(57)) also solves Einstein's gravity coupled to the electrodynamics of Born and Infeld, with no need
to rede�ne Λ0 and κ0. This fact was already known [62,64,65].

5.2 ModMax theory

The recently proposed [68] ModMax electrodynamics is of particular interest in that it preservers
both SO(2) duality and conformal invariance (see also [69]). It is described by

L(I, J) = −1

2
I cosh γ +

1

2

√
I2 + J2 sinh γ, (82)

15According to [66], earlier unpublished results were obtained by Jan Slavík: �It should be noticed that Slavík, looking
for some solutions in nonlinear electrodynamics (NLE), mentions already that, in the conformally �at subcase, it is possible
to assign the BR metric the role of a carrier of a solution to nonlinear dynamics (J. Slavík: Doctoral Thesis, 1976, Institute
of Theoretical Physics of the University of Warszawa, Poland)�.
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where γ is a dimensionless parameter16 (see [68] for physical reasons to restrict to γ ≥ 0, with γ = 0
corresponding to Maxwell's theory). Here (75) takes the form (6) with

b1 = cosh γ − I√
I2 + J2

sinh γ, b2 = 0. (83)

Since here neither Eab nor Hab in eqs. (75), (76) are well-de�ned for null �elds (i.e., for I = 0 = J)
[68],17 we will consider only the non-null case, i.e., the solution (30), (31). Then (7) gives

Λ = Λ0, κ =
κ0

cosh γ + sinh γ cos θ0
. (84)

where θ0 is de�ned as in (79). Here one should exclude special �ne-tuned con�gurations with
cosh γ + sinh γ cos θ0, which correspond to b1 = 0 and thus Eab = 0, i.e., to stealth con�gurations of
the theory (82), for which the spacetime metric is Einstein.

Solutions of this type (in the case with k2 = 0 in (30)) were considered in [70].

5.2.1 Extension to Einstein-Weyl gravity

The results given above refer to Einstein's gravity coupled to ModMax electrodynamics (i.e., (74)
with (82)). Given the conformal invariance of the latter, it may be now instructive to consider an
example where also gravity is modi�ed by the addition of a conformal invariant term. A well-known
theory with such a property is given by Einstein-Weyl gravity, corresponding to the action

S =

∫
d4x
√
−g
[

1

κ
(R− 2Λ)− α0CabcdC

abcd + L(I, J)

]
, (85)

with (82), where α0 is a coupling constant with the dimension of a length squared (Weyl conformal
gravity is obtained for κ−1 = 0). Here (76) is unchanged, while (75) becomes [71,72]

Eab = 4α0Bab − 2L,ITab +
1

2
gab(L− IL,I − JL,J), (86)

where Bab is the (symmetric, traceless, conserved) Bach tensor

Bab =
(
∇c∇d + 1

2R
cd
)
Cacbd. (87)

As above, it makes sense here to consider only the non-null �eld solution (30), (31). For the
latter one easily �nds (in agreement with the results of section 2)

∇c∇dCacbd = 0, RcdCacbd =
4

3
κ0Λ0Tab, (88)

which with (6), (7), (86), (87) and (79) gives

Λ = Λ0, κ =
κ0

cosh γ + sinh γ cos θ0 + 8
3α0κ0Λ0

. (89)

Similarly as in the case of Einstein gravity discussed above, special con�gurations with cosh γ +
sinh γ cos θ0+ 8

3α0κ0Λ0 = 0 describe stealth �elds (i.e., Eab = 0) and should be considered separately.

16Not to be confused with the NP/GHP coe�cient used in section 3 and appendix A.
17The �eld equations for the electromagnetic �eld, however, remain well-behaved in the Hamiltonian formalism [68].

