Hlubokým spánkem proti depresi

KETAMIN POMÁHÁ NASTOLIT SYNAPTICKOU ROVNOVÁHU

Abstract

Už před více než dvaceti lety mĕli neurovědci i praktiční psychiatrï podezření, že při depresich nejde jen o chyby v aktivaci synapsí prostřednictvím neuropřenašecúŭ, jako je serotonin nebo dopamin, ale že se mohou zásadně měnit směry aktivnich propojeni mezi mozkovy̌mi oblastmi (tj . docházi ke změnám na úrovni celého konektomu). Nyní se učíme, jak do synaptických propojení vrátit rovnováhu.

lexi FRANTIŠEK VYSKOČIL

V POSLEDNI DOBÉ se hovợio vzniku

 a pr̉etrvâvàni mučivých pamétových stop, kterých se mozek némûže zbavit. Když má nêkdo klinicky diagnostikovaný nĕjaký typ dlouhodobé deprese a neịde o béz̃ny prechodny splin nebo dočasnou „bolistkun, začnou mu y mozku kroužit podivnê informace. Opakovaným prúchodem téchto negativnê podbarvenych signảlu stejinými oblastmi vznikají y téchto drahách jakési „vyieždéné" nervové okruhy, fyziologicky silná a dobře propustná synaptická propojeni mezi neurony. ${ }^{\dagger}$Kde k tomu docházip V podkorových mozkovy̌ch oblastech $t z v$. limbického emočníbo systému, ale i v kưre předního mozku. Pocitujeme to jako vülf prakticky neovladatelné dlouhodobé tízivé pocity.
Tyto nevèdomé sitê negativnich emoef se promitaji i do has̉ich rozhodovacich postupú. V oblastech predního mozku nebo i v kúrée mozečku fcerebella, kde se téz rozhoduje a etických postojich clovẽka) vznikají a probihajị pokřivené úvahy o reesení osobnich situaci, derou se do mysli negativní myślenky, včetnê těch o o sebevraždě. Na depresivnich pacientech je to nékdy anát. Známía a přibuzní to ale často nechâpou... Proč se chová tak podivnẽ a stèžuje si? Casto ide a úspēs̃ného, oblitbeného c̨lovēka na vrcholu tvûrčich sil. okoli a nękdy ani lékař netusi, že jedná o velmi aktivní a selektivni (výbèrové probihaiíci) poruchu mozkovy̌ch funkci, při niz̄ hraje roli genetická zattèz̀ (vrozenýy sklon k úzkosti a depresím) a snižená hladina „neuropíenaseecou štéstí"
(dopaminu a předevšim serotoninu). Někdy situaci zhors̄í nějaká startovací situace (nêkdy zdánlivé bezvyzzamnâ, vètsinou však záyažná) - žívotni prohra, ümrti blízkē osoby, uyědoméni si vêku nebo i porucha spánku.
Koncem minulého a zacátkem tohoto tisicileti se roztrhl pytel 5 chemickymi antidepresivy pro regulaci synaptickych hladin neuroprènašećústéstía jefich receptorû. Pǐed nejrüznějsimi antidepresivy prvni, druhé, tíeti a dalšich generaci, která lze. súspěchem použit k léçbḕ rùzných typú depresí ina úrovni praktických lékar̈ù, ustoupily jinê psychoterapeutickè antidepresivni postupy (psychoanaly̌za, sugestivnípsychologie nebo hypnoterapie) do pozadi. Českým přispēvkem k tomuto boomu byl dosulepin (vyvinut ve VÖFB), originalní tricyklicke antidepresivum se sirou v molekule, na které koupila licenci firma Boots a od t . 1969 s ním méla úspéch predevsim ve Velké Británii.

POMALÝ NÁSTUP ANTIDEPRESIV

Jeden z problémo prakticky vsech typú antidepresiv spočivá v tom, že po jejich nasazení musi pacient čekat na zlepšeni nálady nékolik dnú, ty̌dnū či dokonce mésicù. V tomto mezidobí se u mnoha pacientû jejich stav dokonce zhors̀uje. Napřiklad jeden z prynich „zảzrakù" SSRI (selektivnich inhibitorà zpẽt tého vychytáváni serotoninu), slavnýf fluoxetin (Prozac, Deprex), vyvolảvà občas zpočătku tak vysokou miru ưzkosti,
że je nuthè použit současnẻ nějakou látku z rodiny anxiolytik (protí úzkosti, nejčastēji benzodiazepinû), a zabránit tak i připadnému fatålnỉmu sebepoškozeni.

