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ABSTRACT

1. Cometary outbursts and the origin of meteor streams

Cometary outburts, pointed out by Richter [12], are studied on the basis
of recent investigations by Whitney [13]. Unlike Whitney’s assumption of
a uniformity of dimensions, a wide range of radii is supposed for the ejected
particles. Assuming the distribution law N(s) ds ~ 8% ds to be valid over the
range from 10-5 cm to 1 em, we obtain 7 . 1011 g for the entire mass of particles
ejected at an outburst. The dynamical effect of such an outburst upon the comet’s
motion is negligible. The ejected particles can produce a remarkable metedric
shower as long as they occupy a space of the same order of dimensions as do
the Draconids. A permanent stream cannot be generated by a single outburst.

In order to explain the existence of the Draconids, it is probably necessary
to postulate an ejection of 10' g of meteors per revolution of the parental
comet. This hypothesis seems to be plausible. Internal forces far fainter than
those operating at the outburst would suffice to account for such a process.
Slow ejections supposed here cannot manifest itselves in the mntion of the comet,
but they may be detected photometrically and spectroscopically.

2. Ejection theory of the fohnatz’on of the meteor streams

An analysis of the Draconids and Leonids shows that the ejection velocities
are probably very low. In this case, simple formulae derived in 2.2 can be applied
to in computing the orbits of the ejected meteors. The newly formed swarm
is very thin, but the meteors become rapidly dispersed along the orbit of the
comet. Four simple models of meteor swarms after ejection are considered and
the distribution of meteors along the orbit investigated.

3. Local perturbations of meteor streams

An approximate analytical method is derived to account for local perturba-
tions of meteor streams due to a close approach of a major planet. The cases
of the Lyrids and Draconids are investigated. The great importance of planetary
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perturbations is shown numerically. It is concluded that the Draconids observed
in 1933 and 1948 could hardly have originated before the close approach of the
parental comet to Jupiter in 1898.

4. Mass and density of meteor sireams

A method of caleulating the total mass and density of meteor stregms is
developed and applied to the Draconids of 1933. From the visual and telescopio
observations it is found that the probable mass of this swarm is of the order

« of 1012 g. Although the spatial density inside the concentrated cloud is consider-
able, the total mass is far lower than that of the Geminids or Perseids. This,
again, may be due to the fact that the stream is still being formed.
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INTRODUCTION

Meteor streams are very particular and interesting systems of particles.
As was proved by the author in 1950, (1), mutual gravitational attraction
between the particles is compensated by the radiation pressure, so that there
probably exists no force holding the particles together. Thus the meteors
form an organized system simply because the dispersive forces are rather
weak to scatter them rapidly enough. Naturally, over periods of thousands
of years, the evolution of the streams becomes perceptible so that it can be
traced more easily than the evolution of other celestial bodies.

On the other hand, it is evident that the age of the observed swarms must
be far lower than that of the planets. Although the processes of the formation
of the meteor swarms may proceed before our eyes, they are still rather
obscure to us. Most of the meteor research workers agree that the streams
(or at least many of them) have their origin in the disintegration of the
comels; yet there is much controversy as to the process of formation.

The views maintained by various authors at the present time may be
perhaps summed wp into the following four hypotheses:

(1) Collision hypothesis. — It was concluded by WHIPPLE and HAMID
(2) that the Taurids originated in collisions of the parental comet Encke
with asteroidal bodies. They considered this process to be rather ex-
ceptional. A few years earlier GUIGAY (3) attempted to explain the features
of the Perseid stream in terms of a collision, but his conclusions seem to
have been disproved by AHNERT-ROHLFS (4). However, ORLOV (5)
believes that, in general, the meteor streams and even the comets originate
n collisions of large parental comets with minor interplanetary bodies —
asteroids and meteorites. His hypothesis is strongly supported by a recent
paper of BABADJIAN (6) on the Perseids.

" (2) Disintegration of the comets by tidal actions by the Sun and pla-
nets. — This is the idea expressed already by SCHIAPARELLI (7) and still
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considered as a possible explanation, although little has been done in this
respect in recent years.

(3) Continuous escape of the meteors from the nucleus. — If the
nucleus is considered as a huge cluster of solid bodies of various sizes, we :
must admit internal motions of the kind found in the globular clusters. The .
velocity of some particles may exceed the velocity of escape and they leave |
the nucleus. The dispersion of small particles may be supported by frequent
collisions within the nucleus. This is the idea expressed recently by
DusJsaco (8). 4

(4) Ejection hypothesis. — The idea that the meteors are emitted from
the nucleus by internal forces in the comet was formulated by BREDICHIN
(9) who considered the anomalous tails of the comets as strong streams of
heavy particles expelled by internal forces. A modern form of the ejection
theory ts due to WarppLE (10), who, on the basis of his icy-conglomerate
comet model, assumes that the meteors are expelled together with gas clouds
+ set free by a mighty evaporation of the nuclear ices. The ejection theory is
supported by the investigations of DuBjaco (11) and WHIPPLE (10)
on the anomalous motions of periodic comets. Another support may be
seen in the papers by RICHTER (12) on cometary outbursts if WHITNEY’ s
interpretation (13) is correct.

As the comets are very unstable bodies and the meteor streams are simply
products of disintegration, several processes of their formation are possible;
yet one of them must be the prevailing one. Without attempting to go into
these involved problems, the author would like to explain briefly why he is
tnclined to prefer the ejection hypothesis. The compact clouds of the Dra-
conids and Leonids may be looked wpon as typical meteor swarms at an
early stage of evolution.The formation of the clouds can hardly be explain-
ed in terms of a collision because a collision involves a much more pro-
nounced dispersion of the swarm. The large dispersion of the Perseids,
Orionids etc. may well be explained in terms of planetary perturbations ¥
of an originally thin stream as shown by AENERT (4) and Hamip (14).
Moreover, it is doubtful whether the spatial density of larger interplanetary
bodies 18 sufficient to account for the great number of meteor streams.

A continuous escape of meteors from the nucleus as described in (8)
18 always to be expected but it cannot probably generate more than a thin
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ring of very scattered meteors along the orbit. Concentrated clouds of me-
teors cannot be explained in this way.

It is difficult to decide between the ejections and the tidal disintegration.
Both effects may be operating in many comets. The outbursts pointed out
by RicHTER (12) and the natural explanation of the anomalies of motion
(10, 11) seem to favour the former hypothesis. No doubt it depends very
much on the structure of the cometary nuclet of which we know very little.
If the nucleus were a cluster of bodies, it would be particularly liable to
tidal forces; if the nucleus were monolithic, it would be fairly stable.

These problems, no doubt, require more observational facts and deeper
theoretical discussions. The present paper is a contribution to the discusston.

Some considerations about the origin of the meteor streams are presen-
ted in the two first chapters. They were stimulated mainly by the recent
work of RICHTER (12) and WHITNEY (13) on cometary outbursts. The se-
cond chapter contains theoretical investigations on the form of the meteor
swarms, based on the ejection hypothesis of their formation.

The last two chapters constitute, as a matter of fact, two individual
papers. They were included mainly because they are referred to in the dis-
cussion of the origin of the streams. But the main aim of the third chapter
18 to show that the structure of the swarms may be strongly affected by the
“perturbations due to large planets — it seems to be the first quantitative
treatment of this problem. Finally, the method of computing the total mass
and spatial density of the swarms and its application to the Draconids may
be of some interest.

It should be remarked that the present considerations — just like other
recent papers — are based on classical OPIK’s and WaTsoN’s values for
the masses of the meteors. If the dimensions were as large and the densities
as low as indicated recently by WHIPPLE (15) and JaccHIA (16), some
of the conclusions should be revised.




COMETARY OUTBURSTS AND THE ORIGIN
OF METEOR STREAMS

1.1 Cometary outbursts

Recently, attention has been called to cometary phenomena which
may be considered as a direct evidence of an ejection of matter from
cometary nuclei. _

It was RIGHTER [12] who showed that occasionally violent outbursts
are observed in comets. The phenomenon appears to have always the
same course of events. Inside a diffuse coma, a strong stellar nucleus is
formed within a few hours. The brightness of the comet increases ra-
pidly, sometimes by as much as 8™. The nucleus expands into a plane-
tary disc; the proceeding expansion makes it then hazy and more
diffuse so that eventually the comet returns to its previous appearance
and brightness. The spectrum of the expanding nucleus is entirely con-
tinuous so that the increase in brightness is evidently due to solid part-
icles reflecting the sunlight. It can be hardly doubted that vast amounts
of solid particles are ejected during such an outburst.

WaITNEY [13] concluded that the outbursts can be explained in
terms of WHIPPLE’S icy-conglomerate comet nucleus. He supposes that
the expanding halo consists essentially of meteoritic dust particles,
the total mass being of the order of 102 g. The observed expansion
velocities range, according to Richter, between 40 m/sec and 7 km/sec,
the average velocity being of the order of 10* m/sec. Then the kinetic
energy of the halo comes out to be of the order of 102 ergs. Whitney
shows that if the nuclear albedo of the comet Schwassmann-Wach-
mann dropped suddenly by a factor of 2, the nucleus would, within
several hours, absorb energy enough to eject a halo. Thus a rapid
evaporation of frozen gas which, mixed with meteoric material,
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forms the nucleus according to Whipple, could probably fully account
for the outburst phenomena.

These considerations seem to favour the hypothesis that meteor
streams are formed by cometary ejections. There arises a question
whether the observed outbursts might be considered as a kind of
a process of formation of the meteor swarms.

Whitney assumed all the ejected particles to be of the same radius
and discussed three models with particles with radii of 10-3, 10-* and
10-5 cm respectively. These dust particles are much smaller than
observable meteors. The assumption of the uniform dimensions can,
however, hardly be accepted. More probably, larger particles, too, are
ejected simultaneously with dust. Let us suppose that a similar
distribution law is valid for the ejections at the observed outbursts as
for meteor streams. The distribution of meteors in a stream like the
Draconids (sect. 4-2) roughly satisfies the law

- Z(m) = Z(0) . 10%4m (1-1)

where all meteors in the interval of magnitude from m —0-5 to m 4+ 0-5
are counted as of the magnitude m. Using Watson’s relation between
mass and magnitude and supposing the density of a meteoric body to be
1, we have the following functional dependence of the number of
meteors with radii s between s and s + ds on the radius:

N(s)ds = N(1)s—*ds ,

where N (1) corresponds to the semidiameter of 1 cm. This is the distri-
bution law we shall suppose to be valid also for the halo particles.

I shall suppose that the ejected cloud of particles contains particles
of radii between s = 10-°* cm and s = 1 ¢cm. In agreement with Whit-
ney, the lower limit is estimated from the fact that the observed halos
were not definitely coloured, so that presence of a large amount
of particles with dimensions of the same order as the wavelength
of the incident light is improbable. The upper limit was put to 1cm
because larger meteors are very rare in meteor streams and because it
cannot be expected that large particles could be shot out of the
cometary nuclei with a sufficient velocity.

12
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The total mass of the halo is given by the integral

M, =1(£{M(1)83N,(1)8‘4 ds (1-2)

= M(1)N(1) In 10
= 48-4N(l) .

The value of N(1) follows from the considerations about the brightness
of the halo. Denote by my the total stellar magnitude of the halo, by
m(1) the apparent magnitude of a particle of 1 cm radius at the same
distance. Then, because the intensity of reflected light varies as s2,
we have

J
mg = m(l) — 25 1ogT1i’) (1-3)
1
=m(l) — 2-5log [N(1)s2ds.
10-¢
Integrating, we have
log N(1) = 0-4[m(l) —mgz] — 5 . (1-4)

Table I contains data of four well-observed outbursts, according
to Richter. Here,r and 4 are the distances of the comet from the Sun
and from the Earth respectively and « is the phase-angle of the comet-
ary nucleus. Supposing, in accord with Wihtney, the albedo of the
particles to be that of Ceres, and the phase-angle dependence of its

TaBLE I

Data on cometary outbursts

comet i outburst r A 11
1899 Swift .....ooovveinn.n.... 1899 VI. 4. 1-29 | 0-58 | “52°
1892 III Holmes .......... PR 18931. 16. 2:67 | 240 | 22
18841 Pons — Brooks. .......... . 1883 IX. 23. 2:20 | 216 | 30
18841 Pons— Brooks............ 18841, 1. 087 | 0:64 | 80
1925’11 Schwassmann-Wachmann . . 1933 1. 20. 73 |63 0
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Tasre IT

Photometric data on the outbursts

comet outburst | m(1) | my |mmpayx| Am | mg |m(l)-mg
Swift ..o 1899 42-3 6-4 44 2 4-6 37.7
Holmes .........vu... 1893 46-2 | 12 75 | 45 7-5 38-7
Pons-Brooks, ......... 1883 459 | 13 8 5 8 379
Pons-Brooks.......... 1884 42-4 8:2 6-9 1-3 7-3 35-1
Schw.-Wach. ......... 1933 495 | 17 125 45 12-5 37-0

brightness as derived for the Moon by RussgLL [17], we can derive the
apparent brightness of a particle of 1 em semidiameter. The results
are summarized in Table IT in the column headed m(1). The brightness
of the halo my can be computed from the observed increase in bright-
ness Am and from the observed maximum brightness m,,,  or original -
brightness of the comet m,, respectively.

It may be observed that, except for the last but one fainter outburst,
the value of m(1l) — my is about the same in all cases. Let us accept
its mean value to be 38. Then from (1-4) we obtain

N(1) =15.109 .
Inserting this into (1-2), the total mass of the halo comes out to be
My=17.1020g .
It is to be noted, however, that the law
N(s) ~ st

has been found, in sect. 4-2, to be valid form < 9ors = 2-5 102 cm
only. There are no proofs of its validity beyond this limit and, as a
matter of fact, it appears more probable that the increase in the number
of meteors with decreasing diameter becomes much slower for fainter
meteors.
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Let us therefore consider another distribution, defined by the law

N(s)ds ~s*dsforl > s> 10-2cm,
N(s) ds = const. ds for 10-2 > s > 105 cm.
Then we have
10-*

My = [ NQO-)M(1)*ds + [ N(1)M(1)s— ds (1-5)
10~ 10— ~
= 21N(1) ,

where now N(1) is defined by the equation

log [} N(1)s—2ds + Alfo-l‘vao—z)sz ds] = 0-4[m(1) — my]  (1-6)
10-* 10-*

or
log N(1) = 0-4[m(1) — mp] — 212 .

Thus we obtain N(1) = 103
and M, =2.104g .

No doubt this value is too large, being within 109, of the total mass
of a smaller comet. Thus the former assumption appears to be more
probable. If our fundamental concept of the nature of the cometary
outbursts is correct, it must be probably supposed that large amounts
of very small particles are present in the ejected halo but are rapidly
dispersed afterwards so that they are less abundant in the observed
meteor streams. A force acting in this way is known — it is the dynamic-
al effect of solar radiation (Poynting-Robertson effect). This effect,
however, acts rather slowly and an additional force may be postulated.

Returning to the former hypothesis about the distribution law, we
see that the total mass of an average halo comes out to be about 1012 g,
Assuming an average ejection velocity of 0-3 km/sec, which appears to
be quite reasonable, the total energy involved is found to be of the
order of 10% ergs. These values agree fully with Whitney’s results,
although the present assumptions are more general.
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1.2 Dynamical effect of the ejection on comet’s motion

The law of the conservation of momentum requires a drag acting
upon the nucleus during the ejection, directed oppositely to the
direction of ejection. The change in the semimajor axis a or in the
period T' is most easily detectable and will be investigated here.

