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Abstract

We consider the Navier–Stokes–Fourier system with the inhomogeneous boundary condi-
tions for the velocity and the temperature. We show that solutions emanating from sufficiently
regular data remain regular as long as the density %, the absolute temperature ϑ, and the
modulus of the fluid velocity |u| remain bounded.

Keywords: Navier–Stokes–Fourier system, conditional regularity, blow–up criterion, regular
solution

1 Introduction

Standard systems of equations in fluid mechanics including the Navier–Stokes–Fourier system
governing the motion of a compressible, viscous, and heat conducting fluid are well posed in the
class of strong solutions on a possibly short time interval [0, Tmax). The recent results of Merle at
al. [16], [17] strongly indicate that Tmax may be finite, at least in the idealized case of “isentropic”
viscous flow. Conditional regularity results guarantee that a blow up will not occur as soon as
some lower order norms of solutions are controlled.

We consider the Navier–Stokes–Fourier system governing the time evolution of the mass density
% = %(t, x), the (absolute) temperature ϑ = ϑ(t, x), and the velocity u = u(t, x) of a compressible,
viscous, and heat conducting fluid:

∗The work of D.B., E.F., and H.M. was supported by the Czech Sciences Foundation (GAČR), Grant Agreement
21–02411S. The Institute of Mathematics of the Czech Academy of Sciences is supported by RVO:67985840.
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∂t%+ divx(%u) = 0, (1.1)

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ) = divxS(Dxu) + %f , Dxu =
1

2

(
∇xu +∇t

xu
)
,

(1.2)

∂t(%e(%, ϑ)) + divx(%e(%, ϑ)u) + divxq(∇xϑ) = S(Dxu) : Dxu− p(%, ϑ)divxu. (1.3)

The fluid is Newtonian, the viscous stress S is given by Newton’s rheological law

S(Dxu) = 2µ

(
Dxu−

1

3
divxuI

)
+ ηdivxuI, µ > 0, η ≥ 0. (1.4)

The heat flux obeys Fourier’s law

q(∇xϑ) = −κ∇xϑ, κ > 0. (1.5)

The equation of state for the pressure p and the internal energy e is given by the standard Boyle–
Mariotte law of perfect gas,

p(%, ϑ) = %ϑ, e(%, ϑ) = cvϑ, cv > 0. (1.6)

For the sake of simplicity, we suppose that the viscosity coefficients µ, η, the heat conductivity
coefficient κ as well as the specific heat at constant volume cv are constant.

There is a large number of recent results concerning conditional regularity for the Navier–
Stokes–Fourier system in terms of various norms. Fan, Jiang, and Ou [4] consider a bounded fluid
domain Ω ⊂ R3 with the conservative boundary conditions

u|∂Ω = 0, ∇xϑ · n|∂Ω = 0. (1.7)

The same problem is studied by Sun, Wang, and Zhang [19] and later by Huang, Li, Wang [14].
There are results for the Cauchy problem Ω = R3 by Huang and Li [13], and Jiu, Wang and Ye
[15]. Possibly the best result so far has been established in [11], where the blow up criterion for
both the Cauchy problem and the boundary value problem (1.7) is formulated in terms of the
maximum of the density and a Serrin type regularity for the temperature:

lim sup
t→Tmax−

(
‖%(t, ·)‖L∞ + ‖ϑ− ϑ∞‖Ls(0,t)(Lr)

)
=∞, 3

2
< r ≤ ∞, 1 ≤ s ≤ ∞, 2

s
+

3

r
≤ 2,

where ϑ∞ denotes the far field temperature in the Cauchy problem, cf. also the previous results
by Wen and Zhu [23], [24].

Much less is known in the case of the Dirichlet boundary conditions

u|∂Ω = uB, ϑ|∂Ω = ϑB. (1.8)
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Fan, Zhi, and Zhang [5] showed that a strong solution of the Navier–Stokes–Fourier system remains
regular up to a time T > 0 if (i) Ω ⊂ R2 is a bounded domain, (ii) uB = 0, ϑB = 0, and (iii)

lim sup
t→T−

(‖%‖L∞ + ‖ϑ‖L∞) <∞. (1.9)

All results mentioned above describe fluids in a conservative regime, meaning solutions are
close to equilibrium in the long run. However, many real world applications concern fluids out of
equilibrium driven by possibly large driving forces f and/or inhomogeneous boundary conditions.
The iconic examples are the Rayleigh–Bénard and Taylor–Couette flows where the fluid is driven
to a turbulent regime by a large temperature gradient and large boundary velocity, respectively,
see Davidson [3].

Motivated by these physically relevant examples, we consider a fluid confined to a bounded
domain Ω ⊂ R3 with impermeable boundary, where the temperature and the (tangential) velocity
are given on ∂Ω,

ϑ|∂Ω = ϑB, ϑB = ϑB(x), ϑB > 0 on ∂Ω, (1.10)

u|∂Ω = uB, uB = uB(x), uB · n = 0 on ∂Ω. (1.11)

The initial state of the fluid is prescribed:

%(0, ·) = %0, %0 > 0 in Ω, ϑ(0, ·) = ϑ0, ϑ0 > 0 in Ω, u(0, ·) = u0. (1.12)

The initial and boundary data are supposed to satisfy suitable compatibility conditions specified
below.