Deprese a dlouhodobý stres zpúsobují zrèjmè zmèny nejen na konkrétnich synapsich pro serotonin, moz̀nai i pro dopamin a noradrenalin, ale v cely̆ch propojovacich systêmech. Tím lze formálnẽ y ysvétlit celou radu nálad, apatií, obtižís s pamètía dalsích symptomủ s depresí běżně spojených. Takovéto nepïerus̃ované (a neprierus̃ené) kruhy vracejicich se negativnich myslenek a pocitú isou hlavnim duševnim stavem depresivnich pacientú. Jedná se o velmi aktivni a selektivni mozkové informačni drähy, kterê se proto snaz̃ime pierušit antidepresivy.

1. DEPRESE je komplexní problém a její terapie vyžaduje neménẽ komplexni přistup, kombinujici antidepresiva s kognitivnẽ-behaviorální terapif a dalšími postupy.

Proč účinkují tak opožděně? Jednou, ale ne jedinou přičinou pomalého nástupu antidepresiv je jejich poměrně pevné navázání a uvolñováníz ostrûvkû lipidủ v buněẻných membránách vyztužených cholesterolem, tzv. „raftech ${ }^{\text {a }}$ (Vesmir 98, 166, 2019/3), a zǔejmẽ i vleklá přestavba neuronû a gliových buněk některých mozkových struktur, jako je hipokampus (gyrus dentatus). Proto má finálni pûsobení látek SSRI namirfených proti ${ }_{\text {,vymyti" }}$ serotoninu mezi neurony v přislušných mozkových synapsích opožděný nástup, a nadto jsou popsány nepríjemné abstinenční syndromy po rychlém vysazení antidepresivní léčby [1]. Tato pomalost také ztěžuje rychlý výběr léčiva, protože se pár týdnư ani neví, zda přislus̉né antidepresivum z desitek dnes dostupných je pro konkrétní osobu to nejvhodnéjši.

KETAMIN A SPÁNEK

Na obzoru se ale objevila jiná látka, ketamin , která je od šedesátých let 20. století známa v poměrně vysokých dávkách jako anestetikum a v menšich množstvich získala neblahou povèst jako halucinogenni „taneční droga". Jeji účinek je téměř okamžitý, v minutách [2]. V nizkých, subanestetických dávkách odstrañuje i úzkost a depresi. ${ }^{2}$

Dnes k těmto základním účinkûm ketaminu (púvodné inhibitoru glutamátových
receptorú NMDA v mozku) mǔžeme přidat novẽ studované pủsobeni na obnovnẻ procesy ve spánku. Nejde o fázi spánku REM s akčními a často děsivými sny, kdy se mozkové vlny třepou skoro jako v bdělêm stavu, ale o nêkolik opakovaných fází hlubokého spánku (Vesmír 101, 620, 2022/10). Do něho většinou náš mozek upadne hned po usnuti. V hluboké fázi spánku vidime na EEG povrchovými elektrodami snimané pomalé mozkové delta-vlny o několika cyklech za sekundu, které jsou přiznakem uklidnèni a nevzrussivé činnosti synapsí - ideálniho stavu pohody, kterému obecnè v biomedicfně říkáme homeostáze.
K udržení homeostáze obecně směřuje vêttšina fyziologicky̌ch procesú, hladiny hormonủ, trávení, sloz̃ení krve a moc̃i, udržování tělesné teploty aj. V mozku potřebujeme také takový optimálni „klidný pouliẽní i dálniční provoz", prakticky nedosaz̃itelný v bdẽlém stavu. To jsme

1) Podkladem vzniku ,silmé* synapse na bunềcné a synaptické ôrowni je tzv diouhodobé posileni (long-tèrm potentiation, UP), kdy piliby̌vá postsynaptickych receptorû pro aktivaín! neuropłenašeč, nejð́astêji glutamát, Jde o nejednodussí, nicménề I tak velmi komplokovanou pamêtorou stopu, engram
2) 0 historii a nêkolika tvâfich ketaminu pled Casem ve Vesmiru psali Jili Horáçek, Michaela Lipski a Peter Šus: Pibèh jeưné molekuly, Vesmir 95, 272. 2016/5.
bombardováni zážitky, které si synapse musî pamatovat. Se zklidnẻním provozu a „úklidem" v mozku nám pomáhá právě hluboká fáze spánku s pomalými vlnami. Zážitky (resp. synaptické engramy) se bud upevňuji pro dlouhodobou pamét, nebo se zaviraji do nevẽdomého "trezoru", aby nepřekáżely nevhodnou výbavností. Úklidové čety se snaží odstranit vraky z denního dálničniho provozu a zachovat dûležité molekulární spoje pro nás̉ dus̉evni prospě̀ch (Vesmír 101, 614, 2022/10).