The ordinary equations of celestial mechanics give for the variation
of a: .

da = 2if/2—_[e [Rsinwdt + [8(1 4 e cos w) dt]
p .
or,for T, ) ’
ar 3 T . o
_IT=§7;.V—a_5[efRsmwdt—l—fS(1+ecosw)dt]. 1-7)

The orbital elements are represented by the usual symbols; w is the
true anomaly. The components of the disturbing function are: R, the
component along the radius vector and 8, the tangential component.
The orthogonal component W does not enter the equation for a.
The integration extends over the time interval during which the ejec-
tions take place. :

" In the case of the cometary outbursts considered here, the duration
8t of the explosion was very short so that w may certainly be taken
constant. Thus we have ~

dr _ 3T
T
It remains to determine R 5t and S 3. Denote by M, the total mass
of the comet. Then is it clearly

M oR 8t == - Q R
) 'MO-S St == - QS )
where Q, and Qg are the components of the total momentum of the
ejected particles relatively to the nucleus, or

QG+ Qi +Qy =My,
¢ being the ejection velocity.

[um%ﬁ&+$§m. (1-8)
0

(1-9)
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In order to determine the values of the components of @, denote by ¢
the angle of the ejection velocity vector ¢ of a particle with the direction
of § and by y the corresponding angle with R. Then it is obviously

T
Qn = [M(y) ¢ cos y dy
0
ﬂ (1-10)
Qs = [M(g)ccos g dg .
0
The distribution functions M(y) and M(p) depend upon the assumed
form of the ejection. The matter becomes particularly simple if all the
particles are ejected into a small space angle. In the case of such an
ejection towards the Sun, @, = M ¢, while Q¢ = 0; the values are

interchanged if all particles were ejected forwards along the tangent
to the orbit.

But the obgerved halos appear to be ejections into a wide space
angle. Suppose that the particles are ejected with equal density into
a space angle ®. Then the mass ejected into a unit space angle is

—_Z. The particles having an ejection velocity component ¢ cos ¢ are

contained within a narrow strip corresponding to an element of the
space angle d® which is equal to

d® = K(p)singpdyp ,

and similarly for the other component. Thus it is

Qr = —25 fK(w) sin 2y dy
and (1-11)
Qs = %—ch(qﬂsinQ(pd(p.
- If the particles are emittéc;) isotropically into all directions, then in
both integrals K = 2= and it follows immediately Q, = @4 = 0.

An isotropic ejection does not influence the motion of the comet,
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however great quantity of matter is ejected. The only influence is that,
in the relation between a and T, '
2 le + o

T = a'ls ’
where 1, is the mass of the comet expressed in the units of the Sun’s
mass, y, is diminished by the ejection. However, u, itself is so small,
that its change by the outburst cannot cause an observable effect in the
period of the comet.

Now let us suppose that the particles are ejected into the hemisphere

0<¢»<-%.Then D =2x; Kp) = 2rn for 0 <o < 12:"

and again K(¢) = 0 for ——;— < ¢ < n. Then we have

AT
Q,g: M2Hcf8in2¢dtp=—;—MHG, (1-12)

0

while K(y) = = for 0 < w < 7 so that evidently @, = 0.

Quite similarly, if the particles are ejected into the hemisphere facing
the Sun, it is

1

QR=——2—M110 , @s=0.
Thus, in the former case, we have

= e o s 1 Mg

R¥d@=0 |, SSt__TMoc
and in the latter case,

— 1 Mg _

.R3t—+—2--ﬂ:c , Sd=0.

Because the total mass of a comet may be put to about 5. 10" g,
it may be roughly taken M;/M, = 10-%. Again, suppose ¢ = 0-3
km/sec = 2 . 10~* astro. units of velocity. Thus we obtain the follow-
ing formulae:
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"Ejection into the hemisphere forwards or backwards:

AT _F8. 1P you, (1-14)

" Te
- = — . g§i 8
T o V@ sin w, . 10~ (1-13)

The change in the periods of revolution (in days) for 3 observed out-
bursts is given in Table III.

TasLE III
Change in the period due to the outbursts
ejection towards the Sunjejection backwards
comet outburst

’ daTjT ATqays | AT/T  |dTgays

Holmes ............... 1893 | --1:4.107% |4 0-004 | 4-1.107% | 0-01

Pons-Brooks........... 1883 | —2-2.107% | — 0-58 1-7.1078 | 0-44

Schw.-Wach. .......... 1933 | < 6:0.1078 | << 4:1074| 3-8.107% | 0-02

1.3 Comparison with meteor streams

It has been found that, assuming the same distribution law as for
the Draconids, an average outburst results into an ejection of about
7.10" g of meteor mass. Direct comparison of this value with the
meteor streams is hardly possible, for it includes a large amount of
meteor dust. Let us therefore first calculate the total mass of ejected
particles of the size of observable meteors. Taking 9™ or 10™ as the
limit for good observation of meteors, including telescopic observations,
we can, using WATSON’s values, express the total mass of observable
meteors by the integral

1
M, = f M(1)N(1)s-1 ds (1-15)
10-*
= — 6-:3.10YIn 102
=29.100g .,
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If such a mass were dispersed into the volume occupied by the Draconid
swarm (sect. 4-2), i. e. 66 . 1033 cm3, the density would be 4-4.10°%
g.cm™3,

This is probably about ten times smaller density than that
of the visible Draconid meteors. Remembering the great displays of
that stream, we see that a single cometary outburst would secure a fine
meteor shower so long as the ejected meteors are close together. The
velocity of ejection, however, appears to be at least ten times the
ejection velocity of the Draconids [18] so that the dispersion of such
a swarm would proceed very rapidly.

If the swarm occupied a volume like the Perseids (2-4 . 1038 cm?),
the density would become as low as 10~ g . cm~® which is about 10
the density of the Perseids. In such a case the swarm ejected at a single
outburst “'would be unobservable.

Let us now take an actual swarm, e. g. the Draconids. The total mass
of meteors brighter than 9™ can be estimated at 10'2 g (sect. 4-2). It
was found that the age of the swarm is very low and that the shower has
formed probably during the 20th century [18]. Another support to this
conclusion was brought about by JEVDOVKIMOV [27], who pointed out
that the present swarm must have formed after 1899, because in
1897 —1899 the parental comet passed close (0-2 a. u.) to Jupiter and
the swarm would have been dispersed. .

This conclusion appears to be confirmed by a rough quantita-
tive discussion of the perturbations in sect. 3-4 and will probably be
more safely proved by a more detailed treatment which is just being
worked at.

Assuming that the Draconid stream has formed since 1900 we
conclude that 102 g of meteors had to be ejected during about 8 periods
of the comet. Thus about 10 g of meteors are required to be ejected
per revolution. Again, the ejection velocity can be hardly expected
to be greater than 30 m/sec (sect. 2-2). Thus the total kinetic energy
of the meteors emitted during one period of revolution comes out to
some 5-1017 ergs, while the outbursts considered above require about
10® times more energy. Moreover, all the energy involved in the out-
burst is dissipated within a time of the order of a day, while in the
case of the meteor swarms.it may be supposed that the meteors are
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ejected continually during many weeks. Thus, for example, the comet
Giacobini-Zinner is for more than 200days nearer the Sun than 2 astro-
nomical units, which distance may be considered as a limit within
which the slow ejections may be considerable. Thus the ejection of the
Draconids requires an amount of about 2 . 1015 ergs per day, which is
less than 10-5 the power required to explain the cometary outbursts.
The persistent streams, e. g. the Perseids, contain about 102 to 103
times more meteoric material the Draconids. But here it may be assum-
ed that the swarm was being formed in the course of a longer time than
the Draconids. Yet even if we had to assume that the rate of dissipation
of energy per revolution was greater than in the case of the Draconids,
the forces involved would still be far smaller than those operating
in the outbursts.

Thus it may be concluded: The formation of the meteor streams
by cometary ejections involve forces much weaker than the observed
cometary outbursts. Because the outbursts are a fairly frequent
phenomenon it may be supposed that less violent ejections leading
to the formation of the meteor swarms are quite ordinary phenomena.
This, in the author’s opinion, may be considered as a strong support
to the ejection theory of the formation of the meteor streams.

!
1.4 Effect of slow ejections upon comet’s motion and brightness

In the end, let us inquire whether the assumed slow ejections can
be detected by the observations of the comets.

Let us first consider the effect upon the period of revolution. The
following formula was established above:

ar 3

T = 2m V_ [efRsmwdt + fS(l + ecosw) df] (1-16)

The interval of integration extends over the whole arc along which the

ejections take place; the result is then the change of the period per

one revolution. It will be convenient to assume that the ejections are
perceptible, in the case of the comet Giacobini-Zinner, as long as
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¢ < p = 1-71. According to this asumption, the period of activity is as
long as 210 days. -
Assume first that the rate of emission of the meteor particles per

unit of time is constant throughout the whole period of activity. Then
the integrals in (1-16) reduce to

ta 4 _ P
; _I» Ve (4, —
fsmwdt_ kefdr—}— kefdr_(),
R Y P q
and

ts E(w=1m) V_
dt a
7:.”1;_1 =pT (c — 26). 1)

ty E(w'_—"—h‘)

Now we have, analogically to (1-9),

ts
f‘godt::‘so(tz— t) = — —?M—fo
t -

go that
- Qs
S0 = 31001,
time being expressed in days throughout.
Thus the equation (1-16) becomes

ar 1. T)p
—IT = ‘— mm T‘C—E— (TC -_ 28) Qs . (1-17)

Tt ‘seems to be more probable, however, that the ejections are the
more abundant the nearer the comet comes to the Sun. Let us there-
fore assume that R and S vary inversely with 2. In this case we have

again
iy t

fRsinwdt:Rofsmwdt=0,

7'2
t 17

1) Here ¢ = arcsin e.
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while

ty +ir
fs P oar= °fo—dw-—__(n+2e).
t, —irt N V

‘Agam, according to (1 -9),

_S?_s=f3dt sof gt = ™o
kp

Inserting into (1-16), the ﬁnal form of the formula will be: °

ar
= T V— m +2¢) 35 Q" (1-18)

As the two final formulae (1-17) and (1-18) contain but @,, it is evi-
dent that the emission towards the Sun considered in Section 1:2 does
not imply a change in the period of revolution of the emitting comet.
Thus we restrict ourselves to the case of ejections ahead into the he-
misphere 0 < ¢ < }=. In such a case,

Qs =1} Mpe,

where M, is now the total mass of the meteoric material emitted per
revolution. According to what has been said, this number is to be taken
equal to 101 g. Thus it may be assumed M /M, = 2 . 10-5. Further,
the ejection velocity will be taken to be 30 m/sec or 1-7 . 10-° astronom-
jcal units per day. It follows therefore

@s
M,

Inserting this and the elements of the comet Giacobini-Zinner
into the formulae (1—17) and (1-18) respectively, we obtain
ar

T = 1:1.10-7 or dT = — 0-00026¢

= 1-7.10"10,

and, according to the latter formula,

%.,1—1 = —12.10-7 or dT = —0-00028?.
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We realize that the effect of a slow formation of the swarm is be-
low the limits of the accuracy of the observation even if it accumulates
in successive revolutions. The things are a little better for comets of
longer periods, but the effect remains still unobservable. Supposing
the same conditions as above, the change of period of comet Halley
would still be only —0%024.

Thus it is evident that slow ejections, strong enough to form meteor
swarms, can hardly be detected by their influence on cometary mo-
tions.

1.5 Effect of slow ejection wpon comet’s brightness

The matter is different as to the influence of the assumed ejections
upon comet’s brightness and it will be seen that moderate ejections
may be ocassionally detected photometrically. '

From (1-2) and (1-4) we have approximately
m(l) — my = 83 4+ 2-5log M, . (1-19)

Suppose we observe the comet at a distance of 4 =1 and r = 1.
In this case, m(1) = 41-6. Putting M, = 10" g, we obtain my = 5-8.
We see that a halo at this distance, containing a mass of 101 g, would
be considerably bright.

However, it is evident that such a halo could not have existed
round the comet Giacobini-Zinner 1946¢c. 23 visual estimates of its
perihelion brightness (corrected to A = 1), collected by VANYSEK
and SIROKY (19), give m = 11-5 as the most probable total magnitude
of the comet. If we assume that the overwhelming part of its Light
was due to the ejected particles (which, of course, cannot be true),
the total mass of the ejected material would be m; = 5. 108 g. On the
other hand, My =10 g is required to explain the existence of the
Draconids. If we accept Whipple’s suggestion that the ejections are
perceptible within a sphere of a radius of about r = 2 only, we must
expect that about half the material ejected during one revolution will
shine in the comet’s coma at the perihelion. Thus we have a discrepan-
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cy of about 3 orders. This may be diminished by an assumption that
the ejections take place along the whole orbit with about the same pow-
er. In this case, about 2 . 10° g of particles would be expected to shine
at the perihelion. This would lead to a perihelion magnitude of 10™
or brighter, which is still untenable. Moreover, the hypothesis of a
continuous ejection during the whole revolution is very doubtful
even if we realize, from the observed outbursts of the comet Schwass-
mann-Wachmann, that ejections need not be limited to a close vicinity
of the Sun.

We might also assume that the Draconids were ejected in several
separate outbursts of the kind considered by Richter and Whitney.
Yet there is no evidence of such outbursts in the case of the comet
Giacobini-Zinner..

Another hypothesis is worth considering more thoroughly. Let us,
on the one hand; admit that the present shower could not have been
formed before the near approach to Jupiter in 1898. On the other
hand, according to what was said above,the ejections seem to be un-
sufficient. Then we perhaps ought to conclude that the swarm was
formed during the close approach of the comet to Jupiter by its tidal
action upon the comet.

Although this suggestion is very serious, there seems to be an ex-
planation in terms of the ejections, namely, if we suppose another
distribution of radii of the particles. Let us suppose that the distri-
bution law

N(s) ds = s~*N(1) ds

is valid only in the interval 1 > s> 10-2. Suppose further that
within the interval 10-2 > s > 10-5the number of particles is constant.
This assumption does not contradict the observations of the Draconids,
nay, it seems to be more plausible than a general validity of the s—* ds
law.

On these agsumptions, the formula (1-19) takes now the form
m(l) —mg = 2 4 2-5log My . (1-20)
Taking again My = 101, we get my = 12-1 so that in this case the
halo would contribute to the total brightness by about 33 9, more than
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the comet itself. This is probably still too much, but a moderate low-
ering of the mass of the halo would make the result more probable
without violating our general idea. Thus, for example, a reduction
of the assumed mass to a half — which may very well be in accord with
the observations of the Draconids — reduces the contribution of the
halo to 40 9, of the intrinsic brightness of the comet.

Another point may be of interest. The ejection velocities in the
observed great outbursts range, according to Richter’s list, between
0-3 and about 7 km/sec. The ejection assumed here to explain the form-
ation of the meteor swarms appear to be slower, the velocities being
of the order of metres per second. Now let us admit, according to
what was shown above, that both kinds of emissions differ in the
distribution of the radii of the particles. No doubt the observed velo-
cities refer to those particles the contribution of which to the reflected
light of the halo is the largest. In the outbursts, these are the smallest
particles, ~10-% cm in diameter. On the other hand, the estimated velo-
cities of ejection for observed meteor streams refer to particles of
about 10~ or 10—2 cm in diameter.

Suppose now, according to Whipple’s ideas, that the meteoric
particles are expelled from the comet by the outward pressure of the
evaporizing gas. If so, the force acting upon a particle is probably
proportional to the area of its cross-section. Supposing that the same
momentum has been transferred to all particles, we may easily see
that the ejection velocity is inversely proportional to the diameter.
Thus-the average ejection velocity of the visible meteors should be
about 10-3 that of the velocity obtained for the outbursts, i. e., of
the order of metres per second,in accord with our concept about the
formation of the meteor streams. Thus the different ejection velocity
may be simply a consequence of the differing radii of the particles.
One of the main differences between an outburst and a slow ejection
may be in the different distribution of the ejected particles according
to their diameters.

A further advance in solving these problems requires a deeper study
of the nature of the comets as well as a thorough study of the telescopic
meteors in the meteor streams. A detailed photometric and spectro-
scopic investigation of the comets seems to be of a particular value
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in the efforts to observe directly the suggested process of the formation
of meteor streams. This may be shown more clearly by considering
the following example.