The existence of local in time strong solutions for the problem (1.1)–(1.6), endowed with the
inhomogeneous boundary conditions (1.10), (1.11) was established by Valli [20], [21] , see also Valli
and Zajaczkowski [22]. The solution exists on a maximal time interval [0, Tmax), Tmax > 0. Our
goal is to show that if Tmax <∞, then necessarily

lim sup
t→Tmax−

(
‖%(t, ·)‖L∞(Ω) + ‖ϑ(t, ·)‖L∞(Ω) + ‖u(t, ·)‖L∞(Ω;R3)

)
=∞. (1.13)

The proof is based on deriving suitable a priori bounds assuming boundedness of all norms involved
in (1.13) as well as the norm of the initial/boundary data in a suitable function space. Although
approach shares some similarity with Fang, Zi, and Zhang [5], essential modifications must be
made to accommodate the inhomogeneous boundary data as well as the driving force f . The
importance of conditional regularity results in numerical analysis of flows with uncertain initial
data was discussed recently in [7].
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The paper is organized as follows. In Section 2, we introduce the class of strong solutions to the
Navier–Stokes–Fourier system and state our main result concerning conditional regularity. The
remaining part of the paper is devoted to the proof of the main result – deriving suitable a priori
bounds. In Section 3 we recall the standard energy estimates that hold even in the class of weak
solutions. Section 4 is the heart of the paper. We establish the necessary estimates on the velocity
gradient by means of the celebrated Gagliardo–Nirenberg interpolation inequality. In Section 5,
higher order estimates on the velocity gradient are derived, and, finally, the estimates are closed
by proving bounds on the temperature time derivative in Section 6. This last part borrows the
main ideas from [9].

2 Strong solutions, main result

We start the analysis by recalling the concept of strong solution introduced by Valli [21]. Similarly
to the boundary data uB, ϑB we suppose that the driving force f = f(x) is independent of time,
meaning we deal with an autonomous problem. Following [21], we suppose that Ω ⊂ R3 is a
bounded domain with ∂Ω of class C4.

We assume the data belong to the following class:

%0 ∈ W 3,2(Ω), 0 < %
0
≤ min

x∈Ω
%0(x),

ϑ0 ∈ W 3,2(Ω), 0 < ϑ0 ≤ min
x∈Ω

ϑ0(x),

u0 ∈ W 3,2(Ω;R3),

ϑB ∈ W
7
2 (∂Ω), 0 < ϑB ≤ min

x∈∂Ω
ϑB(x),

uB ∈ W
7
2 (∂Ω;R3), uB · n = 0,

f ∈ W 2,2(Ω;R3). (2.1)

In addition, the data must satisfy the compatibility conditions

ϑ0 = ϑB, u0 = uB on ∂Ω,

%0u0 · ∇xu0 +∇xp(%0, ϑ0) = divxS(Dxu0) + %0f on ∂Ω,

%0u0 · ∇xϑ0 + divxq(ϑ0) = S(Dxu0) : Dxu0 − p(%0, ϑ0)divxu0 on ∂Ω. (2.2)

We set

D0 = max

{
‖(%0, ϑ0,u0)‖W 3,2(Ω;R5),

1

%
0

,
1

ϑ0

,
1

ϑB
, ‖ϑB‖W 7

2 (∂Ω)
, ‖uB‖W 7

2 (∂Ω;R3)
, ‖f‖W 2,2(Ω;R3)

}
.

(2.3)
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2.1 Local existence

The following result was proved by Valli [21, Theorem A] (see also [20]).

Theorem 2.1. (Local existence of strong solutions) Let Ω ⊂ R3 be a bounded domain of
class C4. Suppose that the data (%0, ϑ0,u0), (ϑB,uB) and f belong to the class (2.1) and satisfy
the compatibility conditions (2.2).

Then there exists a maximal time Tmax > 0 such that the Navier–Stokes–Fourier system (1.1)–
(1.6), with the boundary conditions (1.10), (1.11), and the initial conditions (1.12) admits a solu-
tion (%, ϑ,u) in [0, Tmax)× Ω unique in the class

%, ϑ ∈ C([0, T ];W 3,2(Ω)), u ∈ C([0, T ];W 3,2(Ω;R3)),

ϑ ∈ L2(0, T ;W 4,2(Ω)), u ∈ L2(0, T ;W 4,2(Ω;R3)) (2.4)

for any 0 < T < Tmax. The existence time Tmax is bounded below by a quantity c(D0) depending
solely on the norms of the data specified in (2.3). In particular,

lim
τ→Tmax−

‖(%, ϑ,u)(τ, ·)‖W 3,2(Ω;R5) =∞. (2.5)

2.2 Blow up criterion, conditional regularity

Our goal is to show the following result.