Když je hluboká fáze spánku přiliš krátká a pomalé vlny nizké, přestože negativni emoční dálnice (talamokortikálni dráhy) byly ve dne velmi rušné, záz̃itky nemusí z provozní paměti zcela zmizet, naopak se mohou po probuzení vybavit nechtĕnẽ a nepr̂ijemnẽ. Je zajímavé, że ranní deprese při probouzení začiná často pocity napètí v enterickém, břišním nervstvu. Jde o náhlou stresovou reakci, a proto rychle vzroste hladina krevní glukózy a stresových kortikoidû. Vzniká prediabetes. Nikoliv náhodou se dnes zcela béžně připojuji k léćeni diabetikûi psychiatři.

Výbavnost skrytých traumatickŷch zážitkủ roste v kritických situacích a při nebezpeči života. Předevšim tehdy, když jsou "negativní synaptické engramy" a dráhy nedostatečně vymazány či odsunuty a vykukují opakované $z_{\text {"trezoru zapomněni". }}$ Jejich neurofyziologická sila tim roste a cy^{*} klus nutkavých, depresivnich a úzkostných stavû se každodenně opakuje - a to je chyba. Dokonce se při opakovaném vybuzeni tyto

„vadne" synapse posiluji a traumatické zážitky se zesilují jako prí hromadnè havárií. U mnoha nemocných postupné nazrávà touha po pomsté, odveté, nebo narústají pocity uzavrenosti, beznaděječi snahy po sebevrażedném resěení.

Ketamio u mnoha pacientú rychle zabral, a to predevšim na počátku spănku. Selektivnẻ zvýšil amplitudu pomalých vin na eleltroencefalogramu bēhem hlubokého delta spánku bez rychlého pohybu oci a trocha prodloużil tuto spánkovou fázi. Jako „kosté" pro vymeteni depresivnich priznakū použil ketamin zřejmế mistni rústový protein, mozkový neurotrofni faktor (BDNF), a zvýsil jeho produkci, jak to známe také u jiných antidepresiv. Celkové tato zjiştẽnínaznačuji, że vyšssi hladiny prorùstoveho BDNF a vyssif pomale viny mohou predstavovat elektrofyziologické a molekulảrni podklady pro zlepsesení nálady. Mozek se tak dostăvă snãze do synaptické optimálni homeostázy a reorganizuje svou aktivitu k potlačení deprese.

Ketaminovézmirnēní depresivnich pfiznakû probihá v r̛adu nẽkolika hodin, pïičemz̃ nejvýznamnêjèsizména je obvykle pozorována deu po jeho podáni. Nejnovejšim produktem je nosui sprei, kterỳ obsahuje esketamin (S-enantiomer ketaminu), schváleny americkou FDA i Evropskour lékovou agenturou (2019).

KOMPLEXNI LÉČBA

 KOMPLEXNIHO ORGÁNU Přiznaky deprese se však mohou bĕhem týdne vracet. podle vèdcâ z Helsinské univerzity [3] potrebují tito depresivní pacienti i jinou, psychoterapeutickou léčbu. Prominentní psychoterapeutickou technikou léçby deprese dnes není psychoanalýza, ny̆brž kognitivné-behaviorální terapie. ${ }^{3}$ pr̂i této léčbẻ se upevñuji v bdélèm stavu pozitivní drảhy a .nnaplnuji se" centra odmény v oblastech limbického mozkového systému.Także psychoterapie pùsobína synapse mezi neurony také jako vylhybka na kolejich, nēkteré múže posilovat a jiné tlumit, Patrii svým zpúsobem do fyziologie synaptického prenosui, protože se zvýhodnujuí nervová spojenf svázaná s pozitivnim typerm mysileni. Bez pozitivnich emoci se neuronové sité podporujici normálni funkci mozku v bdêlosti oslabuji kvûli nedostatečnému použiti a mohou preevládnout negativní silnè dráhy, obtiž̃nēji odstranitelnè bêhem hlubokêho

[^0]spànku. Výsledkem je nerovnováha a nẻkdy klinická deprese.

Určité nelze vsechno a u vsech festit jen rychlýmiči pomalými antidepresivy, nêkteré mozky se brăni. Poskytnẽme jím ale i kvalitní spánek s pomalými vinami a empatické rozhovory. Zac̆arovaný kruh múže by̆t zlomen tím, że převedeme mozek zpèt ke komplexnéjs̄imu zpúsobu jednàni.

Zkoušeji se i jiné rychlejài přistupy ke zvládnuti depresi a úzkosti. Mimo ketamin se znovu použivá technicky stâle lepši psychiatrická elektrokonvulzivní terapie (momkoyý kardiostimulátor", viz |4]) a nèkteré další terapie. Všechny zvyšufi aktivitu kortíkälnich oblastí a synapsit. V nejlepṡim prôpadè nutísiroké neuronové sité mozkové küry do zcela nového druhu interakce, coz̃ umožñuje oslabit predchozí nerovnováhu. Ketamin je mezi nimi jedinec̄ný také tím, że vy̆bẻrovê tlumi bolestivẻ drăhy mezi přednim mozkem a mezimozkem (talamem), kde se sbíhají smyslové vjemy (narkotický účinek), a dráhy v negativnich citových oblastech (amygdala).