Suppose the comet emits particles along an arc of its orbit in the
vicinity of the perihelion. According to the formulae (1-5) and (1-6),
the relation between the instantaneous mass of the halo M,(w) and
its brightness J ;(w) may be written thus:

Jg(w) = 6-3J(1) Mp(w), (1-21)

where by the symbol w for the true anomaly it should be marked that
both quantities depend upon the position of the comet in its orbit.
Denoting now by J,(1) the brightness of a unit particle at a distance
of 1 astronomical unit from the Sun, we may write

Talw) = 63 J(1) L2

(1-22)

Let us now consider again the comet Giacobini-Zinner. In accord
with the considerations of Section 1-4, suppose the comet is active
in emitting particles along the arc —in < w < }n. Suppose further
that the ejection velocity remains constant, while the instantaneous
amount of the emitted particles varies as 2.

Moreover, we must bear in mind that each particle remains in the
visible halo disc for a limited time only; at a certain distance from the
nucleus the cloud of the particles becomes so dispersed that they cease
contributing to the total light of the halo. We may tentatively assume
that the semidiameter of the visible halo is of the order of 10* km.
Assuming an ejection velocity of a few m/sec, we realize that the life
time of the particles is of the order of 100 days which is nearly the time
necessary for the comet to pass from w = — 90° to the perihelion.

On the basis of these assumptions, the function M g(w) may now
be constructed. Let us first take

Mp(w) — H(,—}g— , (1-23)

i
dt
Ho-fr—z=MH,
2

where
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M, being, as before, the total mass ejected per one revolution. The

integral gives _
o= —_ -
7
Thus we obtain:
For w<— 7w, Mp(w) =0. (1-24)

For It <w<O,
t(w)

d¢ 1 w
. 1 2%
After the perihelion passage, the function is slightly more involved
owing to the escape of the meteors ejected at the beginning. At a time
t > t, (t, being the time of the perihelion passage), the number of
escaped meteors is

. Mg [-;— + -i- w(t — & + tl)] : (1-26)

Here the symbol w(t — &, + t) refers to the true anomaly that the

comet had at the time ¢, + (¢ — &) , i e. before the perihelion passage.
Thus for 0 < w < 3= the function has the form

Mu(t) = Mg [w(t) — w(t — b, + m] . (1-27)

1t is evident that for w = 3w, Mp(w) = }Mg.
Finally for w > }m, no more particles are ejected, and the function
is of the form

My(w) = Mz [% — -Tl?w(t it + tl)]‘, ~ (1-28)

where, of course, now ¢ — #, > f, — ¢ 80 that M(w) is diminishing
rather rapidly; it becomes zero for ¢ = 2(; — %) +t o.

The values of the function —ﬂigz(iv)— are given in Table IV.

The intrinsic brightness of the comet can be expressed by means of
the well-known formula
JKO
Tx = Zapm
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TaBLE IV
Effect of the halo wpon the comet’s brighiness

r F(w) T ‘IK JH mg mgg
3-00 0 0 0-001 0 1941 19-1
2-50 0 0 0-002 0 18-4 18-4
200 0 0 0-009 0 167 16-7
78 F 20 0 0.026 0 156 156

- -] 0062 0-028 0.053 0-022 14-8 14-4
0145 0-086 0-132 0-069 13-8 13-4
0.281 0-232 0-339 0-186 12-8 12-3
0-500 0-500 0-600 0-400 12-2 11-6
0-619 0-511 0 339 0-409 12-8 119
0-645 0-382 0132 | 0-306 138 12:5
0.614 0-273 0,053 0-218 . 148 130
0-470 0-154 0-026 0-123 156 137
0-334 0-084 0-009 0-067 16-7 144
0-092 0-015 0-002 0-012 18-4 162
0 0 0-001 0 191 191

so that the total brightness of the comet with the halo, reduced to
4 = 1, may be expressed as follows:

JKO

Jzg = + 6:3J,(1) ) MH(“’)

(1-29)
The perihelion brightness of the comet Giacobini-Zinner, which
corresponds to r = 1, is .
: Jrr = Jgo + 6:3Jy(1) . $ My . (1-30)
According to Vanysek and Siroky [19], the perihelion magnitude
of the comet was mgp = 11-6. Assume further the exponent of r
to be » = 6, which is roughly the proper value for a periodic comet
and is indeed close to Vanysek’s value 6-6. Suppose now that the halo
contributed by 409, to the total brightness at the perihelion. This
assumption leads to My = 1011g. At the perihelion, where 5.101g
of particles are shining in the halo, the magnitude of the halo itself
would be 12-6. Table IV contains, besides the values of the function
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Mx(f)
Flu) = =7
of the halo J g, both in the units of the total perihelion brightness. In
the two last columns there are the magnitude of the comet without the
halo mg and the total magnitude of the comet with halo mzz. Both
quantities are plotted against the radius-vector in Fig. 1.

Fig. 1 shows a perceptible
assymetry of the magnitude
before and after the perihelion.
If an observer tried to express
the brightness in terms of the
law J = Jgr—", he would get
n = 6-4 before the perihelion,
but only n = 3-5 for the first
weeks after the perihelion. At
r = 2, the comet is by 2-3™
brighter after the perihelion
that before. By about the same
amount the total brightness
exceeds the intrinsic bright-
ness of the comet at this place.
At the perihelion, the halo ma-
kes the comet brighter by 0-6™.

Such a halo could be probably

00 20 40 logr detected by a careful photo-

Fig. L. metric and spectroscopic stu-
Brightness of a model comet with halo: dy. Naturally, our assumption

C intrinsic brightness of the comet, B comet that the halo shares by 40 ©
with halo before the perihelion passage, 4 co- y /°

met with halo after the perihelion passage. in the total brightness at the
jasnost komety, B kometa s halem pied pe- . . . .

rihelem a A po perihelu.) If this contribution is decre-

ased to 10 9, the halo will

increase the perihelion brightness by 0-1™ only and the maximum

increase in brightness due to the halo would be about 0-8™. These

figures look rather hopeless. Nevertheless we must bear in mind that

the brightness of the halo depends to a great extent upon the dimensions

, the brightness of the comet itself Jx as well as that
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of particles in it; an ejection of dust would be more easily observable
than an ejection of the same mass of larger meteors. Although the
ejections by which meteor swarms are being formed may evidently
proceed without being observed, it seems to be worth while to look for
them: photometrically and spectroscoplcally, they may sometimes be
detected.
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2. EJECTION THEORY OF THE FORMATION
OF THE METEOR STREAMS

2-1. Orbit of a single meteor
2:11 THE GENERAL CASE

In general, the orbital elements of an ejected meteor can be readily
calculated by means of the coordinates and velocity components.
The former are given simply by the position of the comet at the instant
of ejection, while the latter are obtained by adding the components of
the ejection velocity to those of the original orbital velocity of the
parental comet. ’

Let us denote the point where the ejection took place by E. The posi-
tion of this point in the orbit of the comet is determined by its radius-
vector 7, and by the true anomaly w,,. The orbital velocity of the co-
met at this point be v,. Let us now introduce two rectangular coordinate
systems with the common centre at the point E.

System (I): The &n-plane coinciding with the orbital plane of the
comet; the &-axis in the direction of the instantaneous motion of the
comet; the z-axis perpendicularly to it, positive towards the Sun;
the ¢-axis perpendicular to the comet’s orbital plane, positive to the
left (i. e., northwards in direct orbits).

The direction and magnitude of the ejection velocity vector P
can be determined by introducing the angle ¢ between ¢ and the Z-axis
and the angle O of the n-axis with the projection of ¢ into the n¢-plane.
Then the components of the resulting velocity of the ejected meteor
are

g = Vy + CCOS @
n = csin ¢ cos @ (2-1)
{ = csingpsin O

32




System (II): The xy-plane coinciding with the orbital plane of
the comet; the y-axis identical with the radius-vector, positive
away from the Sun. The z-axis perpendicular to the radius-vector,
positive in the direction of the comet’s motion. The z-axis indenti-
cal with the {-axis of the system (I). Denote further by y the angle
between ¢ and the y-axis, by @ the angle of the pro;ectlon into
the 2z-plane, of ¢ with the z-axis and by & the angle of ¢ with the
zy-plane.

Denoting the ejection velocity components by c,, ¢, and ¢, (thus
indicating their relation to the radius-vector r, true anomaly w and

the binormal b), we have

V=0 - CCOBY =T

Vo = Vg, + C 8in y cos P = rw 2-2)

v, = ¢ sin p sin @ = 7 ’
The two systems are connected by the following transformation

equations:
z=¢sint 4+ neost

y=£&cosTt —ysint
z2=_

_ p
tgT = resin w ’ 0st<m.

vhere

At the perihelion, v = 90° and we have
Vg =+ ccosp, v, =csinpgcos®, v,=csinpsnd.

In Table V, several orbits are computed for special directions
of the ejection for the parental comets of the Draconids and Per-
seids. An ejection velocity of ¢ = 3 km/sec is assumed and the
ejection is supposed to take place at the perihelion. The cases in-
~ vestigated here are:

4, Meteor ejected directly forwards in the direction of the
comet 8 motion: ¢ = 0°

4, Meteor ejected directly backwards: ¢ = 180°

B, Meteor ejected along the radius-vector, away from the Sun:

@ = 90°, » = 0°.
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TABLE V

Dispersion of meteors due to quick ejections

Meteor a e P T w
Draconids: |comet 3-51 | 0717 | 171 | 307 | 171-8
A, 83 0989 | 198 | 307 | 1718
A, 186 | 0465 | 146 | 307 | 1718
B, 365 | 07290 | 171 | 307 | 1615
B, 365 | 0729 | 171 | 307 | 1821
C, 365 | 0727 | 171 | 264 | 1706
C, 365 | 0727 | 171 | 350 | 1727
Perseids: | comet 24.3 | 0960 | 189 | 113-6 | 152-8
A, hyperb. | 1-25 216 | 113¢ | 1528
A, 316 | 0695 | 163 | 1136 | 152.8
B, 323 | 0970 | 1.89 | 1136 | 1446
B, 323 | 0970 | 1-89 | 1136 | 1609
c, 323 | 0970 | 190 | 1100 | 1535
C, 323 | 0970 | 1.90 | 1172 | 1519

B, Meteor ejected towards the Sun: ¢ = 90°, y = 180°.

C, Meteor ejected perpendicularly to the plane of the comet’s
motion: ¢ = 90°, & = 90°. :

C, Meteor ejected perpendicularly to the orbital plane in the opposite
direction: ¢ = 90°, ¢ = — 90°.

2.12 FORMULAE FOR SMALL EJECTION VELOCITIES

If the ejection velocity is small compared with the orbital velocity
of the comet, the square of the ratio c/v can be neglected and differen-
tial formulae can be derived, giving directly the deviation of the ele-
ments of the meteors from those of the parental comet. :
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a) The semimajor axis a

Let us sconsider the coordinate system (I). Squaring and adding the
equation (2-1), we obtain

v? =5 + ¢ + 2pcco8 @ .

Again, expressing everywhere the velocities in the units of the circular
velocity at @ = 1 (i. e. 29-765 km/sec), we can write

Q)z == 3 —_— —];. q): — —3 —_— H .
7 a 7 a,
Thus the final formula is
1 1
- = i 2v,c cos p — 2. (2-3)

Here it is advisable to retain the term c2, for it causes no difficulties in
numerical calé¢ulation and it can influence the result, at least in the
case of comets of long periods.

The new semimajor axis will be the largest for ¢ = 0° (ejection in the
direction of the comet’s motion) and the smallest for ¢ = 180° (ejection
velocity opposite to the comet’s motion). The change of a for ¢ = 90°
is negligible for small ejection velocities.

b) The period of revolution 7

From the well-known formula connecting @ and T, we get readily
3 T
8T=?.7.8a. (2-3a)

It may be noted here that for ¢ cos @ >0, that is for ¢ < 90°, we obtain
a> ay or dT' > 0; that is, meteors ejected forwards obtain longer
periods, and will come back to the perihelion later than the comet,
On the other hand, meteors ejected backwards will be observed ahead
of the comet at its next apparition.

¢) The parameter p

We shall first choose the orbital plane of the comet as a fundamental
plane for the angular elements of the orbits of the ejected meteors.
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Thus we introduce relative elements ', 2’ ete. which are later to be
transformed into the ecliptical elements i, 2 and o.

The point, where the meteor was ejected, is the ascending (for ¢, > 0)
or descending (for ¢, < 0) node of its orbit upon that of the comet.
If we choose the ascending node to be the origin of the longitudes
measured along the comet’s orbit, it may be easily inferred that the
integrals of areas can be written as follows:

oV = D' COS &’

Crglvy| = psind’ . (2-4)

In order to obtain the change of the parameter p, we square and add
the equations and have

p=ri(vy, + %) -
Tor small ejection velocities, the formula for the variation of pis

obtained by differentiation, thus:

3p = 2WouTi00 - ‘ (2-5)

d) The relative inclination 4’

Defining the inclination i’, as usual, by the restriction 0° < ¢’ <
< 180°, we can determine its value by dividing the equations (2-4),
taking here the absolute value of |c,|. However, when passing to the
ecliptical elements, it appears to be more convenient to define '
simply by the relation

o Cy
tgil = —,
g o
or approximately,
i — 206 265 >, (2-6)
Vow

where ¢’ is now expressed in seconds of arc. It is now i’ > 0forc,> 0
and vice versa; this definition will be tacitly kept in section f). Note
that for small ejection velocities, retrograde orbits relatively to the
comet’s orbit are impossible.
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e) The elements ¢ and

In order to get the variations of e and w; it is convenient to introduce
two new elements & and k by the following definition:

h =esin wg
k=ecoswyg ,

where wy is the true anoinaly (wog in the comet’s orbit, wy in that of
the meteor) of the point of ejection B.

From the polar ellipse equation we get

r=2P _
r
~or
=P _
k= v 1
"~ and
3k = 22 = 27(VpuCo ' (2-7)

0

Similarly, by differentiating the ellipse equation, 'we obtain

h=wv, V'{)_
hy = vOr m )
Sh = V—_ Vow0rCw + Vpo c,. .(2-8)
- - It is evident that
eode = hodh + K3k ,
g o 28wy = koSh — oSk . (2-9)
f)Eo'liptical elements

~ Now, we can pass to the usual echptlcal elements. From Fig. 2 it
- follows:
~ COS ¢ = COS8 1, CO8 4’ — sin ¢, 8in ¢’ cos (weg + @y)
or approximately
S 3 =i’ co8 (Weg + wp) « (2-10)
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Similarly,
sin (2 — Q) sin ¢ = sin (W, + w,) sin ¢

or '
30 — ¢ 80 (Wm + @) (2-11)
8in 1,
Finally,

008 (wp + w) = cos (2 — -Q_o) 08 (wog + @)
+ Sin (Q ad Qo) sin (won + wo) CO8 ig .

M

C

Fig. 2.

In the majority of the cases, the following approximation will hold

good: :

~ g) Simplification for the perihelion

It is probable that the ejections are most violent and frequent in the
vicinity of the perihelion. For the case of a perihelion ejection, the
equations will be considerably simplified, for

w°E = 0, ‘vo" == 'vo, 7'0 - qo, T = 900 .
Thus we have ‘
— 29, ccosp — c?, ' (2-13)

1 1
e a
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N
3p = 2qgv,,é cos @ (2-14)
de = 2gyv,c cos ¢ ' (2-15)
) . .