Theorem 2.2. (Blow up criterion) Under the hypotheses of Theorem 2.1, suppose that the
maximal existence time Tmax <∞ is finite.

Then
lim sup
τ→Tmax−

‖(%, ϑ,u)(τ, ·)‖L∞(Ω;R5) =∞. (2.6)

Theorem 2.2 is in the spirit of the blow up criteria for general parabolic systems – the solution
remains regular as long as it is bounded. Of course, our problem in question is of mixed hyperbolic–
parabolic type.

The proof of Theorem 2.2 follows from suitable a priori bounds applied on a compact time
interval.

Proposition 2.3. (Conditional regularity)
Under the hypotheses of Theorem 2.1, let (%, ϑ,u) be the strong solution of the Navier–Stokes–
Fourier system belonging to the class (2.4) and satisfying

sup
(τ,x)∈[0,T )×Ω

%(τ, x) ≤ %, sup
(τ,x)∈[0,T )×Ω

ϑ(τ, x) ≤ ϑ, sup
(τ,x)∈[0,T )×Ω

|u(τ, x)| ≤ u (2.7)
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for some T < Tmax.
Then there is a quantity c(T,D0, %, ϑ, u), bounded for bounded arguments, such that

sup
τ∈[0,T )

max

{
‖(%, ϑ,u)(τ, ·)‖W 3,2(Ω;R5); sup

x∈Ω

1

%(τ, x)
; sup
x∈Ω

1

ϑ(τ, x)

}
≤ c(T,D0, %, ϑ, u). (2.8)

In view of Theorem 2.1, the conclusion of Theorem 2.2 follows from Proposition 2.3. The rest
of the paper is therefore devoted to the proof of Proposition 2.3.

Remark 2.4. As observed in [8], the conditional regularity results established in Proposition 2.3
gives rise to stability with respect to the data. More specifically, the maximal existence time Tmax

is a lower semicontinuous function of the data with respect to the topologies in (2.1).

Remark 2.5. Conditional regularity results in combination with the weak–strong uniqueness
principle in the class of measure–valued solutions is an efficient tool for proving convergence of
numerical schemes, see [6, Chapter 11]. The concept of measure–valued solutions to the Navier–
Stokes–Fourier system with inhomogeneous Dirichlet boundary conditions has been introduced
recently by Chaudhuri [1].

3 Energy estimates

To begin, it is suitable to extend the boundary data into Ω. For definiteness, we consider the
(unique) solutions of the Dirichlet problem

∆xϑ̃ = 0 in Ω, ϑ̃|∂Ω = ϑB,

divxS(Dxũ) = 0 in Ω, ũ|∂Ω = uB.
(3.1)

By abuse of notation, we use the same symbol ϑB, uB for both the boundary values and their C1

extensions ϑ̃ = ϑ̃(x), ũ = ũ(x) inside Ω.
We start with the ballistic energy equality, see [2, Section 2.4],

d

dt

∫
Ω

(
1

2
%|u− uB|2 + %e− ϑB%s

)
dx+

∫
Ω

ϑB
ϑ

(
S(Dxu) : Dxu + κ

|∇xϑ|2

ϑ

)
dx

= −
∫

Ω

(
%u⊗ u + pI− S(Dxu)

)
: DxuB dx+

1

2

∫
Ω

%u · ∇x|uB|2 dx

+

∫
Ω

%(u− uB) · f dx−
∫

Ω

%su · ∇xϑB dx+ κ

∫
Ω

∇xϑ

ϑ
· ∇xϑB dx, (3.2)

where we have introduced the entropy

s = cv log(ϑ)− log(%).
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Thus the choice (3.1) yields the following bounds

sup
t∈[0,T )

∫
Ω

%| log(ϑ)|(t, ·) dx ≤ c(T,D0, %, ϑ, u), (3.3)∫ T

0

∫
Ω

|∇xu|2 dx dt ≤ C(%, ϑ, u; data) ⇒
∫ T

0

‖u‖2
W 1,2(Ω;R3) dt ≤ c(T,D0, %, ϑ, u), (3.4)∫ T

0

∫
Ω

(
|∇xϑ|2 + |∇x log(ϑ)|2

)
dx dt ≤ c(T,D0, %, ϑ, u),

⇒
∫ T

0

‖ϑ‖2
W 1,2(Ω) dt+

∫ T

0

‖ log(ϑ)‖2
W 1,2(Ω) dt ≤ c(T,D0, %, ϑ, u). (3.5)

4 Estimates of the velocity gradient

This section is the heart of the paper. In principle, we follow the arguments similar to Fang, Zi,
and Zhang [5, Section 3] but here adapted to the inhomogeneous boundary conditions.

4.1 Estimates of the velocity material derivative

Let us introduce the material derivative of a function g,

Dtg = ∂tg + u · ∇xg.