Přehledný clánek finsky̌ch autorúv Pharmacologital Reviews [3; nabizi vysvétleni komplexniho propojeni mezi rychlými i pomalymi antidepresivnimi úcinky a molekulárnimi drahami a synapsemi, Yychází z toho, že synapse a drähy jsou plastické, daji se "tvarovat". Autori nazvali sirši hypotézú (en)kódování, konsolidace à renormalizace v depresi jako ENCORE-D). Hypotéza priedpoklảdă, że v zásadè rychlé a trvalé antidepresivní ûcinky spoléhají na vnitrni homeostatické úpravnè mechanismy, postrčené néjakým okamżity̌m léčebným podnẽtem. Rûzné léçby s rychlỳm nástupem ǔcinku, jako je ketamin, elektrokonvulzivní terapie a zmẻny spánku, dokážou akutné vybudit kortikàlni sitẻ, což zvyšuje prúchodnost slabşich synapsi, mèní vzorce funkčniho propojeni a alepśuji se depresivni
priznaky. Když jsou počáteční ự̆̉nky kratkodobé, vyžadujii konsolidaci bēhem bdēní (psychoterapii) a opètovnou údräbu během spånku, aby zǔstaly trvalé.
Podle hypotézy synaptické homeostázy [5] prochăzefi synapse, posilené bēhem đne, procesem renormalizace v hlubokém spànku (obr. 2), kterému dominuje aktivita pomalych vin. Nejsilnejsis synapse si mohou udriet svou relativní silu lépe neż ty slabší, ale spánek poskytuje pûiležitost pro posíleni slabšich synapsi a prozeslabeni silných negativnich drah podobnè jako při bdẹlế psychoterapii, możná i v hypnơze. Oba tyto mechanismy mohou prispèt k tomu, że mozek múžée reorganizovat svou činnost k potlaċení deprese. Vedcí vs̄ak poukazuifína to, že takto homeostaticky vyladèné mozkové funkce múžou být během následujícich dnû a noci opèt vykolejeny, pokud neuronové sitě, které rídi depresi, nejsou dostatečnê kontrolovāny, nap $\underset{\text { riklad }}{ }$ pomoci psychoterapie nebo zaléčenim béznými antidepresivy.
Trvalejşí úcúnek vyžaduje ovṡem řešení základnich přicín problêmu, a to nejen sociàlnich. Možnà za psychické poruchy mohoú nèjaké rùstové bilkoviny, jako jsou všudypřitomné netriny, U mnoha živočichü se úçastni rüstu nervových v̧̧bē̃̉kũ a synapsi při vytváreni a posilovánị paméfových stop ve vy̌voji i v dospélosti. Třeba nékteré formy posiluju pamët na přijemné zážit ky a jiné fixují spís ty neppríjemné. Tu druhou skupinu bychom mohlili-až ji objevime a obkličime - geneticky zadupat do zemé [6].

[11 Eid S. J. et al : Antidepressants Accumulate in Lipid Rafts lindependent of Monoamine Transporters to Modulate Redistibution of the G protein, $\mathrm{Ga}_{\text {, }}$. J. Biof Chem, 297, 19725-19733, 2016/38, DOI: $10.1074 \mathrm{~J} \mathrm{Jc} \cdot \mathrm{M} 116.727263$.
[2] Slaigh de et al Electroencephalographic slow wave dymamics and loss of behsvioural responsiveness Indiced by ketamine in human volunteers. Br. J Anaesth 123, 592-800, 201975, DO1: 10.1016/bjat.2019,07.021
[3] Rantamâki T., Kohtala S.: Encociing, Consolidation, and Renormalzation in Depressson: Synaptic: Homeostasis, Flasticity, and Sleep Integrate Rapod Antidepressant Eflects. Pharmacol. Rev. 72. 439-465, 2020/2, , DOL: 10.1124/pr.119.018697.
[4] Kalisovà L et all: Elektrokonvulzivn/ leĉbla - teorie a praxe, Kanomum, Praha 2019, 1185. ISBN-978-80-246-4397-3.
(5) Tononi G. Cirell C.: Sleep function and syraptio honieostasis. Sleep Med Rev. 10, 49-62, 2006, D01: $10.1016 / \mathrm{I}$. mrv . 2005.05 .002.
[6] Boyar N. P. Gupton S. L. Revisiling Netrin-1: One Who Guides (Axons, Fromt. Cell. Neurosci 12, 221, DOI: 10.3399/ncowt.2018.00221

[^0]:
 zmoru mytleni lze naverht zinórmu chovaint.