V= o (2-16)

e Swg = ¢, |/po (2-17)
31 = 4/ cos w, (2-18)

80 = ¢ 22 % (2-19)

sin 7,
dw = — Swg — 382 cos 1, . (2-20)

It may be interesting to note that in this case the deviations 3a, 3¢
and 8p depend on the same ejection velocity component ¢ cos ¢ only.

k4
TaBLE VI

Deviations of elements due to slow ejections

w Geminids Draconids Perseids
Elements
a, 1-396 3-514 24-27
€ 0-900 0-717 0-960
Po 0-265 1-709 1-887
T, 1%65 859 119%
%o 23-28 30-44 113-6
ay 1-446 3626 : 31-47
ap 1-349 3-408 1976
8p 4-0-0005 -+0-0087 -4-0-0087
Se  4-0-0035 -+ 0-0087 40-0090
i’ +31 +8%4 479
& - +2'5 +9'3 +7°0
8Q +4'6 + 2’5 . 39
) +10°1 +23'1 +17°
Ty 1*74 6*90 176%
T 1257 629 878
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h) Numerical application’

Table VI gives the results of application of the above formulae to
three typical showers: the Geminids, Draconids and Perseids. An eject-
ion velocity of 100 m/sec and ejection at the perihelion were assumed.
The table gives the maximum posible deviations in each element.

2-2 Considerations on the value of the ejection velocity

The value of the ejection velocity can be found by means of an ana-
lysis of the orbits of the ejected meteors. But Tables V and VI show
that the departures of the elements of the meteors from those of the
parental comet are rather minute. At the present time, it is photo-
graphy only that can, in some cases, secure the accuracy required
to detect the small differences in the elements. However, the position
and shape of the meteor orbits can be very seriously affected by
the perturbing action of the planets. An analysis of very dispersed
meteor showers becomes extremely intricate and the results are not
always quite reliable.

This is the case of the Perseids. Bredichin, attempting to account for
their long duration, postulated ejection velocities as high as 3 or even
6 km/sec. Hamid [14] and Ahnert-Rohlfs [4] showed that the long
duration may well be explained in terms of planetary perturbations.
From a direct analysis of several individual photographic meteor orbits,
Babadjan [6] found ejection velocities of about 1-5 km/sec, i. e. much
nearer to Bredichin’s values than to the value postulated by Hamid
(metres per second only). The problem is whether the perturbations
were properly allowed for.

The author believes that an investigation of meteor streams of
a recent origin is more conclusive. Table VI shows that even a small
ejection velocity causes a rapid dispersion of meteors along the orbit,
while the cross-section of the stream near perihelion is small. Let
us assume that the Draconids have been ejected with a velocity of
100 m/sec into all directions. According to Table VI, the dispersion in
the node will be 282 = 5’, which means that the Earth passes through
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the swarm within two hours, which is about the actual duration of the
shower. But the meteors disperse rather rapidly along the orbit.
On the same assumption, it may be shown that within 700 years,
a closed ring of meteors is formed. But the actual Draconids appear to
form rather an isolated cloud near the comet.It is evident that the
age of such a cloud must be very low. Particularly the meteors observed
in a close vicinity of the comet (e. g. those observed in 1946, following
the comet by only 16 days) must have been ejected quite recently and
it is probable that their orbits have suffered about the same perturba-

TasLE VII

Distances of meteor clouds from comets

distance AM
Shower comet-meteors 8Ty,
(years)
Leonids 1866....... 0-81 . 0-0188
g Draconids  1933....... 0-219 0-0159
; Draconids  1946....... 0-041 0-0030
1

tions as the comet itself. If so, the deduced ejection velocities will be
more reliable.

The determination of the value of the ejection velocity would be
particularly simple if we succeeded to obtain precisely the difference in
the semimajor axes or periods between the meteors and the comet.
If we observe a meteor cloud at a distance AM from the comet (AM
is measured in days, for example by the difference of the perihelion or
node passages), we can write, according to (2-3a):

PO TSR R T TN R T e R

R S T AR

AM = s dT = 3sTayw,c,, , (2-21)

where s is the number of periods elapsed since the ejection, or 8T, is
the age of the swarm in years. Table VII contains data on three great
meteor clouds, from which the value of the ejection velocity may be
derived.
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In the case of the great Leonid cloud of 1866, there exists an estim-
ate of d7'. The parental comet 1866 I has a period of 33-18 [20], while
the period of the cloud was found to be 33:25 [21]. If the differ-
ence is real, we get from (2-21) s = 12 or sT, = 4007 and the ejection
velocity comes out to be about 0-75 m/sec. The age will be probably
considered as rather low, but in this case the ejection velocity would
be even smaller.

There are, unfortunately, no precise determinations of the velocity
of the Draconids, so that the equation (2-21) may furnish a rough
estimate of the upper limit for the ejection velocity only. The reader
will probably agree that an age of only 1 year is too low for the cloud
observed in 1946; yet sT, = 1* leads to ¢ = 90 m/sec. We see again
that the ejection velocity of the Draconids was rather low. The author
attempted to derive the ejection velocity from the difference of the
position of the observed radiant from the theoretical one and found
¢ = 30 m/sec to be the most probable value [18]. The corresponding
very small age sT, = 3* indicates that even this value is rather
overestimated.

Thus the author is inclined to believe that the ejection velocities are
low, in general fairly below 1 km/sec, and that the high dispersion
of some streams is due to external forces and is an evidence of that the
dispersed streams are already at a late stage of evolution.

2-3 Form of the stream after ejection

It was shown in the previous section that the ejected meteors are
dispersed along the comet’s orbit, but do not deviate considerably
from it. Thus, in investigating the dimensions and form of the shower
immediately after the ejection, it is sufficient to study the distribution
of the semimajor axes.

Let us first suppose that the whole swarm of particles was ejected
within a short time, practically at the same moment. As mentioned
in section 1-1; such cases were actually observed. Suppose furthér
that all particles were ejected with the same velocity. It will be shown
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that in this case the form of the stream depends greatly upon the
distribution of the directions of the ejection velocity vectors. Let us
discuss several examples.

2:31 ISOTROPIC EJECTION

Suppose that the meteors were emitted into all directions in the
same amount. Denote the quantity of meteors ejected into an unit
space angle by N,; the total number of emitted particles is then 4zN,,.

Asg evident from the equation (2-3), the value of the semimajor axis
depends but on ¢; in the interval between ¢ and ¢ + dg, the number
of emitted particles is

N(p) dp = 2NN, sin ¢ de.
Differentiating (2-3) we get
da = 2a%vc sinp do .

Thus the relative number of particles having semimajor axes between a
and a + da is
N(a) da da

n(a) da = N, Toea’ (2-22)

This distribution law is valid within the limits a » and a,, given by

1
— =——c% — 20,
(1374 a,
and . (2-23)
1 1
=24 2
a a c? + 2v,c

Asanumerical example,let us take the case of the comet Pons-Brooks,
the observed outburst of which actually took place near the perihelion.
According to Bobrovnikov, we shall take the ejection velocity to be
¢ = 0-3 km/sec ~ 10-2 in our units of velocity. We have a, = 17:25,
v, = 1-50, from which it follows a, = 11-38, a,, = 35-88. Dividing
the interval < 11-38, 35-88 > into ten equal parts, we obtain the
following approximate relative number of meteors in each of them:
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TaBLE VIII

Dispersion of semimajor axes — meteors ejected by an outburst of comet Pons-Brooks

a n(a) . Aa a " n(a).Aa
11-38 2363 .
0-258 0-066
13-83 - 26-08
0-181 ‘ 0-055
16-28 28-53
0-134. 0-046
- 18.73 31-98
0.103 0039
21-18 . 3343
0-082 , 0-034
2363 | 35-88 :

As evident, orbits of shorter periods are overwhelming. In eonnection
with this, there arises the following question: Is the number of the
meteors ahead of the comet equal to that of the meteors behind the
comet; ?

In order to answer this question, let us consider the two integrals:

. N,m-_—fN(a) da=7f—1\—r‘-’-(i——l—)

ve \a, a
aM N
1 1
=|N =Tt >
Noaws = [ (@) da = T8 ( - a”)
Qo

Inserting from (2-23), we obtain the ratio

N, 2vc—c* c o . '
N S Spe o — 1— o (for small ejection velocities)  (2-24)

Thus the meteors are not exactly equally distributed on both sides of ‘:‘
the parental comet; the meteors behind the comet are slightly more
numerous. The difference is small provided ¢ < v,. In our case, when ~ °
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¢:v, = 1:150, the above ratio is 0-9933. Thus the meteors behind
the comet are by some 0-3 %, of the total number more numerous than
those preceding the comet.

However, it is more advisable to know the distribution of the periods
of revolution. Expressing 7' in years, we have simply

T* = a?

and the distribution law becomes
NTydar 4T
4xN, =~ 6T~

The quantity directly observed is the distance, along the orbit, of
the meteors from the comet. This may be measured as the time differ-
ence of the passages through the node of the comet and of the meteors
in question respectively. It is obvious that the difference, AM = L,
is given by the product

n(T) dT = (2-25)

L=sT—T,), .

where s is the number of the periods 7', elapsed since the ejection.
: Using now the distribution function N (L), the distribution of the
- . meteors will be given by the law

N(L)dL _  dL
4N, = 6ucT"h

where A = s d7'. This formula is valid between the limits
Ly=sTy—T, and L,=sT,—T).

(2-26)

' As numerical examples, let us put s = 1 and compute the distribution
of meteors in the following cases:

(1) Ejections by observed outbursts of the comets Pons-Brooks and
Holmes, supposing ¢ = 0-3 km/sec.
: (2) Perihelion ejections from the parental comets of the Geminids,
i Draconids, Leonids, and Perseids, the ejection velocity being supposed
. to be 10 m/sec.

Evidently the swarm behind a comet stretches farther backwards
from it, while the swarm ahead of a comet is more closely packed to the
comet. Considering the same interval dT' at the same absolute distance
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from the comet on either side, we realize that the density of the meteor
madterial is far greater ahead of the comet than behind it. Considering
meteors at a distance AT = T' — T, from the comet, the ratio of the
densities is

bl

N(T) dTaheld — TO + AT *h
N(T)dP,,.,  \T, —AT)

valid for 0 <AT < T, — T,,. For AT greater than this value but
smaller than T, — T',,there are meteors only behind the comet. The
total extent of the stream depends perceptibly on the original period

TaBLE IX
Distribution of periods at isotropic ejection
Comet Pons-Brooks, ¢ = 0-3 km/sec Comet Holmes, ¢ = 0-3 km/sec
T n(T) . AT - T n(T).AT
a a
213-89 - 7-41 .
- . 0.029 0-089
196-34 . 7-31
0-033 0-092
178-79 7-20
0.039 0-094
161-25 7-10
0-046 0-096
143-70 7-00
0-055 0-098
126-15 6-90
0-071 0-101
108-60 6-79
0-092 - 0-103
91-05 6-69
- 0-127 0-106
73-51 6-59
0-188 0-109
55-96 6-49
0-318 0-112
38-41 . 6-38
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TaBLE IX (continued)

¢ = 10 m/sec
Geminids Draconids Leonids Perseids
T n(T).AT T no(T).AT T n(T).AT T n(T).AT
a a a a

1-664 6-614 33-60 1234

0-099 0-0996 0-0983 0-095
1-662 6-609 33-51 122-7

0-099 0-0997 0-0985 0-096
1-661 6-603 33-43 121-9

0-099 0-0998 0-0989 0-097
1-659 6-598 33-34 121-2

0-100 00999 0-0994 0-098
1-658 6-593 33.25 120-4

0-100 0-1001 - 0-0998 0-099
1-656 ¢ 6-587 33-17 1197

0-100 0-1002 0-1002 0-100
1-855 6-582 33-08 119-0

0-100 0-1004 0-1006 0-102
1-654 6-576 33-00 118-2

0-101 0-1005 0-1010 0-103
1-652 6.571 32-91 1175

0-101 0-1006 0-1014 0-104
1-650 6-562 32-82 116-7

0-101 ) 0-1008 0-1019 0-105
1-649 6:560 32-73 116-0

of the comet, as it is clearly seen from the Tables VIII and IX. For
example, the same ejection velocity causes the short-period Draconid
meteors to be dispersed along an arc corresponding to 0-05 years,
while the Perseids are scattered so considerably that the meteors
will be coming next to the perihelion continually for a period of 7-5
years. It is to be realized that far away from the Sun, the orbits are
very scattered, but they form a thin bundle in the vicinity of the peri-
helion, where they are actually observed.
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9.32 EJECTION TOWARDS THE SUN

As a matter of fact, an isotropic ejection is not the most probable
kind of ejection. It is more probable that the meteors are most intensely
ejected on the sun-side of the cometary nucleus. Let us discuss a simple
example of such an ejection.

Suppose the ejection takes place instantaneously at the perihelion.
Suppose the meteors are ejected into a limited cone only, the axis
of which is directed towards the Sun, i. e. it lies in the orbital plane
and is perpendicular to the direction of the comet’s motion. Let the
vertex angle of the cone be 90°, so that the total number of ejected
meteors is now =w(2 — V§) N, if N, is again the number ejected into
an unit space angle.

It is evident that the anglé of the ejection velocity vector with
the direction of the comet’s motion can lie between the limits

VAR N

N T/ only. Thus we have
1 _ 1 e uel2 1_1_ ..;
iy @ c vocV2 T c +vocv2.
The number of meteors with ¢ lying between ¢ and ¢ + dg is
N(p)dp = 2N Hsingdp ,

where H depends upon ¢ and its value is given by the simple relatiom
1
V_2_ sin @ )
Thus the relative number of meteors in the interval between 7' and
T + dT is given by the formula
' N(T AT 2H(T)dT
(2 — 2N, 3n(2— 1/2) veeT*s

cos H =

w(T) dT = (2-27)

where, however, H depends upon 7'. Numerical example is given in
Table X for two streams (comet Pons-Brooks, ¢ = 0-3 km/sec and
comet Giacobini-Zinner, ¢ = 0-01 km/sec).
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TasLe X

Ejections towards the Sun
Comet Pons-Brooks, ¢ = 0-83 km/sec Draconids, ¢ = 10 m/sec
T | wm.ar T |  am.ar
a : : a

142-1 : 6-608
0-014 : 0-051

132-8 6-604
0-029 0-087

122-6 ' 6-600
: 0-044 0-104

112-9 6-596
0-059 . 0-114

103-2 6-592
EN 0-081 : 0-119

934 6-588
0-103 0-120

83-7 6-584
0-125 0-118

740 - 6-580
0-154 0-111

64-3 8-576
0-191 " 0-099

54-5 6:572
0-206 0-077

44-8 ' 8-569

In general, it may be said that the form of the shower in this case
is similar to that of an isotropic ejection. The meteors are distributed
nearly equally on both sides of the comet, but the shower is denser,

it occupies a smaller arc along the orbit and the distribution of the
meteors is somewhat different.

2.33 EJECTION IN CASE OF A NEGATIVE ROTATION

© Let us now suppose that the meteors are ejected into the same
space angle, but the axis of the cone is now turned by 45° towards
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the direction of the instantaneous motion of the comet. This may be
approximately the.case if the nucleus rotates in the opposite direction
with respect to the comet’s motion and the axis of rotation is perpen-
dicular to the orbital plane. In this case, the limits for g are 0 and 4= ;
thus the extremes of the semimajor axis are given by the formulae

1 1 1 1

— == 20, —=— —C¢C%.
Ay G a,

The distribution law is the same as in the previous case, except that
the limits of its validity are different and that H is now given by

TaBLE X1

Ejections in case of negative rotation .

Comet Pons-Brooks, ¢ = 0-3 km/sec Draconids, ¢ = 10 m/sec
T n(T) . AT T | |, wm.AT
) a .
213-9 . 6-614
0-084 0-151
199-7 6612
0-071 0-137
1855 ' 6-609
~ 0-078 0-126
1713 6-606
0-086 0117
157-0 6-604
0094 0-108
1428 6-601
: 0-103 0-096
128-6 8.598
0112 0-087
1144 : 6-595
0121 0-074
100-2 6-593
0-131 0-057
86-0 6-590
0143 0-037
71-8 6-587 ’
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the equation

cos H = tg% .