Accordingly, we may rewrite the momentum equation (1.2) as

%Dtu +∇xp = divxS + %f . (4.1)

Now, consider the scalar product of the momentum equation (4.1) with Dt(u− uB),

%|Dtu|2 +∇xp ·Dt(u− uB) = divxS(Dxu) ·Dt(u− uB) + %f ·Dt(u− uB) + %Dtu ·DtuB. (4.2)

The next step is integrating (4.2) over Ω. Here and hereafter we use the hypothesis uB ·n|∂Ω = 0
yielding

Dt(u− uB)|∂Ω = (∂tu− u · ∇x(u− uB)) |∂Ω = −uB · ∇x(u− uB)|∂Ω = 0. (4.3)

Writing

divxS(Dxu) = µ∆xu +
(
η +

µ

3

)
∇xdivxu,

and making use of (4.3) we obtain∫
Ω

divxS(Dxu) ·Dt(u− uB) dx

7



=−
∫

Ω

S(Dxu) : ∇x∂tu dx

− µ
∫

Ω

∇xu : ∇x

(
u · ∇x(u− uB)

)
dx−

(
η +

µ

3

)∫
Ω

divxu divx
(
u · ∇x(u− uB)

)
dx

=− 1

2

d

dt

∫
Ω

S(Dxu) : Dxu dx

− µ
∫

Ω

∇xu : ∇x

(
u · ∇x(u− uB)

)
dx−

(
η +

µ

3

)∫
Ω

divxu divx
(
u · ∇x(u− uB)

)
dx, (4.4)

where, furthermore,∫
Ω

∇xu : ∇x(u · ∇xu) dx =

∫
Ω

∇xu : (∇xu · ∇xu) dx+
1

2

∫
Ω

u · ∇x|∇xu|2 dx

=

∫
Ω

∇xu : (∇xu · ∇xu) dx− 1

2

∫
Ω

divxu|∇xu|2 dx (4.5)

Note carefully we have used u · n|∂Ω = 0 in the last integration. Similarly,∫
Ω

divxu divx(u · ∇xu) dx =

∫
Ω

divxu ∇xu : ∇t
xu dx− 1

2

∫
Ω

(divxu)3 dx. (4.6)

Thus summing up the previous observations, we get

1

2

d

dt

∫
Ω

S(Dxu) : Dxu dx+
1

2

∫
Ω

%|Dtu|2 dx+

∫
Ω

∇xp ·Dt(u− uB) dx

≤ c(T,D0, %, ϑ, u)

(
1 +

∫
Ω

|∇xu|3 dx

)
. (4.7)

Moreover,∫
Ω

∇xp ·Dt(u− uB) dx = −
∫

Ω

p divx(Dt(u− uB)) dx

= −
∫

Ω

p divxDtu dx+

∫
Ω

p divx(u · ∇xuB) dx, (4.8)

where

p divxDtu = ∂t(p divxu)−
(
∂tp+ divx(pu)

)
divxu + divx(pu)divxu + p divx(u · ∇xu)

= ∂t(p divxu)−
(
∂tp+ divx(pu)

)
divxu + p∇xu : ∇t

xu + divx
(
pu divxu

)
.

As u · n|∂Ω = 0, we have ∫
Ω

divx
(
pu divxu

)
dx = 0,
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and the above estimates together with (4.7) give rise to

1

2

d

dt

∫
Ω

S(Dxu) : Dxu dx− d

dt

∫
Ω

pdivxu dx+
1

2

∫
Ω

%|Dtu|2 dx

≤ c(T,D0, %, ϑ, u)

(
1 +

∫
Ω

|∇xu|3 dx

)
−
∫

Ω

(
∂tp+ divx(pu)

)
divxu dx.

Finally, we realize
∂tp+ divx(pu) = %Dtϑ

to conclude

1

2

d

dt

∫
Ω

S(Dxu) : Dxu dx− d

dt

∫
Ω

pdivxu dx+
1

2

∫
Ω

%|Dtu|2 dx

≤ c(T,D0, %, ϑ, u)

(
1 +

∫
Ω

%|Dtϑ||∇xu| dx+

∫
Ω

|∇xu|3 dx

)
. (4.9)

4.2 Higher order velocity material derivative estimates

Following [5, Section 3, Lemma 3.3], see also Hoff [12], we deduce

%D2
tu +∇x∂tp+ divx(∇xp⊗ u)

= µ
(

∆x∂tu + divx(∆xu⊗ u)
)

+
(
η +

µ

3

)(
∇xdivx∂tu + divx ((∇xdivxu)⊗ u)

)
+ %u · ∇xf .