Thanks to Dmitri Sorokin for useful comments on this point.
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6 Example II: Horndeski's electrodynamics

Horndeski [73] obtained the unique theory (constructed from a Lagrangian depending on the metric,
the vector potential and their derivatives) such that: (i) the corresponding �eld equations are of
second order; (ii) in the presence of sources they are compatible with charge conservation; (iii) the
equation for the electromagnetic �eld reduces to Maxwell's equation in �at space. The theory of [73]
is given by

S =

∫
d4x
√
−g
[

1

κ
(R− 2Λ)− β0FabF

ab − γ0FabF
cd ∗R∗abcd

]
, (90)

where β0 and γ0 are coupling constants (dimensionless and with the dimension of a length squared,
respectively), and the standard Einstein-Maxwell theory is recovered for γ0 = 0. In (4) and (5) this
gives rise to [73�75]

Eab = 2β0Tab + 2γ0

(
F ceF de

∗R∗acbd +∇d∗Fac∇c∗F d
b

)
, (91)

Hab = β0F
ab + γ0Fdf

∗R∗abdf , (92)

with Tab as in (3).

6.1 Non-null �elds

For the Einstein-Maxwell solution (30), (31), the term Fdf
∗R∗abdf in (92) becomes a linear combina-

tion with constant coe�cients of F ab and ∗F ab, so that (5) is satis�ed identically, in agreement with
the results of section 2. In (91) one has ∇d∗Fac∇c∗F d

b = 0 (see section 2), while one can compute

F ceF de
∗R∗acbd = −

[
Λ0 + κ0(Φ2

1 + Φ̄2
1)
]
Tab +

[
Λ0(Φ2

1 + Φ̄2
1) + 4κ0Φ2

1Φ̄2
1

]
gab. (93)

Using (91), (93), (6) and again the parametrization (79), constraints (7) become

Λ− Λ0 =
κ0γ0ρ

2
0(Λ0 cos θ0 + κ0ρ

2
0)

β0 − γ0(Λ0 + κ0ρ2
0 cos θ0)

, κ =
κ0

2β0 − 2γ0(Λ0 + κ0ρ2
0 cos θ0)

. (94)

Here one should exclude special �ne-tuned con�gurations such that β0−γ0(Λ0 +κ0ρ
2
0 cos θ0) = 0,

which correspond to b1 = 0 and thus to stealth con�gurations in the theory (90), for which the
spacetime metric is Einstein (more precisely, these con�gurations are �almost stealth�, since in general
b2 6= 0).

Solutions of the form (30), (31) were also constructed in [76] in the case h = 0 with k2 > 0.

6.2 Null �elds

For the �elds (g,F ) given by (55), (47), in (92) one �nds Fdf ∗R∗abdf = 0, therefore (5) is satis�ed
trivially, in agreement with the results of section 3. The terms in (91) take the form (recall (58) and
footnotes 4, 6, and 9)

F ceF de
∗R∗acbd = −Λ0Tab, (95)

∇d∗Fac∇c∗F d
b = 2ð′Φ2ðΦ̄2`a`b, (96)

Hence (91), (6) give b2 = 0 and thus, by (7),

Λ = Λ0. (97)
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However, b1 as determined from (91) (with (34), (95), (96)) is not a constant, so that the �eld
equation (65) (i.e., the only remaining component of (4) to be solved) reduces to the following
partial di�erential equation

4H(0) = 4κ
[
(β0 − γ0Λ0)Φ2Φ̄2 + γ0ð′Φ2ðΦ̄2

]
. (98)

This can be solved (at least in principle) to determine the metric functionH(0) of (55). We emphasize
once again that here H(0) is not of the form (57) as in the electrovac Einstein-Maxwell theory � i.e., a
solution of (98) corresponds on the Einstein-Maxwell side to a null electromagnetic �eld accompanied
by aligned pure radiation, as discussed in more generality in sections 1.1 and 3.2. In the limit Λ0 = 0
one recovers the pp -waves obtained in [77,78].
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A Basics of the GHP formalism

In this appendix we summarize the basic equations of the GHP formalism needed for the purposes
of the present paper. Some familiarity with the formalism will, however, be assumed � see [30, 32]
for more details.

A.1 Preliminaries

Let us introduce a normalized spinor dyad (oA, ιA), such that

oAι
A = 1, (A1)

out of which one can de�ne a standard null tetrad [30,32]

`a = oAōA
′
, na = ιAῑA

′
, ma = oAῑA

′
, m̄a = ιAōA

′
, (A2)

as used in the main text of the present paper.18 In this basis one has

εAB = oAιB − ιAoB . (A3)

A boost-spin transformation of the dyad is de�ned by

oA 7→ χoA, ιA 7→ χ−1ιA, (A4)

where χ is a complex scalar �eld.
A quantity (a scalar, a spinor or a tensor) η is called a weighted quantity of type {p, q} if under (A4)

it transforms as
η 7→ χpχ̄qη.