Numerical application to the same cases as before is given in Table
XI. We realize that the swarm concentrates only behind the comet.

The density distribution is again different from the previous cases.

TasLe XII

Ejections in case of positive rotation

Comet Pons-Brooks, ¢ = 0-3 km/sec Draconids, ¢ = 10 m/sec
T n(T). AT T n(T). AT
‘ a a
71-8 , 6-587
0-016 0-030
68-4 6-584
0-031 0-059
651 6-582 ,, ,
' 0-045 0071
61-8 6-579
0-059 0-087
584 6.576
0-075 0-099
55-1 8-573
0-094 0-109
51-8 6-571 .
0-116 0-120
484 6-568
0-143 0-130
45-1 6-565
0-180 0-141
41-7 - 6.562
0-234 . 0-153°
38-4 6-560

U
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Isotropic ejection

200* xgo "—T— 100 T,

Ejection towards the Sun

Negative rotation

9o *— .. .
Positive rotation

Sun -

- - - - - - = s e - - o

Fig. 3.

Models of hypothetical meteor swarms formed by a perihelion outburst of comet

Pons-Brooks. Abscissae: periods of revolution in years (T, period of the comet), ordi-

nates: spatial density of meteors n(T') in arbitrary units. Circles in the left represent

schematically the form of the ejected halo in its section by the orbital plane. The
arrows indicate the direction of the Sun and of the comet’s orbital motion (v).

Modely hypothetickych meteorickych roji, vzniklych vybuchem komety Pons-Brooks

v perihelu. Usetky: ob&iné doba v rocich (7', obdiné doba komety), pofadnice jsou

‘im&rné hustotd meteorti v daném mists. Kruhy vlevo schematicky vyznaduji druhy

ejekee; predstavuji prifez vzniklého hala dréhovou rovinou. Vyznadeny jsou smér
ke Slunci a smér pohybu komety (v,).
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2.34 EJECTION IN THE CASE OF A POSITIVE ROTATION

Suppose finally that the circumstances of the ejection are the same
as in the previous case, but the rotation of the cometary nucleus
is positive (i. e. it rotates in the same direction as the comet moves).

The limits of ¢ are now }= and =, and the extreme values of a are

1+ 1 1 1
__=__62’ ———=——cz+2voc.
ay  Q @, G

The distribution law is the same as (2-27), but
cos H = cotg gz)— )

and naturally the limits of the validity of the law are other. See again
numerical example in Table XII. Now, the meteors are strongly con-
centrated on the forward side of the comet, the swarm precedes the
comet and practically no meteors are observed behind it.

We may easily imagine that if the meteors are ejected forwards
or backwards into a limited space angle, the case may come that an
isolated cloud of meteors is formed in front of or behind the comet,
~ separated from it by a gap where there are practically no meteors.

2:35 ACTUAL FORM OF THE STREAMS

No doubt the types of ejections considered here are rough approxim-
ations only. Disregarding occasional great outbursts of some comets,,
the ordinary ejections are probably slow processes, repeated at each
return of the comet to the Sun. The activity of the comet in emitting
meteor particles may extend along a considerable arc of the orbit.
Moreover, the particles are very probably not ejected with the same
velocity. Rough consideration makes it probable that the ejection
velocity is inversely proportional to the diameter of the particle (sect.
1-5). All this makes the swarm much more diffuse.

Nevertheless, it cannot be excluded that a similarity can be found
between our models and the actual streams. As to the Draconids,
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dense clouds of meteors appear to be located on both sides of the pa-
rental comet. If so, the swarm may be thought as have been formed
by an isotropic ejection or by an ejection of the form considered
in 2-32. - :

On the other hand, according to ABELMANN [22], the great cloud
of Leonids appears to be located behind the comet only. This form of
the swarm can be explained in terms of an ejection into a limited space
angle in the forward direction (sect. 2-33). It appeirs to be a gap be-
tween the comet and the main meteor cloud.If the gap is real,it may
be explained by the assumption that the cone into which the meteors
were ejected did not contain the direction ¢ = 0 and that the meteors
were ejected with about the same velocities and probably during
a short period of time.
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3. LOCAL PERTURBATIONS OF THE METEOR
STREAMS )

3-1 Importance of local perturbations

Major planets execute a perceptible perturbation effect on the orbits
of many meteor streams. During long periods of ages, the shape and
position of a meteoric ring change so perceptibly that the conditions
of visibility may be quite altered [23]. This kind of perturbations is
generally termed secular perturbations; in our case, it refers to a swarm
as a whole. Moreover, the secular perturbations of the orbits of the
individual meteors are always a little different for different particles;
these differential perturbations probably play the most important
role in changing an originally tenuous swarm into a wide stream.

A different effect arises if the orbit of the swarm crosses or comes
near the orbit of a major planet. Then the meteors that happen to
come near the planet are so strongly perturbed and dispersed that the
continuous ring of meteoric matter is heavily destroyed. Naturally
such an approach only influences a small part of the whole ring, never-
theless repeated approaches may disturb considerably the structure
of the stream. The gaps or again accumulations in the ring can become
very impressive for an observer on the Earth, because, owing to
" the small dimensions of the Earth, a moderate shift of a meteoric.
flament can make the Earth miss the meteors or again to meet
suddenly a swarm not known before.

In order to investigate the importance of local perturbations, let
us take two examples, the Lyrids and the Draconids. The former
stream forms a more or less continuous ring. If the orbit of the paren-
tal comet, Thatcher-Baeker 1861 I, is correct and if the meteors
follow it fairly exactly, they come very near the orbit of Saturn.
As a matter of fact, every 30 years the planet comes so close to the
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comet’s orbit, that the meteors pass through the sphere of activity
of Saturn.

The Draconids seem to form a condensed cloud in the vicinity of the
parental comet Giacobini-Zinner. The comet came close to Jupiter
in 1898 and it may be expected that the swarm of meteors moving
then in its vicinity was strongly perturbed.

In order to obtain a qualitative picture of the perturbative effect
of Saturn and Jupiter respectively, let us apply LAPLACE’s concept
of the sphere of activity [24]. Let us suppose that the meteors moved
unperturbed outside the sphere of activity, while inside it, the planet
was the central body and the action of the Sun may be neglected.

No doubt, such a scheme of perturbations is too rough and cannot
secure sufficient accuracy for a detailed investigation in either case.
Surely the perturbations outside the sphere of activity cannot be
neglected. The only way to attain a degree of accuracy needed in
a quantitative discussion is mechanical quadrature. Yet the present
procedure, being far shorter, can well provide us with a general pic-
ture of the influence of the local perturbations.

3-2 Method of computation

The method of computing the local perturbations within the sphere
of activity may now be briefly described; a more extended account
was given elsewhere [26].

Let ¢ be the radius of the sphere of activity of a planet whose mass
is m (Sun’s mass =1). The rectangular ecliptical coordinates and velo-
city components of the disturbed body at the moment 7, when it
enters the sphere of activity are z;,y;,2, and 4y, 4, %4 respectively.
The corresponding quantities referring to the planet at this moment
will be denoted by capitals. We further write the relative coordinates
and velocity components

¢=2—X, n=y—-Y, {=2—2
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Thus we have at the moment 7',

o =&+ +1} (3-1)
and the relative velocity at the same moment is
w' =& + 0} 412 (3-2)

The relative orbit is a hyperbola. Denote its elements bya’, e, i, ',
and o’. The known formulae of hyperbolic motion are in our case

_ £ — € = (mp')} cos i’
7 — & = (mp’)} sin Q sin ¢/ (3-3)
£ — tE = (mp’)t cos Q' sin ¢’

_ 2 1y . mp’ i
wz—m(?'l“a—,)—Qz'l“QT- (3-4)

Here p’ is the parameter of the planetocentric orbit. As before, the
unit of velocity is so chosen that the gravitational constant & — 1 .
Let —y be the true anomaly, in the planetocentric orbit, of the point
where the meteor enters the sphere of activity; owing to symmetry,
the true anomaly of the point of emersion is +v. If we denote the values
referring to the latter point by the indices 2, we can evidently write

0% cos 2y = && + nymy + G, - (3-5)

Again, differentiating the polar equation of the hyperbola and using
Kepler’s second law, we obtain

. m\t , .
= — e 81 >
o= (2] sns
from which we conclude that
00 = 00, = 5151 + m + 5151 = — 00y = — (5252 + nams + Czéz)o
(3-6)

The well-known formulae connecting the position elements with
the rectangular coordinates give for the point of immersion:

§1 = ofcos (0’ — ) c0s Q" — sin (v’ — ) sin Q” cos i'],
7 = g[cos (0’ — y) sin Q" + sin (' — y) cos 2’ cosi’], (3-7)
& = o sin (0’ — y) sin i, .
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The coordinates of the point of emersion are given by the same
equations except that —y is to be replaced by 4. But they can be
expressed in terms of &, #,, {; if we write 0’ + p = (0’ — p) + 2¢
and use the equations (3-7):

& = & cos 2y + sin 2y (1, cos ¢’ + {; cos Q' sin¢’),

7y = 1y €08 2y + sin 2y (—&; cos ¢’ + £, sin Q' sin ), (3-8)
Lo = &, cos 2y + sin 2p (—&; cos 2’ sin v’ — #; sin 2’ sin ¢’).

It will be useful to have the reverse tra.néformabion:

& = &, cos 2y 4 sin 2y (—ny cos e’ — (p cos L2 sin4’),
T = 7, €08 2y + 8in 2y (&, cos ¢’ — £, sin 2’ sin ¢'), (3-9)
{; = &y cos 2y + sin 2y (&, cos £’ sin ¢’ + 7, sin 2’ sin 7).

The elements of the relative (planetocentric) orbit can now be
eliminated by means of equations (3-3) and (3-4). After some impro-
vements, we get, instead of (3-8), equations of the form

sin 2y

£y = &1 cos 2y + o (Froé — £10%) (3-10)
and, instead of (3-9), '
2
£ = Eco8 2p + SR (e 06 1 g, (3-11)

(mp")t
Similar equations hold for the other two coordinates.

We shall formh another three pairs of equations by adding and sub-
tracting the corresponding equations in (3-10) and (3-11). After some
improvements we obtain three pairs of the following form:

(6 — &) [(mp)i cos yp + o siny] + (b3 + &) *sinyp =0, g,
(€2 + &) [(mp')i sin p — g cosy] — (&, — &) g®cosp = 0.

The polar equation of hyperbola, its derivative and the formula for
the relative velocity furnish the following relations:

LI
ecosy =—(p' — o),

. 1 (p'\t .
esmw=;,—(%) e¢
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Inserting into the previous equations, we get the following final for-
mulae for the unknown quantities &2, &2 etc.:

&, (w2 - %b) + ézQé = 51.('“’2 - %) - 5.199. s (3-13)

. . Qs . m _ - 593 o _ m
&00 — &, m [('“’2 —0?) — ?] = 100 51‘,;;1/‘ [(’w2 0?) E] .

- It remains to calculate the time 7', of the emersion out of the sphere
of activity. Hyperbolic motion is described by the following laws:

)

g =a'(esecF — 1), pcosy = a’'(e’ — sec F) (3-14)

where F is an auxiliary anomaly and can best be calculated from the

relation o

cosF = ———— . ‘

The time required for the body to pass from the pericentrum to the
- point with the true anomaly y is given by

km? . 1

T F
log tan (—4: + 5) .

Here mod is the modulus of logarithms to base 10.
Thus the time interval during which the body moves inside the
sphere of activity is

20'% '

, 1 F
T, — 7’1 = i [e tan F — mod log tan (4 + 5)] » (3-16)

where F is given by (3-15); it is to be taken 0 < F' < }rn. Applying
the formulae (3-4) and (3-14), the planetocentric elements a’ and e’
can be eliminated and the formula (3-15) becomes

G [t

w1
m

cos F' = (3-17)

59



Thus, eventually,
T, —T,= (3-18)

i 1 F
it —etmm(i 3]

3:51 SYNOPSIS OF THE FORMULAE

The subsequent numerical application will proceed along the follow-
ing lines:

Having calculated several sets of simultaneous positions of the pla-
net and the perturbed body, we determine, by interpolation, the mo-
ment 7', when the rectangular heliocentric ecliptical coordinates satisfy
the relation *

Xy — ) + (Y —9)® + (2 — 2)* = @*.

For this moment, we compute the velocity components of both bodies
and then pass to relative coordinates by putting

E=x1_X1’°"sé=:&1—X1"”
We now compute the following quantities:

00 = Elél + mm + 4'1&1 ’
wt =&+t + 0

J=guw?—1,
—_ 2 __ 02
cos I — VIV D%.e)+1 0<F<.

Then the inquired quantities follow from the formulae
&t — )+ Eee =& — ) — &eb
£,00 — ER[(w? — @?) — f] = — &100 — E:h[(w* — @*) — ]
and from the twosimilar systems obtained by interchanging everywhere
& and & by 7 and 5 or by { and { respectively.
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The corresponding time 7', is obtained from the formula

d . 1 F
T2=T1+(w‘4—25§ .[JsmF—-mlogtan(% +_§-)]

m- @
The constants d, f, g and & used above are defined thus:

d= with £k = 0-017202

kmt

if time is expressed in mean solar days,

- _° _2
f=- o’ I wme h=--
The following obvious relations were used as useful checks on numer-
ical results:

14

Z&g = Qz, zf],él + 2525.2 =0 )
T = w?, T&E, + TEE = 0.

Finally, we find out the position of the disturbing planet at the
moment 7', in the ephemeris and return to the heliocentric coordinates:

xy =X, + &, x2=Xs+éza

from which we can derive the new orbital elements, which are con-
sidered as unperturbed in the course of the further motion of the con-
sidered body.

3-3 The Lyrids

As mentioned above, the Lyrids are supposed here to follow exactly
the orbit of the comet Thatcher-Baeker derived by OrroLzZER [20].
Saturn passed close to this orbit last time in 1940.For eight positions
of the planet at that epoch (Table XIII), pointsin the orbit of the stream
were found that satisfy the condition that their distance from the planet
is equal to the radius of the sphere of activity of Saturn (Table XIV;
v is the true anomaly in the orbit of the stream). According to LAPLACE
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TaBLE XIIL

Coordinates and velocity components of Saturn

~J.D.

X Y z X Y z
2429000 - ! ! ! ! ! '

630-5 +8:11647 | +-4-51195 | —0-40178 | —0-17555 | 4-0-28282 | +0-00217

635-5 8:10147 4-53561 0-40157 0-17640 0-28234 0-00221
640-5 8-08627 4-55994 0-40140 0-17733 0-28185 0-00225
650-5 8:05578 4-60848 0-40102 0-17901 0-28086 | . 0-00234
660-5 8-02490 4-65675 0-40060 0-18074 0-27987 0-00242
680-5 7-96236 4-75285 0-39922 0-18424 0-27784 0-00260
700-5 7-89861 4-84325 0-39884 0-18760 0-27577 0-00277
720-5 7-83371 4-94294 0-39734 0-19107 0-27365 0-00294

[24], o =rM#, where r is the radius-vector of the planet and M its
mass. In our case, r = 9-3 so that p = 0-3555.

Tables XV and XVI contain the positions and velocities of the Lyr-
ids and Saturn respectively at the moment the meteors leave the
sphere of activity. From them, the new orbits of the eight various
groups of the Lyrids can be computed (Table XVII).

The results of the computations of the perturbations can be summar-
ized as follows:

(1) The longitude of the ascending node of the Lyrids is only slightly
affected so that the date of activity of the shower should be almost
invariable. This seems to be in accord with observation.

(2) The periods of revolutions are very strongly altered and lie within
the range from 350 to 530 years, while the unperturbed period is about
415 years. In consequence of this, the perturbed meteors are swept
out of the orbit of the stream and the corresponding portion of the
- orbit is devoid of meteors. This gap in the meteoric ring of the Lyrids
should cause deep minima of activity, when crossing the Earth’s orbit.