(4.10)

Next, we compute

DtuB = u · ∇xuB, D2
tuB = ∂tu · ∇xuB + u · ∇x(u · ∇xuB)

= Dtu · ∇xuB − (u · ∇xu) · ∇xuB + u · ∇x(u · ∇xuB)

= Dtu · ∇xuB + (u⊗ u) : ∇2
xuB. (4.11)

Consequently, we may rewrite (4.10) in the form

%D2
t (u− uB) +∇x∂tp+ divx(∇xp⊗ u)

= µ
(

∆x∂tu + divx(∆xu⊗ u)
)

+
(
η +

µ

3

)(
∇xdivx∂tu + divx ((∇xdivxu)⊗ u)

)
+ %u · ∇xf

− %Dtu · ∇xuB − %(u⊗ u) : ∇2
xuB. (4.12)

The next step is considering the scalar product of (4.12) with Dt(u−uB) and integrating over
Ω. The resulting integrals can be handled as follows:

%D2
t (u− uB) ·Dt(u− uB) = %

1

2
Dt|Dt(u− uB)|2

9



=
1

2
%
(
∂t|Dt(u− uB)|2 + u · ∇x|Dt(u− uB)|2

)
=

1

2
∂t
(
%|Dt(u− uB)|2

)
+

1

2
divx

(
%u|Dt(u− uB)|2

)
,

where we have used the equation of continuity (1.1). Seeing that u · n|∂Ω = 0 we get∫
Ω

%D2
t (u− uB) ·Dt(u− uB) dx =

d

dt

1

2

∫
Ω

%|Dt(u− uB)|2 dx. (4.13)

Similarly, ∫
Ω

(
∇x∂tp+ divx(∇xp⊗ u)

)
·Dt(u− uB) dx

= −
∫

Ω

(
∂tp+ divx(pu)

)
divxDt(u− uB) dx

+

∫
Ω

(
divx(pu)divxDt(u− uB)−∇xp⊗ u : ∇xDt(u− uB)

)
dx, (4.14)

where ∫
Ω

∇xp⊗ u : ∇xDt(u− uB) dx

= −
∫

Ω

p∇xu : ∇xDt(u− uB) dx+

∫
Ω

∇x(pu) : ∇xDt(u− uB) dx.

In addition, as Dt(u−uB) vanishes on ∂Ω, we can perform by parts integration in the last integral
obtaining ∫

Ω

∇x(pu) : ∇xDt(u− uB) dx =

∫
Ω

divx(pu)divxDt(u− uB) dx.

Thus, similarly to the preceding section, we conclude∫
Ω

(
∇x∂tp+ divx(∇xp⊗ u)

)
·Dt(u− uB) dx

= −
∫

Ω

%DtϑdivxDt(u− uB) dx +

∫
Ω

p∇xu : ∇xDt(u− uB) dx. (4.15)

Analogously,∫
Ω

(
∆x∂tu + divx(∆xu⊗ u)

)
·Dt(u− uB) dx

= −
∫

Ω

∇x∂tu : ∇xDt(u− uB) dx−
∫

Ω

(∆xu⊗ u) : ∇xDt(u− uB) dx

= −
∫

Ω

∇xDtu : ∇xDt(u− uB) dx−
∫

Ω

(
∆xu⊗ u−∇x(u · ∇xu)

)
: ∇xDt(u− uB) dx, (4.16)
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where, using summation convention,∫
Ω

(
∆xu⊗ u

)
: ∇xDt(u− uB) dx

=

∫
Ω

∂xk

(
uj∂xkui

)
∂xjDt(u− uB)i dx−

∫
Ω

∂xkui∂xkuj∂xjDt(u− uB)i dx

=

∫
Ω

∂xj

(
uj∂xkui

)
∂xkDt(u− uB)i dx−

∫
Ω

∂xkui∂xkuj∂xjDt(u− uB)i dx

=

∫
Ω

divxu ∇xu : ∇xDt(u− uB) dx

+

∫
Ω

(
uj∂xk∂xjui

)
∂xkDt(u− uB)i dx−

∫
Ω

∂xkui∂xkuj∂xjDt(u− uB)i dx

=

∫
Ω

∇x(u · ∇xu) : ∇xDt(u− uB) dx+

∫
Ω

divxu ∇xu : ∇xDt(u− uB) dx

−
∫

Ω

∂xjui∂xkuj∂xkDt(u− uB)i dx−
∫

Ω

∂xkui∂xkuj∂xjDt(u− uB)i dx. (4.17)

Summing up (4.16), (4.17) we conclude∫
Ω

(
∆x∂tu + divx(∆xu⊗ u)

)
·Dt(u− uB) dx

= −
∫

Ω

∇xDtu : ∇xDt(u− uB) dx−
∫

Ω

divxu ∇xu : ∇xDt(u− uB) dx

+

∫
Ω

∂xjui∂xkuj∂xkDt(u− uB)i dx+

∫
Ω

∂xkui∂xkuj∂xjDt(u− uB)i dx. (4.18)

Estimating the remaining integrals in (4.12) in a similar manner we may infer

1

2

d

dt

∫
Ω

%|Dt(u− uB)|2 dx+ µ

∫
Ω

|∇xDt(u− uB)|2 dx+
(
η +

µ

3

)∫
Ω

|divxDt(u− uB)|2 dx

≤ c(T,D0, %, ϑ, u)

(
1 +

∫
Ω

%|Dtϑ|2 dx+

∫
Ω

|∇xu|4 dx+

∫
Ω

%|Dtu|2 dx

)
. (4.19)

cf. [5, Section 3, Lemma 3.3].