18We warn the reader that in the appendices we use for spinors the more traditional signature convention of [30, 32],
i.e., the basis (A2) with (A1) corresponds to minus the metric (12) used in the main body of the paper. Furthermore,
to make the contact with the NP formalism easier, in the GHP notation we make the standard substitutions [29, 30, 32]
τ ′ = −π, σ′ = −λ, ρ′ = −µ, κ′ = −ν, γ′ = −ε, β′ = −α.

20



In particular, oA and ιA can be regarded themselves as spinors of type {1, 0} and {−1, 0}, respectively.
Recall also that complex conjugation interchanges the values of p and q.

Equivalently, one can also say that η possesses boost and spin weights (b, s) given by

b =
1

2
(p+ q), s =

1

2
(p− q), (A5)

which will be useful in the following. Under complex conjugation b is thus invariant whereas s
changes sign.

The GHP derivative operators are de�ned by their action on a quantity of type {p, q}, namely

þ η = (D − pε− qε̄)η, þ′ η = (D′ − pγ − qγ̄)η, (A6)

ðη = (δ − pβ − qᾱ)η, ð′η = (δ′ − pα− qβ̄)η, (A7)

where (D,D′ = 4, δ, δ′ = δ̄) are the standard directional derivatives of the Newman-Penrose formal-
ism [29�32].

For later use it is useful to display how the derivative operators act on the basis spinors, i.e.,

þ oA = −κιA, þ ōA
′

= −κ̄ῑA
′
, þ ιA = πoA, þ ῑA

′
= π̄ōA

′
, (A8)

þ′ oA = −τιA, þ′ ōA
′

= −τ̄ ῑA
′
, þ′ ιA = νoA, þ′ ῑA

′
= ν̄ōA

′
, (A9)

ðoA = −σιA, ðōA
′

= −ρ̄ῑA
′
, ðιA = µoA, ðῑA

′
= λ̄ōA

′
, (A10)

ð′oA = −ριA, ð′ōA
′

= −σ̄ῑA
′
, ð′ιA = λoA, ð′ῑA

′
= µ̄ōA

′
, (A11)

the RHS of each of the above equations de�ning one of the weighted spin coe�cients.
The types of the weighted spin coe�cients, of the Maxwell, traceless Ricci and Weyl spinor

components and of the derivative operators are given by

κ : {3, 1}, σ : {3,−1}, ρ : {1, 1}, τ : {1,−1},
ν : {−3,−1}, λ : {−3, 1}, µ : {−1,−1}, π : {−1, 1},
Φ0 : {2, 0}, Φ1 : {0, 0}, Φ2 : {−2, 0},
Φ00 = Φ̄00 : {2, 2}, Φ01 = Φ̄10 : {2, 0}, Φ02 = Φ̄20 : {2,−2}, (A12)

Φ11 = Φ̄11 : {0, 0}, Φ12 = Φ̄21 : {0,−2}, Φ22 = Φ̄22 : {−2,−2},
Ψ0 : {4, 0}, Ψ1 : {2, 0}, Ψ2 : {0, 0}, Ψ3 : {−2, 0}, Ψ4 : {−4, 0},
þ : {1, 1}, þ′ : {−1,−1}, ð : {1,−1}, ð′ : {−1, 1}.

A.2 Type II Kundt spacetimes with an aligned electromagnetic �eld

From now on we assume that the spacetime is Kundt of Riemann type II, the electromagnetic �eld
is aligned, and the basis dyad is parallelly transported, i.e.,

Ψ0 = Ψ1 = 0 = Φ00 = Φ01, Φ0 = 0, κ = ρ = σ = ε = π = 0. (A13)

The commutators thus take the simpli�ed form[
þ, þ′

]
= τ̄ð + τð′ − p(Ψ2 + Φ11 −R/24)− q(Ψ̄2 + Φ11 −R/24), (A14)

[ð,ð′] = (µ− µ̄)þ+p(Ψ2 − Φ11 −R/24)− q(Ψ̄2 − Φ11 −R/24), (A15)