(3) The perturbed particles pass through the node far from the
Earth, as is evident from the value of the radius-vector, R, of their
orbits in the node (Table XVII). The comet’s orbit has R = 1-003
and the Earth comes as near to it as 300,000 km, while the heavily
disturbed particles pass by as much as 0-12 astro. units farther.
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The observations of the Lyrids,collected by GuTH [25], show occasio-
nal high maxima and again deep minima of activity. The minima can
be explained by the present theory of Saturn’s perturbing effect,
but not the maxima. It must be remembered, however, that the orbit
of the Lyrids is rather uncertain, that the picture may be altered
by considering a fairly thick ring instead of a linear distribution of
meteors as was done above, and that the perturbations by Saturn
were accounted for only approximately and those by Jupiter have
been neglected. Thus the author believes that the most important
result is that a major planet, coming near a stream, can very heavily
disturb the structure of the shower.

34 The Draconids

The 6rbit of the parental comet of the Draconids, Giacobini-Zinner,
is known much more accurately than it was in the previous case.
The same applies to the orbit of the swarm. Thus the study of the close
approach of the comet to Jupiter towards the end of the past century
bears much more reliable results. The perturbing action of Jupiter
on the comet itself was thoroughly studied by JEvDORIMOV [27],
who derived the osculating elements valid for August 23, 1897 (before
the approach) and for March 12, 1899 (after approach) (Table XXII).
On October 30, 1898, the comet came as near to Jupiter as 0-2 astro.
units.

As evident from the table, the perturbations were considerable.
It can be expected that meteors moving then in the vicinity of the
comet were heavily perturbed too and dispersed. I have computed,
by the method described in section 3-2, the perturbations of meteors
moving in the orbit of the comet, but preceding it (case 4) or follo-
wing it (case B) by 40 days; thus the original orbits of the meteors
were supposed identical with that of the comet before its approach
to Jupiter. The latteT was obtained by backward computation (C
in Table XXIT).1)

1) The swarm ahead of the comet (position 4) did not enter the sphere of activity

of Jupiter. Thus, in our rough scheme of the perturbations, it must be considered
as unperturbed and its elements in 1899 equal to those in 1897.
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It is evident that both the comet and the meteors are strongly
perturbed, and, what is the most important thing, the perturbations
are different so that the system of bodies becomes strongly dispersed.
The meteors moving by only 40 days before or behind the comet
are shifted so that they pass the node much farther from the Earth
than the comet. It may be expected, moreover, that a cluster of meteors
at the places A or B becomes strongly dispersed so that the density
of these meteor swarms is strongly reduced.

However, the quantitative discussion is an approximative one
for two reasons: First, the theory of perturbations is an approximation
only. The perturbations outside the sphere of activity cannot be negli-
gible. This is clearly seen from the discrepancy between the elements
of the comet deduced by our method (C in Table XXIT) and the ele-
ments obtained by Jevdovkimov by means of numerical integration
of the perturbations over the period from August 1897 to March
1899. It is seen that the results differ but that the present theory ac- '
counts correctly for the order of the perturbations.

The second fact is that the meteors ejected from the comet can-
not have exactly the same orbit as the comet and that the minute
differences become quite perceptible near aphelion, i. e. just near
Jupiter’s orbit. Then the perturbation can be fairly different.

But it is evident that both these circumstances cannot alter the
main conclusion: The meteors, even close at the comet, became very
dispersed by Jupiter’s action in 1898. Now, if we observe concentrated
swarms of meteors close to the comet (80 days behind it in 1933, 16
days behind in 1946) —and these swarms follow almost exactly the
comet’s orbit, we must conclude that they must have been generated
after the great approach to Jupiter or during it.

Thus we see that the Draconid stream is of quite a recent origin
or is still being formed — and this is a very important fact which
must be borne in mind when we discuss the origin of meteor showers.
Here we are dealing with a swarm the origin of which can be much
easier investigated than in other cases.
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4. MASS AND DENSITY OF THE METEOR STREAMS

The density of the particles in a meteor stream and the total mass
of the stream can be determined from the observed frequencies and
from the space occupied by the stream. Such calculations were re-
cently performed by LEviN [28] and LovEeLL [29]. Here a new value for
the Draconids will be derived, based on visual and telescopic observa-
tions. The method of deriving these results will be different from
those used by the mentioned authors and should be described in the
first place. '

4-1 Method of computation

The method used here is, in principle, due to KrESAK [30] and
some modifications only were performed by the writer. Nevertheless,
it is considered necessary to describe it briefly, because the original
treatment has not yet appeared in a form accessible to foreign readers.

The computation consists of several successive steps:

(1) An area of the atmosphere is to be outlined in which the hourly
rates of meteors are to be determined by observation.

(2) Owing to decreasing sensitivity of the eye for fainter meteors,
the observed numbers must be multiplied by factors, depending upon
the magnitude of the meteors, in order to get actual hourly rates in
the observed region.

(3) The estimated magnitudes of the meteors must be corrected
for the influence of different zenith distances.

(4) Having now the hourly rate as a function of the zenith magnitude,
we can pass from the zenith magnitudes to the masses of the meteors.
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(5) By adding the respective masses of meteors of individual magni-
tudes, we obtain the total mass of meteors that appeared in the obser-
ved region during an hour. Knowing the area of the observed region,
the position of the radiant and the velocity of the meteors, we can
calculate the volume of the space occupied by the meteors and calcul-
ate the spa.ial density.

(6) By multiplying this value by the total volume occupied by the
swarm, we obtain the total mass.

Let us now discuss the successive stages of computation more tho-
roughly.

4-11 THE DELIMITATION OF THE REGION TO BE WATCHED

As the observation near the horizon is practically impossible and
would make the subsequent reduction too complicated, it is best
to restrict the area under obser-.
vation by a small circle parallel
to the horizon. From the rea-
sons to be explained in sect.
4-13, the limiting zenith distan-
ce of 56°32' was chosen. Re-
stricting ourselves to the area
of the sky above this circle,
we can compute easily that
0-449 of the entire hemisphere
is watched.

In order to know the area of
the basis of this atmospheric
‘cape, S, we find, by means of
Fig. 4, the following formula:

8§ = (R + H)*sin?s , (4-11)

where R is the radius of the Earth, H is the average height of the ob-
gerved meteors above the earth and the angle at the Earth’s centre, ¢,
is given by the formula
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sin(z —¢) = L
- R+ H

Assuming H = 90 km, w® obtain for z = 56°32’

S = 57700 km? .

sinz.

'4-12 CORRECTION FOR THE SENSITIVITY OF THE EYE

(4-2)

The relation between the observed and true number of meteors
as a function of their apparent magnitude was studied by many

authors. The coefficients derived by KrEk-
sik apply immediately to the standard
group of experienced observers at the Skal-
naté Pleso Observatory, but will be used here,
too. Theé coefficients, reducing the rate obser-
ved by a single observer to the entire he-
misphere of the sky, are given in Table
XXIII. Denote the observed hourly rate
by f(m). Then the true hourly rate in our
cape is

F(m) = 0-449 c(m) ftm) . (4-3)

4-13 CORRECTION OF THE MAGNITUDES TO THE ZENITH

TasrLe XXIII
Kresdk’s coefficients c(m)
m c(m)

0 214
1 2-62
2 3-74
3 6-02
4 9-89
5 18-3

Two factors make the meteors fainter than they would be if obser-
ved in the zenith: the distance and the atmospheric extinction. In
order to allow for the latter, a numerical table of the normal extinction
was used, giving for z = 50° a correction of the observed magnitude m

to the zenith magnitude m,

m — m, = 0-14™ .

The influence of a different distance of the meteor from the observer
is more serious, but may be readily allowed for. By Fig. 5, the distance
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of a meteor at a zenith distance z from the observer O is

gin &

sinz’ (4-4)

D = (R + H)

Denote the ratio of the distance D to the distance of a meteor in the
zenith, H, by . Then we have the obvious relation

m,=m — 5logx. (4-5)

According to this relation, each observed meteor can be corrected
to the zenith magnitude. There is, however, a difficulty with the me-
teors that escaped our observation but must be counted with according
to 4-12. Thus it is more advisable to apply the correction statistically.
Let us divide the observed cape into a number of belts, bordered by
the circles at which the correction is just m, — m = — 0-5™;,m, — m =
= —1-5™ etc. For all meteors within a given belt, an average correction
will be applied. Denote by z; the zenith distance corresponding the
correction — }¢ in magnitudes. Then in the cape 0 < z < 2, the cor-
rection will be 0, in the cape 2, < z < z; the correction is —1™, for
2, < z < 25 the correction is —2™ etc.

By the equation (4-5), the correction of }i corresponds to an z,
given by
¢

F)' s » (4'6)

log z;, =

and the corresponding zenith distance z; follows from the equation

: 2h 4+ 1 — a2
cos 2 = g (4-7)
where it was put » = R : H. Taking again H = 90 km, we can form
the following small table: '
i m,—m 2;
m
1. —05 1:259 37°26’
3 —1-5 1-995 59°589’
5 —2:5 3:162 71°41'

72




Allowing for the extinction, we get the following final values:

i m,—m z;  correction area
m
0 0-0 0° -
1 —o05 sy O OIs8
0 —1 0.261
3 —15 5632, oo
5 —25 68°30’ :

The restriction of the cape under observation to z < 56°32’ can now
be explained. For larger zenith distances, the correction would be —2™
or larger. Thus meteors of an apparent magnitude 5™ would have
a zenith magnitude of 3™. But the number of the 5™ meteors is deter-
mined very poorly by visual observations and this uncertainty would
influence even the 3™ zenith magnitude meteors. Thus it is better to
restrict the observations to the cape where the corrections do not
exceed —1™. ‘

Assume now that the meteors are distributed at random all over
the hemisphere. Then the number of meteors in a given belt will be
proportional to the area of the belt. Taking the area of the hemisphere
as unit, we get the areas of the belts given in the last column of the
above table. '

Denoting the true hourly rate of meteors of a zenith magnitude m,
by Z(m,), we have

Z(m,) = 0-188 ¢(m) f(m) + 0-261 ¢(m + 1) f(m + 1). (4-8)

4:14 RELATION BETWEEN MASS AND MAGNITUDE

The mass of a meteor depends on its zenith magnitude as well as
on its geocentric velocity. A functional dependence of the form

log M = —0-4m, — y log wﬂ -+ log M (0, w,) (4-9)
(1}
seems to be generally accepted, but there are still considerable doubts

as to the value of the exponent of the velocities, ¥, and as to the mass
of a zero magnitude meteor at a given velocity. Opik [31] takes w, =
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= 58 km/sec and assumes M (0,58) = 76 mg, while Warson [32]
assumes M(0,58) = 250 mg. Quite recently WHIPPLE put M(0,28) =
= 20 g, a value which could considerably alter many of the results
of meteor astronomy. Yet this hypothesis has still to be tested. It will
be perhaps best to maintain Watson’s value in order to compare the
present calculations with other authors.

Another difficulty is met when dealing with the influence of the
velocity upon the brightness of the meteor. The exponent figuring
in the dependence law, y, is given values between 0 and 3. There is,
in my opinion, more reason to accept a value nearer to 3, but the ques-
tion is far from being settled. In the present calculations, two alterna-
tives were computed: ¥ = 1 and y = 3 respectively.

As a slight modification, we must bear in mind that in the definition
of the zenith magnitude, Opik assumes the distance of a meteor in
the zenith to be 100 km, while I have reduced the magnitudes to
a distance of 90 km. Taking this into account and accepting Watson’s
value of 250 mg for a zerp magnitude meteor moving with a velocity
of 58 km/sec, we can write the final formula as follows:

log M(m,, w) = — 0-4m, — y log % —05. (4-10)

415 SPATIAL DENSITY
The total mass of meteors entering within an hour the observed
cape of the atmosphere is
ms
= >Z(m,) M(m,) . (4-11)
my
Thisestimate is necessarily limited to the magnitudes visually observed,
as indicated by the limits. Experience shows that within this range,
the functional dependence Z(m,) can be well expressed by the for-

mula _
log Z(m,) = m, log » + log Z(0), (4-12)

where x is a positive number, characterizing the shower in question.
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Using this and (4-10), formula (4-11) can be rewritten thus:

B = Z' Z(0) M (0) 1008x —0-4m,

1 — 10 (logx— 0-4) (my—m,
1 — 10lbegx—04

It is, however, obvious that this value is lower than the actual mass
of the shower entering the observed region of the atmosphere, because
a very limited range of magnitudes can be observed. For visual observ-
ations, the lower limit of magnitudes is m, = 4™. Telescopic observ-
ations shift this limit to some 9™, but they are, unfortunately, very
rare. No doubt, the mass of the meteors fainter than these limits
cannot be neglected. On the other hand, we can safely put m; = —2™
as the upper limit in formula (4-11); brighter meteors are too rare
so that the general law (4-12) cannot be applied to them and they
must be' included individually, if necessary.

In the case of the Draconids (4-2), telescopic observations suggest
that the value of x is sensibly the same over the range from 0™ to 7™.
But in many other cases, visual data for meteors of 4™ and 5™ seem
to indicate that » = 1 for fainter meteors [35]. There are theoretical
reasons in favour of the reality of these ‘‘kinks’’ of the number-magni-
tude dependence curve [33, 34]. But visual estimates at 4™ —5™ are too
uncertain and only radar or telescopic observations can settle the
question of reality of the kinks. Unless this is done; we must always
bear in mind that the results of the visual statistics can furnish only
the lower limit of mass and density of the meteor showers.

In order to estimate the uncertainty, let us suppose that » = 2-5
in the visual range, which corresponds nearly to the actual value for
various streams. Then the total mass of meteors of a given magnitude
between —2™ and 4™ is the same and formula (4-11) gives

p, = TM(4) Z(4).
Suppose now that the same » holds even for fainter meteors down

a magnitude m,. Then the neglected mass of telescopic meteors, u,,
would be

or n= ) . Z(0) M(0) . (4-13)

my, — 4
Be=—F— Ul
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‘Theoretically, m, might be as low as 30™; fainter meteors are repelled.
by light pressure. If so, visual meteors would represent only about 209,
of the total mass of the swarm. It may be, however, expected that other
forces, e.g. the Poynting-Robertson effect, will sweep even much bright-
er meteors out of the shower. If m, — 10™, the visual meteors would
contribute by about 509, to the total mass.

However, if the kinks at about 4™ are real, we can put » = 1 for
fainter meteors and have

uy = M(4) Z(4) f 10-04m
1

== M) 7(4),

or telescopic meteors would contribute no more than some 109, to the
entire mass.