4.3 Velocity decomposition

Following the original idea of Sun, Wang, and Zhang [18], we decompose the velocity field in the
form:

u = v + w, (4.20)

divxS(Dxv) = ∇xp in (0, T )× Ω, v|∂Ω = 0, (4.21)
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divxS(Dxw) = %Dtu− %f in (0, T )× Ω, w|∂Ω = uB. (4.22)

Since
divxS(Dx∂tv) = ∇x∂tp in (0, T )× Ω, v|∂Ω = 0,

we get ∫
Ω

∂tp divxv dx = −
∫

Ω

∇x∂tp · v dx =
1

2

d

dt

∫
Ω

S(Dxv) : Dxv dx. (4.23)

Moreover, the standard elliptic estimates for the Lamé operator yield:

‖v‖W 1,q(Ω;R3) ≤ c(q, %, ϑ) for all 1 ≤ q <∞, (4.24)

‖v‖W 2,q(Ω;R3) ≤ c(q, %, ϑ)
(
‖∇x%‖Lq(Ω;R3) + ‖∇xϑ‖Lq(Ω;R3)

)
, 1 < q <∞. (4.25)

Similarly,

‖w‖W 2,2(Ω;R3) ≤ c(T,D0, %, ϑ, u)
(
1 + ‖√%∂tu‖L2(Ω;R3) + ‖∇xu‖L2(Ω;R3×3)

)
. (4.26)

The estimates (4.24)–(4.26) are uniform in the time interval [0, T ).

4.4 Temperature estimates

Similarly to Fang, Zi, Zhang [5, Section 3, Lemma 3.4] we multiply the internal energy equation
(1.3) on ∂tϑ and integrate over Ω obtaining

cv

∫
Ω

%|Dtϑ|2 dx+
κ

2

d

dt

∫
Ω

|∇xϑ|2 dx

= cv

∫
Ω

%Dtϑ u · ∇xϑ dx−
∫

Ω

%ϑ divxu Dtϑ dx+

∫
Ω

%ϑ divxu u · ∇xϑ dx

+
d

dt

∫
Ω

ϑ S(Dxu) : ∇xu dx

− µ
∫

Ω

ϑ

(
∇xu +∇t

xu−
2

3
divxuI

)
:

(
∇x∂tu +∇t

x∂tu−
2

3
divx∂tuI

)
dx

− 2η

∫
Ω

ϑ divxu divx∂tu dx. (4.27)

Indeed the term involving the boundary integral is handled as

−κ
∫

Ω

∆xϑ ∂tϑ dx = −κ
∫
∂Ω

∂tϑB∇xϑ · n dSx +
κ

2

d

dt

∫
Ω

|∇xϑ|2 dx,

where ∫
∂Ω

∂tϑB∇xϑ · n dSx = 0

12



as the boundary temperature is independent of t.
Similarly to Fang, Zi, Zhang [5, Section 3, Lemma 3.4], we have to show that the intergrals∫

Ω

ϑ ∇xu : ∇x∂tu dx,

∫
Ω

ϑ ∇xu : ∇t
x∂tu dx, and

∫
Ω

ϑ divxu divx∂tu dx

can be rewritten in the form compatible with (4.19), meaning with the time derivatives replaced
by material derivatives. Fortunately, this step can be carried out in the present setting using only
the boundary condition u · n|∂Ω = 0. Indeed we get∫

Ω

ϑ ∇xu : ∇x∂tu dx =

∫
Ω

ϑ ∇xu : ∇x(Dtu) dx−
∫

Ω

ϑ ∇xu : ∇x(u · ∇xu) dx,

where ∫
Ω

ϑ ∇xu : ∇x(u · ∇xu) dx

=

∫
Ω

ϑ ∇xu : (∇xu · ∇xu) dx+
1

2

∫
Ω

ϑ u · ∇x|∇xu|2 dx

=

∫
Ω

ϑ ∇xu : (∇xu · ∇xu) dx− 1

2

∫
Ω

|∇xu|2 ∇xϑ · u dx− 1

2

∫
Ω

|∇xu|2 ϑdivxu dx.

Similarly,∫
Ω

ϑ ∇xu : ∇t
x∂tu dx =

∫
Ω

ϑ ∇xu : ∇t
x(Dtu) dx−

∫
Ω

ϑ ∇xu : ∇t
x(u · ∇xu) dx,

where∫
Ω

ϑ ∇xu : ∇t
x(u · ∇xu) dx

=

∫
Ω

ϑ ∇xu : (∇t
xu · ∇t

xu) dx+
1

2

∫
Ω

ϑ u · ∇x(∇xu : ∇t
xu) dx

=

∫
Ω

ϑ ∇xu : (∇t
xu · ∇t

xu) dx− 1

2

∫
Ω

(∇xu : ∇t
xu) ∇xϑ · u dx− 1

2

∫
Ω

(∇xu : ∇t
xu) ϑdivxu dx.