[þ,ð] = 0, (A16)[
þ′,ð

]
= −µð− λ̄ð′ − τ þ′+ν̄ þ−p(τ̄ λ̄+ Ψ̄3)− q(µτ + Φ12), (A17)
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along with the complex conjugates of the last two equations.
If one also assumes that the energy-momentum tensor originates from the electromagnetic �eld,

i.e., Φαβ = κ0ΦαΦ̄β (with α, β = 0, 1, 2), then one also has

Φ02 = 0, R = 4Λ0. (A18)

B Proof for non-null �elds (section 2)

In addition to (A13) and (A18), for the solutions of section 2 we have

τ = µ = λ = 0, Ψ2 = −Λ0

3
, Ψ3 = 0, Φ1 = const Φ2 = 0, (B1)

so that also Φ12 = Φ22 = 0, and the spin-coe�cient equations and Bianchi identities needed in the
following read19

þ ν = 0, ðν = 0, ð′ν = Ψ4, (B2)

þΨ4 = 0, ðΨ4 = −ν(3Ψ2 − 2Φ11). (B3)

The only non-zero derivatives of basis spinors (A8)�(A11) are given by

þ′ ιA = νoA, þ′ ῑA
′

= ν̄ōA
′
. (B4)

B.1 1-balanced s-balanced spinors

Let us consider a spinor (or tensor)20 �eld S. By a re�nement of the notion of 1-balanced tensors
introduced in [23] (see also [12,14,35�38]) it is useful to give the following

De�nition B.1 (1-balanced s-balanced spinors). A scalar η of boost and spin weights (b, s) is a
�1-balanced s-balanced scalar� if it satis�es the following two conditions

η = 0 for b ≥ −1, þ−b−1 η = 0 for b < −1, (B5)

þ−b−2 ð−sη = 0 for s < 0, þ−b−2 η = 0 for s ≥ 0. (B6)

A spinor S whose components are all 1-balanced s-balanced scalars is a �1-balanced s-balanced spinor�.

Condition (B5) de�nes 1-balanced scalars [23], therefore a 1-balanced s-balanced spinor is, in
particular, a 1-balanced spinor. We will consider only 1-balanced s-balanced spinors with an integer
b, which means that b ≤ −2 for all non-zero components of S. Furthermore, by (B6), components
with b = −2 can only have s < 0 (with ð−sη = 0).

We will need the following

Theorem B.2 (Derivatives of 1-balanced s-balanced spinors). In the spacetime (30) the covariant
derivative of a 1-balanced s-balanced spinor S is again a 1-balanced s-balanced spinor.

Proof. By assumption, the components of S satisfy (B5) and (B6). Since the spacetime is degenerate
Kundt, it follows from [14,23] that ∇S is automatically 1-balanced, i.e., eq. (B5) is satis�ed also by
the components of ∇S. It remains to be shown that the same is true for eq. (B6). To this end, we

19The Maxwell equation is satis�ed identically here as a consequence of (B1) and (A13).
20Recall that any tensor �eld may be interpreted as a spinor �eld [30,32]. This will be understood in what follows.
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note that the possible non-zero components of ∇S and their respective boost and spin weights are
given in terms of those of S (the latter being indicated generically as η) by

þ η : (b+ 1, s), þ′ η : (b− 1, s), ðη : (b, s+ 1), ð′η : (b, s− 1), (B7)

νη : (b− 2, s− 1), ν̄η : (b− 2, s+ 1), (B8)

where we have used (A12) , (B4) and (A5), and the components of ∇S are meant up to numerical
factors. Recalling (B5), (B6) and the fact that b ≤ −2 for components of S (being 1-balanced), it is
easy to see that among the components (B7), (B8), those of b.w. −2 (if any) can only have s.w.< 0.
Using (A14)�(A17), (B1)�(B3) and (B5), (B6), one can also see that the property (B6) holds also
when η is replaced by any of the components (B7), (B8) (and their respective weights), as we wanted
to prove.

Iteratively, it is obvious that the same property holds for any covariant derivative of S of arbitrary
order, i.e., any components of such covariant derivatives necessarily have b.w. not greater than −2,
and those of b.w. −2 can only have negative s.w..