In general, we can say that the value of the mass of a swarm de-
pends sensibly upon the unknown amount of telescopic meteors and
dust but the order of this value is probably well determined by visual
observations. ,

In order to obtain spatial density, it is now necessary to determine
the space occupied by the meteors that entered the observed area
within an hour. This volume is 3600 Sw cos 2, where w is the geocentric
velocity of the shower and z is the zenith distance of the radiant.
Thus the density is, taking S = 57 700 km?,

= 4815, 10—24%% [g . em-7] (4-14)

4-16 TOTAL MASS OF THE SWARM

The total mass can be estimated provided we know the volume
of the space occupied by the swarm. The simplest assumption is that
the cross-section of the stream is circular and the Earth passes through
its centre?). Let it take the Earth days to pass through the stream,

#) These assumptions are probably roughly fulfilled in the case of the Draconids, in-
vestigated here. In general, the Earth Passes rather far from the central filament of the
stream and the formulae would be more involved.
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the radiant of which is at an elongation # from the apex. Thus the
area of the cross-section is, in km?, -

1
C =T .n?.302%. 864002 . sin% 9
= 5-28 . 102n2 sin% ) . ' (4-15)

Supposing the period of revolution of the ‘swarm J{or of its parental
comet) is 7' years, we may put the volume ¥V of the swarm to

V = 36524 T'v 86400 C :
= 1-665 . 103*T'vn2sin®n [cm?] , (4-16)

where v is heliocentric velocity of the shower at the node where it
meets the Eearth. The total mass can now be simply expressed by the
formula

’e

_ 2
o = V3 = 80 . 1011 % i, (4-17)
provided we insert here an average value of u. This value depends
on the distribution of meteors in the cross-section as well as along
the orbit and may be obtained from the observed frequency curves.
Let us measure the distances along the orbit by the difference of the
perihelion passages of the parental comet (or a fixed point in the orbit)
and of the meteors in question, L, measured in years. The instanta-
neous distance of the Earth from the central orbit of the stream can
be expressed in terms of the time, ¢, needed to travel this distance.
Then the mean value of 4 can be formally expressed in terms of the
following double integral:

T n

L (ue, 1yaar. (4-18)

#= T
0 0

4-2 The Draconids

The observations of the magnificent display in 1933 enable us to
calculate directly the total mass of the visual as well as the telescopic
meteors. The function Z(m,) was investigated by Fr.Warson Jr. [35].
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His results, based on visual observations of pE Rov [36] and telescopic
observations of SanpING and RicHTER [37] will be revised, but essen-
tially confirmed here. : '

Reduction of the visual observations by the single observer proceeds
easily along the lines explained in the previous sections. Table XXIV
gives in successive columns the following data:

N(m) actual numbers of meteors observed by de Roy during the
period from 19"15™ to 19°45™, when there was no moonlight and no
clouds. "

f(m) the average hourly rate of apparent magnitudes. From the
frequency curve given by Watson in Fig. 1 of his paper, it follows
that the duration of the shower was about 2 hours and that de Roy
would have seen roughly 5-6 times more meteors if he had watched
the whole display. Thus the relation is

f(m) = 2-8N(m') .

F(m) the average hourly rate of meteors that entered the cape
defined in 4-11, computed according to the section 4-12.

Z(m,) the average true hourly rate of meteors of zenith magnitude m,
calculated according to the section 4-13. The last column contains
the decadic logarithm of this quantity.

The telescopic observations present a greater difficulty. They were
made by means of a 70 mm telescope and the field was 6°, centered

TaBLE XXIV
Visual observations of Draconids, 1933

m N(m) * f(m) F(m) Z(my) log Z(m,)
0 1 2-8 27 14-5 1-16

1 7 19-6 231 142 2:15

2 30 84 141 454 2-66

3 90 252 680 975 299

4 95 266 1180 1390 314

5 68 190 1560 — _—

6 7 196 — —_ —_
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at the north pole. The reduction to the zenith magnitude is easy, the
correction being —1™ all over the observed field. In order to allow
for faint meteors that escaped observation, the same principles were
maintained as in section 4-12. In accord with Watson, an allowance
of 3-5™ was made for the use of the telescope; thus it was assumed
that the same coefficients apply to the telescopic meteors of a magni-
tude of m + 3-5 as to visual meteors of magnitude m. As only the ratios
of the coefficients are needed here, the meteor rates have been related
to that of the meteors of 4™.

In order to reduce the rates of the telescopic meteors to the cape
of the atmosphere defined in section 4-11, it seems to be preferable
to determine the proper coefficient empirically, by considering the
visual and telescopic rates of meteors of m, = 4™. In table XXIV,
we get Z(4) = 1390, while the telescopic observations give Z'(4) = 6-3.
Thus the ratio would be 220. But it seems to be probable that the
visually estimated rate is underestimated. Therefore we should better
extrapolate Z(4) from the visually estimated rates Z(m) for m =1 to
m = 3. In this case, we obtain Z(4) = 2250 and the coefficient turns
out to be 350. This value has been used.?)

The results of the described procedure are summarized in Table
XXV, the columns being as follows:

N(m) the number of telescopic meteors actually observed between
1925 and 20"25™,

f(m) the average hourly rate of apparent magnitudes. As the telescopic
observations lasted longer, the factor reducing the rates to the whole
duration of the shower is about 1:5, so that the hourly rate is f(m) =
= 0-75N(m).
F(m) the true hourly rate of apparent magnitudes, the escaped me-
teors having been allowed for. The rates have been related to those
of m = 4™ by multiplying them by a coefficient ¢(m) the definition

3) Dr. Kresék and M. Kresskové recently called attention to the fact that the observed
frequencies of telescopic meteors are rather considerably influenced by the relation
of the angular length to the magnitude [38]. However, their investigations probably
do not immediately apply to such slow meteors as the Draconids are. As the observa-
tions of Sanding and Richter do not provide the necessary data, this effect has been
neglected. It would probably make u & little greater.
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" The last column contains log Z(m,).
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of which is c(m — 35)
T c(4 —35)

Z(m,) the true hourly rates of zenith magnitudes in the same region
as the visual rates Z(m,) refer to. Thus

Z(m,) = 350F(m +1).

By means of the method of least squares, it was found (after appro-
ximate weights have been applied to) that, within the range from 0™
to 8™, the function Z(m) can best be represented by the equation

log Z(m) = 1-72 + 0-41m . (4-19)

The total mass of these meteors is now given by the formula

= 2(0) HO 92‘)? "S" 10000
w=20 40 (G} 5

— 164 (9—")" .
w

Taking successively y =1 and y =3 ', we .ha.ve, because of w =
= 23 km/sec, .
p=4l4g or p=2630g respectively.

TasLE XXV

Telescbpii: observations of Draconids, 1933

m N(m) f(m) F(m) Z(m,) log Z(m,)
3 1 0-8 B —
4 1 - 08 .08 | 2200 3-34
5 6 4-5 6-3 11000 4-04
6 20 15, 315 27000 4-43
7 29 . .22 77 23100 4-36
8 RIS T S 11 . 66 32200 - 451
9 T 82 (98) S = S —
|




©00s z brings no difficulty with it and was calculated to 0-81.
By formula (4-14), the average density comes out to be

d=11.10%g.cm= for y=1
or 3
2 m) ]

6-8.10%2g.cm~% for y =3.

_100

-0

- As the duration of the shower was only 2", the average value of

o 2. 4 l 6 8 m
’ Fig. 5.

Number-luminosity curve of the Draconids in 1933. Open circles: visual observations,

full circles: telescopic observations.

- (Z4vislost podtu meteori na jasnosti u Draconid z r. 1933. Prézdné koletka: visudlni

pozorovéni, plné: teleskopickd pozorovéni.

The swarm of the above density doés not appear to be spread over
an arc of the orbital ellipse larger than some 200 days. Taking now

n = 0-08 days and sin 7 = 0-52, the volume turns out to be
V = 6:6. 10% om® .
Thus the total mass of the Draconid stream is
Mo = 71 . 10" g provided y = 1
or Mo = 45 .10*2 g provided y = 3.

6 — Vamik a rank vyvojové stadia -
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The latter value seems to be nearer reality. Nevertheless it is believed
that even this figure is rather low. The meteors fainter than 8™ have
not been taken into account, but their mass may be considerable.
Also the contribution of meteors brighter than 0™ is not negligible,
however rare they were in 1933. Moreover, the volume occupied by
the swarm may be larger. Thus it can be concluded that a value within
ten times the above value is the most probable.

This above value agrees exactly with the estimate made by Lo-
VELL [29].

It is important to note that the total mass of permanent swarms
like the Perseids or Geminids comes out to be by about two or three
orders higher than that of the Draconids. If we assumed that the
swarm of the Draconids is distributed with equal density along the
whole orbital ellipse (which, of course, is improbable), the total mass
would increase about eight times. Even in this case, it would be fairly
lower than the total mass of the permanent showers. We must con-
clude that either such a faint comet as that of Giacobini-Zinner can-
not generate a great stream — or that the Draconids are just being
formed. The latter idea appears to be more probable in regard of
what was said in the previous chapters.
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VZNIK A RANA VYVOJOVA STADIA
METEORICKYCH ROJU

1. Vybuchy v kometdch a vznik meteorickijch roji

RIcHTER [12] upezornil na obdasné prudké vybuchy v jadrech
komet. WHITNEY [13] dospél k zavéru, %e vybuchy lze vysvétlit
gilnym vyvrhovinim meteorického prachu. Pfedpoklddal, Ze viechny
vyvriené Castice maji stejny rozmér a odvodil, Ze typicky vybuch
znamens vyvrzeni asi 10'2 g meteorického prachu.

Je v3ak spravnéjdi piedpoklidat, Ze vyvriené ddstice maji riizné
rozméry. Predpokladdal jsem rozdélovaci funkei ve tvaru N(s) ds ~
~ s~* ds. Tento zdkon plati pro Draconidy v oboru asi mezi s = 1 cm
a 8§ = 1072 cm. Predpoklidame-li jeho platnost az po s = 10-% cm,
vyjde celkovd hmota vyvrieného hala M, = 7.101 g. Kdybychom
predpoklddali, Ze tento zdkon plati pouze v témZ oboru jako bylnalezen
u Draconid a potet meteort slabsich ne% odpovidd s = 10~2 cm pred-
poklddali konstantni, byla by celkovd hmota M, = 2.10g. To je
¢islo ptili§ vysoké, protoze se blizi hmoté celé malé komety. Musime
tedy pfedpokladat, Ze pfi vybuchu je vyvrhovéno mnoho meteo-
rického prachu. ]
~ Vodst. 1.2 jsou uvazovany dynamické uéinky vybuchu.Tabulka ITI
ukazuje, Ze zpétnym impulsem se ob&Znd doba zméni jen o zlomek
dne, takze téinek je patrné nepozorovatelny.

Kdyby se castice, vyvriené pii vybuchu, rozptylily do prostoru
téhoz objemu jako zaujimaji Draconidy, daly by vétai 4stice p¥i se-
tkani se Zemi vznik meteorickému deitio hustotd asi 1/10 Draconid,
tedy velmi silnému. Rozptyl éastic v8ak velmi rychle pokraduje a jak-
mile zaujmou takovy prostor jako na pi. Perseidy, klesne hustota
asi na tisicinu hustoty Perseid. Jedinym vybuchem by tedy snad
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mohl vzniknout maly husty meteoricky oblak, nikoliv v8ak perma-
nentni roj.

Uvahy z kapitol 2, 3, a 4 vedou k zdvéru, Ze Draconidy patrné
vznikly teprve v tomto stoleti. To by vyZadovalo, aby v kazdém
obdhu kometa primérné vyvrhla asi 10! g meteord, mame-li vznik
roje vysvétlit ejekcemi. ProtoZe ejekéni rychlosti jsou u Draconid
patrné nejméné desetkrat mensi nez u vybucht, vyzadoval by tento
proces sily jen asi milionkrit mensi nez vybuchy. Takové déje jsou
jisté velmi dobie mozné.

V odst. 1.4 ukazuji, Ze pfedpoklidané ejekce malou rychlosti se
nemohou projevit v pohybu komety. Neni viak vyloudeno, Ze by se
mohly projevit fotometricky v nesymetrickém prib&hu jasnosti
komety pied a po perihelu.

2. Ejeként theorie tvofeni meteorickych roji

V odst. 2.1 jsou odvozeny vzorce pro vypodet drahy meteoru, vyvr-
Zeného z komety. Je-li ejekéni rychlost mald v porovnani s drahovou
rychlosti komety v misté ejekce, jsou vzorce pomérné jednoduché.
Numericks aplikace (tab. VI) ukazuje, Ze drahy meteori po ejekei
malou rychlosti se jen nepatrné lisi od drahy matefské komety. Rozdil
ob&znych dob mé vSak za nasledek, Ze meteor se od komety p¥i kazdém
ob&hu vidy vice vzdaluje. Tvar vzniklého roje je tedy uréen piedevsim
rozdélenim ob&znych dob meteori.

P#i dvahdch o ejekdni rychlosti u pozorovatelnych roji muzeme
nejlépe uréit jeji hodnotu u mladych roji, jez je§té nejsou rozptyleny
planetirnimi poruchami. Takovymi roji jsou velké oblaky Draconid
a Leonid. Autor odvodil u Draconid rychlosti nejvyse 30 m/sec a u Leo-
nid spife pod 1 m/sec. (Odst. 2.2).

Tvar roje po ejekei zdvisi hlavn® na velikosti a sméru ejekéni
rychlosti pro jednotlivé meteory. V odst. 2.3 jsou propoditany 4 modely
za pfedpokladu, Ze ejekéni rychlost je pro viechny meteory stdlé.
UvaZovéna je: (2.31) isotropni ejekce (t. j. ejekce do viech sméri),
(2.32) ejekce smérem ke Slunci, (2.33) ejekce pii zdporné rotaci jadra,
takZe vétdina meteori je vyvriena pod thlem 45° ke sméru pohybu
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komety, (2.34) ejekce p¥i kladné rotaci, kdy vétSina meteort je vyvr-
%ena pod tdhlem 135° ke sméru pohybu. RozloZeni meteori vzhledem
ke komet$ je také zndzorndno na obr. 3. Odvozeny jsou také vzorce
pro porovnéni rozlozeni meteord pred a za kometou.

3. Lokdlnt poruchy meteorickych roji

Po vzniku roje maji meteory tendenci se rychle rozloZit rovnomérnd
podél dréhy komety. Lokalni poruchy pfi prichodu planety v t&sné
blizkosti drahy roje viak mohou mistnd velmi rozrusit strukturu
meteorického prstenu.

Pro vypotet poruch jsem odvodil p¥ibliZnou metodu, zaloZenou
na Laplaceové principu sféry aktivity. Touto methodou byly vypo-
teny poruchy Lyrid pfi priichodu sférou aktivity Saturna. Kazdych
t¥icet let projde Saturn v okoli pfedpoklidané drihy roje a zméni
ob&zné doby meteora ze 415 let aZ na 350 nebo 530 let. Siln& ruSené
meteory prochézeji pfi tom uzlem blize ke Slunci neZ nerufené a mi-
jeji Zemi. Tim by bylo moZno vysvétlit obasné nipadné minima
dinnosti Lyrid. Poti# je viak v tom, %e driha Lyrid je ve skutetnosti
velmi §patné znama.

Druhou aplikaci je vypodet poruch komety Giacobini-Zinnerovy
a Draconid p¥i tésném ptiblizeni k Jupiteru r. 1897—1899. Jupiter
plisobi zna&né rozdilné poruchy na réznych mistech kolem komety,
takze meteorické oblaky kolem ni se musily rozptylit. Pozorované
husté roje z r. 1933 a 1946 bud tedy vznikly ptisetkéni slapovym rozpa-
dem komety nebo vznikly a% v tomto stoleti ejekcemi. Roj Draconid

“se patrnd stale jesté tvori.

4. Hmota a hustota meteorickyjch roji

Je vyloena methoda vypottu hmoty a hustoty roji z visudlnich
a teleskopickych pozorovani. UvaZuji vliv meteord, slabich nez je
mezné hvézdna velikost dans citlivosti oka. Metoda je aplikovéna

na urdeni hmoty a hustoty Draconid z r. 1933. Proved! jsem revisi
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zévislosti poétu meteord na jasnosti, kterou odvodil Warson, Nej-
pravdépodobnéjsi hmota roje je ¥fadu 102 g. To je pouze ¥4dové setina
az tisicina hmoty Geminid nebo Perseid. Tuto okolnost mozno vy-
svétlit bud tim, Ze tak slabd kometa jako kometa Giacobini-Zinnerova
nemuize dat vznik velikému roji, nebo tim, Ze roj Draconid se teprve
tvoli. Této druhé domnénce nasvédéuji urdeni stafi v kap. 2.
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BOSHVUHKHOBEHUE U PELIHHUE CTAQUHU
PASBUTHUSA METEOPHBIX IIOTOKOB

O-p M. IInasexn

Acmponomunecruii unemumym YCAH, IIpaza

1. B3pbl8bl 6 Komemaxr U 603HUKHOBEHUE MEMEOPHBLL NOMOKO8

Puxrep [12] o6patun BEEMaHAe HA IOBPEMEHHKE CHIBHEE B3PHIBHL,
npoucxofsumme B AApax KoMer. YuTHed [13] mpmmes K BEBORYy, 4TO
9TH B3PHIBHL MOMKHO OOBACHHTD CHJIBHEIM HM3BED)KEHHEM METeOpHOM
nemm. OH mpejmosiaraj, 9To Bce BHOPOINEHHEIE YACTHIL IO CBOHM
pasmMepaM OJIMHAKOBHL M M3 BTOTO BHIBEJI 3aKJIOYeHHe, YTO IPH THIIHY-
HOM B3pHIBe m3BepraeTcd OKoyo 10'% I MeTeOpHOM HELIH.