Finally, ∫
Ω

ϑ divxu divx∂tu dx =

∫
Ω

ϑ divxu divxDtu dx−
∫

Ω

ϑ divxu divx(u · ∇xu) dx,

where∫
Ω

ϑ divxu divx(u · ∇xu) dx
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=

∫
Ω

ϑ divxu (∇xu : ∇t
xu) dx+

1

2

∫
Ω

ϑu · ∇x|divxu|2 dx

=

∫
Ω

ϑ divxu (∇xu : ∇t
xu) dx− 1

2

∫
Ω

|divxu|2 ∇xϑ · u dx− 1

2

∫
Ω

|divxu|2 ϑdivxu dx.

We conclude, using (4.7), (4.19), and (4.27),∫
Ω

|∇xϑ|2(τ, ·) dx+

∫ τ

0

∫
Ω

%|Dtϑ|2 dx dt

≤ c(T,D0, %, ϑ, u)

(
1 +

∫ τ

0

∫
Ω

|∇xu|4 dx dt

)
. (4.28)

Next, by virtue of the decomposition u = v + w and the bound (4.24),∫
Ω

|∇xu|4 dx
<∼
∫

Ω

|∇xv|4 dx+

∫
Ω

|∇xw|4 dx ≤ c(T,D0, %, ϑ, u)

(
1 +

∫
Ω

|∇xw|4 dx

)
, (4.29)

and, similarly,
‖w‖L∞(Ω;R3) ≤ ‖u‖L∞(Ω;R3) + ‖v‖L∞(Ω;R3) ≤ c(T,D0, %, ϑ, u). (4.30)

Recalling the Gagliardo–Nirenberg interpolation inequality in the form

‖∇xU‖2
L4(Ω;R3) ≤ ‖U‖L∞(Ω)‖∆xU‖L2(Ω) whenever U |∂Ω = 0, (4.31)

we may use (4.29), (4.30) to rewrite (4.28) in the form∫
Ω

|∇xϑ|2(τ, ·) dx+

∫ τ

0

∫
Ω

%|Dtϑ|2 dx dt

≤ c(T,D0, %, ϑ, u)

(
1 +

∫ τ

0

∫
Ω

|∇xϑ|2 dx dt+

∫ τ

0

‖w‖2
W 2,2(Ω;R3) dt

)
. (4.32)

Finally, we use the elliptic estimates (4.26) to conclude∫
Ω

|∇xϑ|2(τ, ·) dx+

∫ τ

0

∫
Ω

%|Dtϑ|2 dx dt

≤ c(T,D0, %, ϑ, u)

(
1 +

∫ τ

0

∫
Ω

(
|∇xϑ|2 + |∇xu|2

)
dx dt+

∫ τ

0

‖√%∂tu‖2
L2(Ω;R3) dt

)
. (4.33)

Summing up (4.7), (4.19), and (4.33) we may apply Gronwall’s lemma to obtain the following
bounds:

sup
t∈[0,T )

‖u(t, ·)‖W 1,2(Ω;R3) ≤ c(T,D0, %, ϑ, u), (4.34)

sup
t∈[0,T )

‖√%Dtu(t, ·)‖L2(Ω;R3) ≤ c(T,D0, %, ϑ, u), (4.35)
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sup
t∈[0,T )

‖ϑ(t, ·)‖W 1,2(Ω) ≤ c(T,D0, %, ϑ, u), (4.36)∫ T

0

∫
Ω

|∇xDtu|2 dx dt ≤ c(T,D0, %, ϑ, u), (4.37)∫ T

0

∫
Ω

%|Dtϑ|2 dx dt ≤ c(T,D0, %, ϑ, u). (4.38)

Moreover, it follows from (4.24), (4.31), (4.35)

sup
t∈[0,T )

‖∇xu(t, ·)‖L4(Ω;R3×3) ≤ c(T,D0, %, ϑ, u). (4.39)

In addition, (4.38), (4.39) and the standard parabolic estimates applied to the internal energy
balance (1.3) yield ∫ T

0

‖ϑ‖2
W 2,2(Ω) dt ≤ c(T,D0, %, ϑ, u). (4.40)

5 Second energy bound

It follows from (4.26), (4.35) that

sup
t∈[0,T )

‖w(t, ·)‖W 2,2(Ω;R3) ≤ c(T,D0, %, ϑ, u); (5.1)

whence, by virtue of (4.24) and Sobolev embedding W 1,2(Ω) ↪→ L6(Ω),

sup
t∈[0,T )

‖∇xu(t, ·)‖2
L6(Ω;R3×3) ≤ c(T,D0, %, ϑ, u). (5.2)

Moreover, as a consequence of (4.37), Dtu is bounded in L2(L6), which, combined with (5.2), gives
rise to ∫ T

0

‖∂tu‖2
L6(Ω;R3) dt ≤ c(T,D0, %, ϑ, u). (5.3)

Finally, going back to (4.22) we conclude∫ T

0

‖w‖2
W 2,6(Ω;R3) dt ≤ c(T,D0, %, ϑ, u), (5.4)

and ∫ T

0

‖u‖2
W 1,q(Ω;R3) dt ≤ c(T,D0, %, ϑ, u, q) for any 1 ≤ q <∞. (5.5)
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6 Estimates of the derivatives of the density