B.2 Application to section 2.2

Let us now employ the above general results for the purposes of the present paper. As discussed in
section 2 (and references therein), the covariant derivative of the self-dual Maxwell tensor F , of the
energy-momentum tensor and of the Weyl tensor are all 1-balanced tensors. It is also easy to see
that the covariant derivatives of both the self-dual Maxwell tensor and the self-dual part of the Weyl
tensor (or spinor) additionally satisfy condition (B6) and are therefore 1-balanced s-balanced tensors
(spinors) � by theorem B.2 this will be true also for their covariant derivatives of any order. The
covariant derivative of the energy-momentum tensor (32) is a sum of two terms, the �rst of which is
again a 1-balanced s-balanced tensor. The second term in ∇cTab is simply the complex conjugate of
the �rst one, and instead of (B6) it satis�es its complex conjugate version, namely þ−b−2 ð′sη = 0 for
s > 0, and þ−b−2 η = 0 for s ≤ 0 (with b = −2, s = 1). Theorem B.2 ensures that the �rst covariant
derivative of the �rst term of ∇cTab is also a 1-balanced s-balanced tensor, while an equivalent (up
to complex conjugation) result for the second term is obvious. Iteratively, one can argue similarly
for covariant derivatives of Tab of any order.

As a conclusion, terms of b.w. −2 (i.e., those of highest b.w.) in the covariant derivatives of
arbitrary order of the (anti-)self-dual Maxwell tensor, the energy-momentum tensor or the (anti-
)self-dual Weyl tensor can only have either s < 0 or s > 0, but not s = 0 � which is indeed the result
used in section 2.2.

C Proof for null �elds with DΨ4 = 0 (section 3.2)

In addition to (A13) and (A18), for the solutions of section 3.2 we have

τ = µ = λ = 0, Ψ2 = −Λ0

3
, Ψ3 = 0, Φ1 = 0, (C1)

so that also Φ11 = Φ12 = 0, and the spin-coe�cient equations, the Bianchi identities and the Maxwell
equations needed in the following read

þ ν = 0, ðν = Φ22, ð′ν = Ψ4, (C2)

þΨ4 = 0, ðΨ4 − ð′Φ22 = −3νΨ2, þΦ22 = 0, (C3)

þΦ2 = 0, ðΦ2 = 0. (C4)
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The only non-zero derivatives of basis spinors (A8)�(A11) are as in (B4).
Before proceeding, it is useful to recall that the spinor equivalent of the null �eld (33) reads

[29,30,32]
φAB = Φ2oAoB . (C5)

As discussed in sections 1.1 and 3, we do not impose the last component of the Einstein equation
in the Einstein-Maxwell theory Φ22 = κ0Φ2Φ̄2.

C.1 Balanced s-balanced spinors

We can now conveniently adapt the approach of section B and re�ne the notion of balanced spinors
given in [36] (cf. also [12,14,35,37]) by de�ning

De�nition C.1 (Balanced s-balanced spinors). A scalar η of boost and spin weights (b, s) is a
�balanced s-balanced scalar� if it satis�es the following two conditions

η = 0 for b ≥ 0, þ−b η = 0 for b < 0, (C6)

þ−b−1 ð−sη = 0 for s < 0, þ−b−1 η = 0 for s ≥ 0. (C7)

A spinor S whose components are all balanced s-balanced scalars is a �balanced s-balanced spinor�.

Condition (C6) de�nes balanced scalars [36, 37], therefore a balanced s-balanced spinor is, in
particular, a balanced spinor. We will consider only spinors with an integer b, which means that
b ≤ −1 for all non-zero components of S. The above de�nition also means, in particular, that
components of S with b = −1 can only have s < 0 (with ð−sη = 0). Recalling also de�nition B.1, we
further note that one has the following series of implications for a spinor: S is 1-balanced s-balanced
⇒ S is balanced s-balanced ⇒ S is balanced.

One has the following useful

Theorem C.2 (Derivatives of balanced s-balanced spinors). In the spacetime (55) the covariant
derivative of a balanced s-balanced spinor S is again a balanced s-balanced spinor.

Proof. Since the spacetime is degenerate Kundt, ∇S is a balance spinor as well [12, 23, 36, 37], i.e.,
(C6) holds true for any of its components, so that it remains to prove that (C7) is also obeyed by
all components of ∇S.