Ommnaxo, 6mo Gbi Goee mMPaBRIIBHEIM HPEANOIAraTh, 9TO BHOpPO-
IIeHHEIe YacTULH IO CBOAM pasmepaM He opmuaxoBu. ITo mpepmoso-
KeHHI0 aBTOpa QYHKNHWA pacIpefesleHAsA GhUIA IpefCcTaBIeHA B BHIO
N(s) ds~ s=*ds. IJTor BaKOH oOeTaeTcA B CHIe W HIJIA Hpaxonng
B IpefieiaXx OpUOIN3ATENBHO MeKAY 8 = 1 cM m 8§ — 10-2 cm. Ecim
IPeAITONIOMATL €ro JeHCTBATeNILHOCTS JO Ipefieda 8 — 10=5 cm, To
KOJTHY€TCBO MACCHI H3BEP/KEHHOro rayna 6yjger pasao My = 7 . 1011 r,
Eciin 1peamonoXuaTh, YT0 9TOT 3aKOH AEUCTBHTelleH JAMb JJISA TOTO
e IIpefieia, KaK 3T0 OBLTO yCTaHOBJIEHO ¥ [[paKOHH[ K 4TO KOJIAIECTBO
MeTeopoB Goiree cIabBIX, 4eM BTO COOTBETCTBYET 3HAUEHMIO § — 10=2cM
-~ IOCTOAHHO, TO KOJIIMIECTRBO Beel MaccH My paBHAMOCH 6 2 . 10T,
ITO YHMCIIO CAWMIKOM BEJIMKO BBHLY TOTO, 9TO €I'0 HOPARAOK M NMOPANOK
MaccH KOMeTHl HOYTH OAMHAKOBEL. MTak, MH JOIDKHH IIpefmosaraTsk,
9TO NPH B3PHIBe OOMJILHO M3BEPraeTc METEOPHAA HLUIb.

B maparpade 1.2 Geuim npuBefieHH cO0GparkeHns, Kacaolmmecs fa-
namnuecknx BiusAHud B3peBa. Tabn. 111 mokasmsaer, 4o B pesymsn-
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TaTe O0GpPATHOrO MMIYJhCA BpeMs OOpalleHAs H3MEHAeTCA JMIIL Ha
HEKOTOPYIO 9acTh [HA, TAK YTO STH BIHAHHA OY€BAJHO HE3aMETHHI.

Ecan 6u 9actnnsl, BHOpOmeHHEe IPH B3PHBE, PACCESIACH B IPO-
CTPAHCTBEe, pPa3MephH KOTOPOro coBmajamu O ¢ pasmepam:E obbema
IpOCTPaHCTBa, 3aHATOro JlpaKoHnmAamm, To Goilee KPYNHBe aCTHIL
IpH BCTpede ¢ 3emiledl ABJIAMACH O NPHIAHOA METEOPHOTO MOMAA C
IIOTHOCTBIO OKOIIO 1/;9 Jlpakonupg. 9T0 3HAYMT, 9TO HOMEb OBUI GH
ouzenb obmien. ONHAKO, YAaCTHIE PACCEeMBAOTCA OYeHb OHICTPO M KAK
TOJIBKO OHH 3aMMYT OPOCTPAHCTBO, PaBHOE IPOCTPAHCTBY 3aHATOMY,
naupumep, Ilepcemmamm, TO mIoTHOCTH yMeHbmETCA H 6yder mpwH-
OMA3ATENbHO paBHA OMHOH THICAYHOM [oaM mioTHOCTH Ilepcems.
B pesymbraTe B3pEIBa MOraio GH B TaKOM ciydae 06pa3oBaThCA He-
GonbIIoe IyCTOE METeOPHOe 00JIAaKO, HO HU KOMM 06pa3oM He mepMaHe-
HTHBIA IIOTOK. .

Ha ocmoBamnm cooGpasenuil, IpHBeJieHHHX B map. 2,3 I 4, MOKHO
CHenaTh BHBOJ, 9T0 JlpaKoHAIE OYEBH[HO BOSHHK/IM HE paHHee HEH-
HemHero BeKa. Ecam o6sacuuTh 06pasoBanme moTOKa, KaK pe3ysbTaT
npomecca H3Bep:KeHAH, TO HeOOGXONMMO, YTOGH OBUIO YHOBIETROPEHO
yciaoBHe, B CHJIy KOTODOro KCMeTa IPH KasKAOM CBOeM ofpauienam
BHOpacuBana 6 B cpeHeM npuGansmTensHo 101  MeTeopoB. Bmmay
TOr0, 9TO CKOPOCTH M3Bep:KeHWH y [|paxkonmp, oueBMIHO, MIHEMAILHO
B JIeCATh Pa3 MeHbIIe CKOpocTeldl B3PHIBOB, TO cmiia, TpebilemMas mis
9TOr0 mpolmecca, pPaBHANACH OH HPUOIA3UTENBHO JUMIL ONHON MHII-
JIAOHHOM [(OJIM CHJBI, HeoOXommmo#d nyA B3pHBOB. Tarme saBieHms,
HABEPHOE, BIIOJIHE BO3MOKHEL.

B map. 1'4 6m10 moxasano, 4TO IpeAIONareMoe M3BeP;KEHHE, IPO-
mcmejpmee ¢ HeGONBMION CKOPOCTBHIO, HE MOI'YT IPOABUTHCA B JIBHAKE-
HEAX KoMeTH. ONHAKO, He MCKIIIOYEHO, YTO OHM MOTJIM OBl IPOABHTHECH
¢doroMeTprUeCKEM 06pa3oM B HECHMMETPHYHOM M3MeHEHHH OJiecKa KO-
MeTH e peJ{ IPOX OMK/IeHreM Yepe3 e PUTeJIHii X 110CIIe ero IPOX O IeHHA.,

-,

2. Teopus 06pa3osanus memeopHyLE NOMOKOE 6 Pe3yabmame U3eePHCEHUL

B maparpade 2'1 6rutm mpuBeeHsl BHBEeHHBI®O QOPMYIH A BH-
umcyendas opbuTH MeTeopa, BHOGpomeHHOro Komeroil. Ecam ckopocts
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H3BEePKEHUH 110 CPABHEHUIO CO CKOPOCTHIO EBIKEHAA KOMOTEL 110 opbute
B MecTe MBBEPHKEHHS He BEJIMKA, TO GOPMYJIEI CPABHATENTHO IPOCTHL.
Yucnossie nanusie (1adi. VI) moraswsamwt, 9T0 OpOHTHE METEeOPOB mocIe
M3BEeP;KEHAs, MPOUCXOAAIIEro ¢ HeGOMBIIOH CKOPOCTHIO, JIMIIb HE3HA-
IATeLHO OTIMIAIOTCA OT OPGHTH KOMETH-PONOHAYATBHANE. Pesyin-
TATOM PA3JIMIMid BO BpeMeHN 06palleHns ABISAETCS, OLHAKO, TO 0GCTO-
ATEJABCTBO, 4TO METeOp IPH KayKAOM CBOEM OGpAIleHHH HeX3MEeHHO
Gomee m Gonee or romers ymanserca. WMrak, Bmna o6pasoBaBmerocs

IIOTOKa oupenesdeTcs IIpexie Bcero pacopenesienneMm BpeMeHun o6pa-
ieHusi MeTeopoB.

Yro racaercs cooGpaskeHHil OTHOCHTEIHHO CKOPOCTH M3BEP:KeHUH
y HabIIIOflaeMbiX ITOTOKOB, TO ee 3HAYeHMe Jy94Iie BCEro OIpeNieIuTh
JULSL MOJIOJBIX IOTOKOB, KOTOPHI® ellle He GLUIM PACCESHEl B pesyabTare
BO3MYIIeHAU mHOp HeifcTBHEM OPATIKEHAA IVTaHeT. TaKuMI mOTOKaMH
ABAAIOTCA Kpynueie obnaka [lpawommn m Jleommn. Asrop BmBen
cropoctd y [lpaKoHHZ, paBHAIIEECS MAKCHMAIBHO 30 M/CeK, a 'y
Jleonnn — cropee Mensine, uem 1 m/cex. (IMap. 2-2).

Buj moroka mocie m3BepkeHHA 3aBHCHT TriIaBHBIM obpasom or Be-
JIHHBL M HAPABJICHUsST CKOPOCTH MBBEDPIKEHHS OT/EIBHEIX METeODOB.
B map. 2.3 6sun pacumrapm 4 Mojesd, mpejmosaras, 4TO CKOPOCTH
HM3BEeDHEHHUA [ BCEX METeOPOB HEeM3MEHHA .

Bruin mpusenensr paccyssmenus, kacamoamumecs BOmpocos: (2-31)
N30TPONHBIX H3BeP)KeHUd (T. e. M3BEPKEeHUH BO BCEBO3MOMKHEIX HA-
IpaBJIeHUAX ), (2-32) W3Bep:KeHWIl B HANPABICHAN K Comnany, (2—33)
M3BeP;KeHUH [PH OTPHNATeNHHOM BDPALIEHAN ANpA, T. €. TAKAX Hm3Bep-
JKEHUH, IPU KOTOPHX GONBIIMHCTBO MeTeopoB BEHIOpACHIBaeTCsA MOJ
yraom 45° B HaUpPaBIeHWN IBIKEHHA KOMETHI, (2-34) uzBep:kemmit
TIpH IOJIO/KUTE/IEHOM BPAIIeHHN KOMETH, T. €. TAKAX U3BEePKeHHil, IpH
KOTOPHX GOJIBIAHCTBO METEOPOB BHIODACHBAETCA ION yraom 135°
B HampaBJIeHUN JBIREHUS KoMeThl. Pacmososkenme MeTeopos oTHoCH-
TeIbHO KOMETH OHIIO Take HpHBefeHO Ha puc. 3. PapHEM obpazom
Obnu BHIBefIeHK (JOPMYJIIEI, HpPMMEHsIeMEIe OpH CpaBHEHUH PAacIoJIo-
FHeHHS1 METeOpPOB Iepej, KOMeTOH U 3a HeH.
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3. MecmHuvle 603MYyUeHUSL MEMEOPHHLT NOMOKOE

IMocne o6pa3oBaHHs MeTEOPHOro IIOTOKA Y METEOPOB HPOABJIAETCH
TeHIeHIAA K GHCTPOMY H DABHOMEDHOMY PACIOJIOMeHHIO BOIbL OpOH-
THL KoMeTH. MecTHEe BO3MYILUEHHA OPH NPOXOMACHAA IIIIAHETH
B HENOCPEeACTBeHHOH GimsocTH K opbATe HOTOKA, ONHAKO, MOrYT
BHI3BATh CHJIBHEIE MECTHH® BO3MYLIeHHS B CTPYKTYpPe MeTeOpHOro
KOJIBIA.
AsTopom 6ni1 pazpaboTan HPHGIMKEHHEIH METOR AJiA BHYMCICHHA
BO3MYIUEHMH, OCHOBAHHHI HA mpuUHNHANe Jlamaca OTHOCATENBHO cde-
pu axrmprOCTH. Il0 3TOMY Merony OBUIM BHIYMCJICHBl BO3MYIICHUS
Jlupup mpm mX mpoxoxienum: uepes cdepy awrmemoctm Catypma.
Yepes xaxanx 30 ger CaTyps npoiifier B OKPeCTHOCTAX Hpejmnosara-
eMoil OpOLITH NOTOKA M M3MEHAT BpeMs ofpalieHns MeTeopoB ¢ 415 jer
ua 350—530 ser. IIpu aTOM CHILHO BO3MYIEHHEIE MeTEOPH NPOXOAAT
yanom Ha paccrosnuE Gomee Gmmaxom Conmimy, 4eM HeBO3MYIIEHHEIE
MeTeOpH, B CHJIY 4ero mepBsie MEHYIOT 3emmo. Taxam 06pasoM MOKHO
6510 OB OOBSICHATL MOBPeMeHHEIe, 3AMETHEIe MAHAMYMEL TesATeIbHOCTH
Jlmpun. TpymHOCTH, OJHAKO, BAKIIOYAIOTCA B TOM, 410 opGuTa Jlmpup
B IeACTBUTEIFHOCTA OYeHBb MAJIO H3BecTHA. [lanpueiimum npuMeHeHIeM
MeTOJa, IPHBEJIeHHOro B Hap. 2, ABIAETCHA BHIYUCIEHHe BO3MYIIEHHl
romerst [[mmaro6umum-lluanepa u JIpakomma mpu nX OpHOIHKEeHUR
- k IOnmurepy, mmepmam Mecto B 1897—1899 romax. IOnnTep BrI3EIBaeT
3HAYATEIHHO JPYT OT APYra OTIMYAlommecs BO3MYIUEHHA HA pasjimi-
HEIX MECTaX BOKDYT KOMeTHl, TaK 49TO MeTeopHEE o0jaKa BOKPYT Hee
NOIDKHH paccemBaThesi. JITaK, IUIOTHRe IIOTOKH, HAOIOAaBIIMECH
p 1933 u 1946 romax, o6pa3oBajiACh MK B Pe3yjbTaTe MEXaHHIECKOTO
pacmana mpm BeTpede ¢ IOmmrepom, wnm B pesyibTaTé M3BEpHCHHI,
AMeBIIAX MecTO yiie B Hacrosmewm crojernd. Ilorox [lpaxonmp, ode-
BAJ{HO, HAXO[ATCA BCE ellle B CTAJAA 00pa30BaHUS. o

E
i

4. Macca u niomHoCMb MeMEOPHHLT NOMOKOE.

3]1801: m3jaraeTcs MeTOJ BBIUMCJICHHSI MACCH M INIOTHOCTH MOTOKOB,
paapa6o'rammﬁ Ha OCHOBAHHMH BH3YyaJIbHHX H TeJIECKONHYEeCKHX Ha~
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6monennit. Peus muer o Bamaumm MeTeopoB, Goxee ciaGhx, gem mpe-
AeNIbHAA MArHUTYAA, RAHHAA YYBCTBHUTENHLHOCTHIO IIa3a. JTOT METOX
OLUI HCHONB3OBAH AJIA ONpENeNIeHES MACCH M INIOTHOCTH Jpaxonnn
B 1933 rony. ABTOp mpOHM3BeN CHOBA BHUHCIICHHA B 3aBHCHMOCTH KO-
AIM9eCTBA METeopoB oT Guecka, BHBegeHHOR Yorcomom. HamGosee
BePOATHOI Maccoil moToKa Grma GH Macca 1012 r nopafxa. ITo mpex-
CTaBJIACT C TOYKH 3PEHHA MOPSHIKA MACCH JMIUb BEJIMIUHY OT OXHOMR
COTOH A0 OHOM THICAYHOH NONH MAacCH Temanmx wam Ilepcenn. 9to
06CTOATEILCTBO MOMKHO OGBACHATD MM TeM, YTO TaKas caabasa KoMera,
Kar Komera [[xmakobmuu-l{nrmepa, He MOMer BH3BATH obpasoBannsa
6OMBIOro mOTOKA, WM TeM, 9TO MOTOK Jpakxonnn Haxopmures B cragmm
00pa3oBaHmA. JT0 MOCHERHEe NPENTONOMKEHTe OLHpaeTcsas Ha ompefie-
JIeHHe BO3pacTa, NPUBEJIeHHOe B map. 2.
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