Using (5.4), (5.5), we may proceed as in [19, Section 5] to deduce the bounds

supt∈[0,T )

(
‖∂t%(t, ·)‖L6(Ω) + ‖%(t, ·)‖W 1,6(Ω)

)
≤ c(T,D0, %, ϑ, u). (6.1)

Revisiting the momentum equation (1.2) we use (6.1) together with the other bounds established
above to obtain ∫ T

0

‖u‖2
W 2,6(Ω;R3) dt ≤ c(T,D0, %, ϑ, u). (6.2)

6.1 Positivity of the density and temperature

It follows from (6.2) that divxu is bounded in L1(0, T ;L∞(Ω)). Thus the equation of continuity
(1.1) yields a positive lower bound on the density

inf
(t,x)∈[0,T )×Ω

%(t, x) ≥ % > 0, (6.3)

where the lower bound depends on the data as well as on the length T of the time interval.
Similarly, rewriting the internal energy balance equation (1.3) in the form

cv (∂tϑ+ u · ∇xϑ)− κ

%
∆xϑ =

1

%
S : Dxu− ϑdivxu (6.4)

we may apply the standard parabolic maximum/minimum principle to deduce

inf
(t,x)∈[0,T )×Ω

ϑ(t, x) ≥ ϑ > 0. (6.5)

7 Parabolic regularity for the heat equation

We rewrite the parabolic equation (6.4) in terms of Θ = ϑ− ϑB. Recalling ∆xϑB = 0 we get

cv (∂tΘ + u · ∇xϑ)− κ

%
∆xΘ =

1

%
S : Dxu− ϑdivxu (7.1)

with the homogeneous Dirichlet boundary conditions

Θ|∂Ω = 0. (7.2)

Now, we can apply all arguments of [10, Sections 4.6, 4.7] to Θ obtaining the bounds

‖ϑ‖Cα([0,T ]×Ω) ≤ c(T,D0, %, ϑ, u) for some α > 0, (7.3)

‖ϑ‖Lp(0,T ;W 2,3(Ω)) + ‖∂tϑ‖Lp(0,T ;L3(Ω)) ≤ c(T,D0, %, ϑ, u) for all 1 ≤ p <∞, (7.4)

together with

‖u‖Lp(0,T ;W 2,6(Ω;R3)) + ‖∂tu‖Lp(0,T ;L6(Ω;R3)) ≤ c(T,D0, %, ϑ, u) for any 1 ≤ p <∞. (7.5)
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8 Final estimates

The bounds (7.5) imply, in particular,

sup
(t,x)∈[0,T )×Ω

|∇xu(t, x)| ≤ c(T,D0, %, ϑ, u). (8.1)

Thus the desired higher order estimates can be obtained exactly as in [9, Section 4.6]. Indeed
the arguments of [9, Section 4.6] are based on differentiating the equation (7.1) with respect to
time which gives rise to a parabolic problem for ∂tϑ with the homogeneous Dirichlet boundary
conditions ∂tϑ|∂Ω = 0. Indeed we get

cv∂
2
ttϑ+ cvu · ∇x∂tϑ−

κ

%
∆x∂tϑ =−cv∂tu · ∇xϑ−

1

%2
∂t% (κ∆xϑ+ S(Dxu) : Dxu)

+
2

%
S(Dxu) : Dx∂tu− ∂tϑ divxu− ϑ divx∂tu.

The estimates obtained in the previous sections imply that the right–hand side of the above
equation is bounded in L2(0, T ;L2(Ω)). Thus multiplying the equation on ∆x∂tϑ and performing
the standard by parts integration, we get the desired estimates as in [9, Section 4.6].

The remaining estimates are obtained exactly as in [9, Section 4.6] :

sup
t∈[0,T )

‖ϑ(t, ·)‖W 3,2(Ω) + sup
t∈[0,T )

‖∂tϑ(t, ·)‖W 1,2(Ω) ≤ c(T,D0, %, ϑ, u), (8.2)∫ T

0

(
‖∂tϑ‖2

W 2,2(Ω) + ‖ϑ‖2
W 4,2(Ω)

)
dt ≤ c(T,D0, %, ϑ, u), (8.3)

sup
t∈[0,T )

‖u(t, ·)‖W 3,2(Ω;R3) + sup
t∈[0,T )

‖∂tu(t, ·)‖W 1,2(Ω;R3) ≤ c(T,D0, %, ϑ, u), (8.4)∫ T

0

(
‖∂tu‖2

W 2,2(Ω;R3) + ‖u‖2
W 4,2(Ω;R3)

)
dt ≤ c(T,D0, %, ϑ, u), (8.5)

and
sup
t∈[0,T )

‖%(t, ·)‖W 3,2(Ω) ≤ c(T,D0, %, ϑ, u). (8.6)

We have completed the proof of Proposition 2.3.
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