The possible non-zero components of the covariant derivative of S and their respective boost and
spin weights are again given (up to numerical factors) by (B7), (B8). Those of b.w. −1 (if any)
can only have a negative s.w., as can be easily seen using (C6), (C7) and the fact that b ≤ −1 for
components of S (being balanced). Furthermore, using (A14)�(A17), (C1)�(C4) and (C6), (C7), it
follows that the property (C7) holds also when η is replaced by any of the components (B7), (B8)
(and their respective weights). This means that the covariant derivative of S is also a balanced
s-balanced spinor, as we wanted to prove.

Clearly the above theorem can be applied iteratively, such that covariant derivative of arbitrary
order of a balanced s-balanced spinor S are also balanced s-balanced spinors. It follows, in particular,
that any components of such covariant derivatives with b.w. −1 can only have a negative s.w..

Let us now consider a spinor S possessing components that, in addition to (C6) and (C7), further
obey

þ−b−2 ð−sη = 0 for b ≤ −2, s < 0, þ−b−2 η = 0 for b ≤ −2, s ≥ 0. (C8)

(Note that (C8) is stronger than (C7) but only applies to components with b ≤ −2.) This implies,
in particular, that components of S with b = −2 can only have s < 0, with ð−sη = 0. Similarly as
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above, it is easy to see iteratively that this property is inherited by covariant derivatives of S of any
order. It follows that, for all of those, terms with (b, s) = (−2, 0) vanish identically.

C.2 Application to section 3.2.2

C.2.1 Components of ∇kF

The null electromagnetic �eld (33) (or its spinor equivalent (C5)) has (b, s) = (−1,−1). Its only
component Φ2 sati�es (C4), which means that F is balanced s-balanced (as de�ned by (C6), (C7)).
By theorem C.2, covariant derivatives of F of arbitrary order are also balanced s-balanced, which
implies that their components with b = −1 necessarily have s < 0. For the complex conjugate F̄
and its covariant derivatives, a similar argument shows that components with b = −1 necessarily
have s > 0. Therefore, in neither case are components with b = −1 and s = 0 possible. Notice that
this conclusion also applies to arbitrary contractions of covariant derivatives F or F̄ with the metric
or with the Weyl tensor. This result is used in section 3.2.2 to prove that ∇bHab = 0 identically, in
the context of the Einstein-Maxwell solutions considered there.

Let us now discuss the form of components with (b, s) = (−1,−1) contained in the covariant
derivatives (of arbitrary order) of F . First, let us notice that after each di�erentiation, the produced
components which are proportional to ν or ν̄ (cf. (B8)) will always have b ≤ −3, which follows from
F being balanced and from the �rst of (C2).21 For the purposes of our discussion these components
can thus be neglected, i.e., when considering derivatives ∇kφAB it su�ces to focus on components of
the form ∇kΦ2. It follows that components of ∇kφAB with (b, s) = (−1,−1) can only be produced
by applying on Φ2 an equal number of þ and þ′ operators, and/or an equal number of ð and ð′ (in
any order) � in particular this implies that they can appear only in derivatives of even order. Now,
because of (C4), it su�ces to consider components of the form (. . .) þ′j Φ2 and (. . .)ð′kΦ2, where the
dots represent an arbitrary sequence of derivative operators such that (because of what we have just
remarked) the total number of operators þ acting on Φ2 equals that of þ′, and similarly for ð and
ð′. Thanks to (A14) and (A16), all operators þ can be shifted to the right until they act on Φ2 �
up to bearing in mind that every time that þ is swapped with þ′, also an additional term of lower
order of di�erentiation will be produced. Therefore, terms containing þ can be iteratively reduced
to either zero or to terms of the form (. . .) þ þ′ Φ2, which can be further simpli�ed by noticing that

þ þ′Φ2 = −Λ0Φ2, (C9)

which follows from (A14). This can be repeated until all operators þ and þ′ have disappeared. There
thus remain to consider terms which contain only an equal number of operators ð and ð′, but no
operators þ and þ′. Here one can use (A14) to shift ð to the right, up to producing a term of lower
order of di�erentiation every time that ð is swapped with ð′, and thus iteratively arrive at either
zero or at a term proportional to (using (A15))

ðð′Φ2 = Λ0Φ2. (C10)

To summarize, the components of the covariant derivatives of F possessing (b, s) = (−1,−1) are
either zero or proportional (via a numerical factor) to

Λ
k/2
0 Φ2, (C11)

in the latter case k being an even positive integer corresponding to the order of di�erentiation of the

21More precisely, such components are 2-balanced, as de�ned in [19] (see also Lemma 1 therein).
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particular covariant derivative being considered.22 From the previous comments it also follows that
k-th covariant derivative of (C5) takes the form

∇CkC′
k
. . .∇C1C′

1
φAB = Λ

k/2
0 φABΥC1C′

1...CkC′
k

+ . . . (k even), (C13)

where ΥC1C′
1...CkC′

k
is a spinor with weights (0, 0) and the dots denote terms with weights di�erent

from (−1,−1) (see (C16) below for an explicit example). For certain applications it is also useful
to observe that, irrespective of its precise form, the spinor ΥC1C′

1...CkC′
k
(and thus the full �rst term

on the RHS of (C13)) is invariant under the �Sachs symmetry�23 oA 7→ oA, ιA 7→ ιA, ōA′ 7→ ῑA′ ,
ῑA′ 7→ −ōA′ . By complex conjugation, similar conclusions hold for the components of the covariant
derivatives of F̄ possessing (b, s) = (−1,+1).24

More generally, a similar reasoning reveals that, for s ≤ −1, components with (b, s) = (−1, s)
contained in the covariant derivatives of F will be linear combinations of terms of the form

Λ
(k+s+1)/2
0 ð′(−s−1)Φ2, (C14)

where k is the order of the covariant derivative in question, k and s have opposite parity and
−k − 1 ≤ s ≤ −1.

Finally, φAB does not possess components of b.w. −2, and the components of ∇CC′φAB sat-
isfy (C8) (in addition to (C6) and (C7)), therefore (as follows from the comments following (C8))
no non-zero components with (b, s) = (−2, 0) are possible in covariant derivatives of F or F̄ of any
order.

For the sake of de�niteness, let us demonstrate explicitly the above results for the �rst two
covariant derivatives of (C5). The �rst derivative reads, thanks to (C4),

∇CC′φAB = oAoBoC
(
ōC′ þ′︸︷︷︸

(−2,−1)

−ῑC′ ð′︸︷︷︸
(−1,−2)

)
Φ2, (C15)

while the second derivative is

∇DD′∇CC′φAB = oAoBoC

{
oD
[
ōD′ ōC′

(
þ′2−ν̄ð′

)︸ ︷︷ ︸
(−3,−1)

− (ōD′ ῑC′ + ῑD′ ōC′) þ′ ð′︸︷︷︸
(−2,−2)

+ῑD′ ῑC′ ð′2︸︷︷︸
(−1,−3)

]
−ιDεC′D′ Λ0︸︷︷︸

(−1,−1)

}
Φ2,(C16)

where we have used again (C4) along with the commutators (A14)�(A17). Below each term we have
indicated the weights (b, s) of the component it gives rise to (after acting on Φ2). Eqs. (C15) and
(C16) show that no components with (b, s) = (−2, 0) are present, as proven more in general above,
and that components with (b, s) = (−1, s) are in agreement with the general results (C11) and (C14).

22This particular power of Λ0 also follows from a dimensional argument. Note also that, using (A14) and (A15)
iteratively (with (C1)), one can prove

þj þ′j Φ2 =

(
−Λ0

2

)j
(j + 1)!j!Φ2, ðjð′jΦ2 =

(
Λ0

2

)j
(j + 1)!j!Φ2, (C12)

which generalize (C9) and (C10) to any integer j > 0.
23Mentioned in [30,32] with reference to unpublished work by Sachs (1961, 1962).
24Although φ̄AB (and thus F̄) is not invariant under the Sachs symmetry (as opposed to φAB , cf. (C5)), it is invariant

under a �dual� Sachs symmetry oA 7→ −ιA, ιA 7→ oA, ōA′ 7→ ōA′ , ῑA′ 7→ ῑA′ .
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C.2.2 Components of ∇kC and ∇kS

Let us now discuss the form of components of covariant derivatives of the Weyl tensor possessing
(b, s) = (−2, 0) (as noticed in section 3, here ∇kC is 1-balanced for k ≥ 1, therefore it cannot contain
terms with b > −2). In spinorial terms, the �rst covariant derivative reads (cf. also [35])

∇EE′ΨABCD = ōE′
(
12o(AoBoCιD)oE νΨ2︸︷︷︸

(−2,−1)

−oAoBoCoDιE ðΨ4︸︷︷︸
(−2,−1)

)
+ oAoBoCoDoE

(
ōE′ þ′︸︷︷︸

(−3,−2)

−ῑE′ ð′︸︷︷︸
(−2,−3)

)
Ψ4, (C17)

No components with weights (−2, 0) are present here, but such terms can be produced by taking
further derivatives, as we now explain. Recalling (C1) and (C2), one can observe that all components
of (C17) are expressed only (up to multiplicative constants) in terms of ν and some of its (second)
GHP derivatives. Since ν has weights (−2,−1), in order to produce (by di�erentiation) a term with
(−2, 0) one needs to act on ν with an equal number of þ and þ′ operators, and with a number of ð
which exceeds precisely by 1 the number of ð′, in any order � for example one such term is given by
(up to reordering of the derivatives) þ′j þj ð′kðk+1ν.25 First, this means that non-zero components
with (−2, 0) can arise only in covariant derivatives of ΨABCD of even order. Second, using (A14)�
(A17) one can argue that any such component can be rewritten as a linear combination of terms of
the form (for various values of k)

ð′kðk+1ν = ð′kðkΦ22, (C18)

where we have used (C2). Noticing that (ð′ð+ ðð′)Φ22 = 4Φ22, where 4 = 2P 2∂ζ̄∂ζ is the Laplace
operator in the transverse 2-space with metric 2P−2dζdζ̄ (recall (44), (45)), and using (A15), a linear
combination of terms (C18) can also be expressed equivalently as a linear combination of terms

4jΦ22. (C19)

For example, one has 42Φ22 = 4(ð′2ð2−Λ0ð′ð)Φ22, 43Φ22 = 8(ð′3ð3− 4Λ0ð′2ð2 + Λ2
0ð′ð)Φ22, etc..

Since here the Ricci tensor has the form Rab = Λ0gab + 2Φ22`a`b, the argument given above for
the covariant derivatives of the Weyl tensor can easily be adapted to the covariant derivatives of the
Ricci tensor, so their components (−2, 0) can also only be a linear combination of terms (C19) (and
no components with b.w. greater than −2 are possible).

From the fact that the Weyl and Ricci tensor only possess components of b.w. 0 (cf. the comments
in the last paragraph of section 3.1) and −2 and their covariant derivatives are 1-balanced, it follows
that any rank-2 tensor constructed from the Riemann tensor and its covariant derivatives of arbitrary
order is necessarily symmetric and its component are either proportional to the metric tensor (b.w.
0) or a linear combination of terms (C19) (b.w. −2). Thus we have the the following26

Theorem C.3 (Rank-2 tensors). In the family of spacetimes (55), any rank-2 tensor constructed
from the Riemann tensor and its covariant derivatives of arbitrary order takes one of the two following
equivalent forms

Ẽab = λ0gab + 2`a`b

N∑
k=0

ak 4k Φ22 = λ0gab + 2`a`b

N∑
k=0

âkð′kðkΦ22, (C20)

25For completeness, it should be observed that if η is a component of a certain covariant derivative of ΨABCD, one
additional di�erentiation also produces terms of the form νη and ν̄η (via (B4), cf. (B8)). However, since η is 1-balanced
and þ ν = 0 (recall (B2)), all such terms are automatically 3-balanced (as de�ned in [19], see also Lemma 1 therein), which
implies they possess b.w. not greater than −4 and can thus be neglected for the purposes of the present discussion.

26A similar result for a di�erent class of spacetimes was obtained in [19,20] (cf. also [15]).
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where N ∈ N, λ0, ak and âk are constants, and Φ22 = 1
2 4H.

Remark C.4. From the previous discussion it follows that the term of b.w. −2 in (C20) (i.e.,
the one proportional to `a`b) can only be constructed linearly in the traceless Ricci tensor and the
covariant derivatives of arbitrary order of the Riemann tensor.
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