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Abstract The paper presents a rigorous analysis of the singularities of elastic fields

near a dislocation loop in a body of arbitrary material symmetry that extends over

the entire three-space. Explicit asymptotic formulas are given for the stress, strain and

the incompatible distortion near the curved dislocation. These formulas are used to

analyze themain object of the paper, the renormalized energy.The core-cutoff method

is used to introduce that notion: first, a core in the form of a curved tube along the
dislocation loop is removed; then, the energy of the complement is determined (Æthe

core-cutoff energy). As in the case of a straight dislocation, the core-cutoff energy has

a singularity that is proportional to the logarithm of the core radius. The renormalized

energy is the limit, as the radius tends to 0ý of the core-cutoff energyminus the singular

logarithmic part. The main result of the paper are novel formulas for the coefficient of

logarithmic singularity (the ‘prelogarithmic energy factor’) and for the renormalized

energy.
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1 Introduction

A dislocation is an imperfection in the lattice structure of the crystal. At the macro-
scopic level, a dislocation is modeled as a defective, incompatible deformation in a
continuous body. The paper deals with a linearly elastic body of arbitrary symme-
try that contains a dislocation loop. The body occupies the whole three-dimensional
space R3 and is free from external forces. The goal of the paper is to analyze rigor-
ously the asymptotics of deformation and energy near the dislocation.

The dislocation loop is represented by a closed non-intersecting curve C ⊂ R
3

(see Section 3) and by the Burgers vector b x R3 (see Section 4). It is assumed
that C has a twice continuously differentiable arc-length parametrization. We give
C one of the two orientations and denote by τ�x� the unit tangent vector to C at
x x Cü A defective deformation is described by an incompatible distortion field
H þ R3 É C � Ten2 i.e., H is not the gradient of a globally defined deformation
u þ R3 � R3ü This distinguishes the elastic dislocation theory from the classical
elasticity, whereH coincides with the displacement gradient∇u of a globally defined
deformation u þ R3 � R

3
ü In the elastic dislocation theory H is a ‘primitive’ to be

determined from the balance and constitutive equations.
Conventions on tensors We denote by Tenl the space of tensors of order l on

R
3 (for any nonnegative integer l). Only orders from 0 to 4 are needed in the suc-

ceeding treatment. The spaces Ten0 and Ten1 have the standard representations. The
space Ten2 is identified with the space of linear transformations from R

3 into itself.
Ten2sym ⊂ Ten2 is the subspace of symmetric second-order tensors. The space Ten3

is identified with the space of linear transformations T fromR3 into Ten2ÿ the value
of T on a vector b x R

3 is denoted by T�b�ü The space Ten4 is identified with the
space of linear transformations C from Ten2 into itself; we again use square brackets
to denote the linear argument of Cý i.e., C�A� is the value of C on A x Ten2 ü

The material is characterized by the fourth-order elasticity tensor C which has
the major symmetry

C�H1� ċH2 Æ H1 ċ C�H2�
for everyH1ý H2 x Ten2symý the minor symmetries

C�H� Æ C�H�Tý C�H� Æ C�HT�ý (1.1)

for everyH x Ten2ý and is positive definite on symmetric tensors

C�E� ċ E Ï 0

for every nonzeroE x Ten2sym ü For notational convenience we allow non-symmetric
arguments of Cý but Equation (1.1)2 shows that C�H� depends only on the symmetric
part ofHü
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The strainEý stressTý and the stored energyW corresponding to an incompatible
distortionH are given by

E Æ 1

2
�H +HT�ý T Æ C�H� (1.2)

and

W�H� Æ 1

2
C�H� ċHü

Given a dislocation loopC with the Burgers vector b x R
3
ýwe seek to determine

the distortion tensor field H x L1
loc�R3ýTen2� satisfying the system

curlH Æ −b ¸ τ δC in R3ý

divC�H� Æ 0 in R3ý

H�x� � 0 as VxV� îü



































(1.3)

Here the curl and divergence are interpreted in the sense of distributions (see Section
2), τ is the unit tangent to the curve Cý δC is the length measure restricted to C (i.e.,
the ‘line analog’ of Dirac’s delta function, see Section 4).

Theorem 1 The system (1.3) has a unique solutionH x L1
loc�R3

ýTen2�ý given by
H�x� Æ §

C

K�x − y��b ¸ τ�y��
Vx − yV2 dl�y� (1.4)

x x R
3 É Cý where K þ R

3 É  0( � Ten4 is an infinitely differentiable degree 0

homogeneous function.

Here dl is the length element along C and y x C is the integration variable. The
function K is said to be degree 0 homogeneous if K�λr� Æ K�r� for every non-zero
r x R3 and every λ Ï 0 (i.e., K�r� depends on r only through rÂVrV). Theorem 1 is a
particular case of [6; Theorem 4.1], which proves the existence and uniqueness of the
system (1.3) with a general divergence-free measure µ in place of the measure −b¸
τ δCü Nevertheles, we give a proof in Section 5, based on the Fourier transformation
that is similar to that of [6; Theorem 4.1].

The function K in Theorem 1 is determined completely by the tensor of elastic
constantsCý i.e.,K is independent of the shape ofCü In the constructionof the solution
in (1.4), a use will be made of the well-known line integral of the ‘Biot-Savart type’
(see (4.5)).

In view of the linear relations (1.2), the strain and stress are given by equations
qualitatively similar to (1.4), with degree 0 homogeneous functions easily derivable
from Kü

The form of the right-hand side of (1.4) shows that H has a singularity at the
points of Cý i.e., VH�x�V� î as x approaches Cü

Sets with positive reach We now describe the singularity ofH quantitatively. If
0 Î δ Ð îý the tubular δ-neighborhood of a subset M of Rn is defined by

U�Mýδ� Æ !x x Rn Ø dist�xýM� Î δ)
where
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dist�xýM� þÆ inf !Vx − yV Ø y x M)
is the distance of the point x x Rn from Mü Following Federer [8], we say that
M is a set with positive reach if there exists δ x �0ýî� with the property that for
each x x U�Mýδ� there exists a unique closest point x¿ on Mý i.e., a unique point
x¿ x M such that

Vx − x¿V Ð Vx − yV for all y x Mü

The supremum of all δ with the just described uniqueness property is referred to
as the reach of M and denoted by reach�M�ü The map x � x¿ý defined on
U�Mý reach�M�	ý is called the metric projection ontoMü Every compact embedded
manifold of classC2 inRn is a set with positive reach [8; p. 432]; thusC is a set with
positive reach. The metric projection x � x¿ý defined for any x x U�Cý reach�C�	ý
plays a central role in the subsequent considerations.

Let L þ dom L � Ten3 be a function defined on the set

dom L Æ !�ρý σ� x R3 ·R3 Ø ρ Ç 0ý VσV Æ 1ý ρ ċ σ Æ 0)
by

L�ρý σ��b�
VρV Æ §

R

K�ρ + tσ��b ¸ σ�
Vρ + tσV2 dt (1.5)

for every �ρý σ� x dom L and every b x R3ü Since K is bounded and Vρ + tσV2 Æ
VρV2 + t2 for every �ρý σ� x dom Lý the integral in (1.5) converges; moreover, the
function L� ċ ý σ� is degree 0 homogeneous for each σ x S2ý as a simple scaling of
the variable t in (1.5) shows.

Note The definition (1.5) shows that the function L�ρý σ�ÂVρV is the one-
dimensional Radon transform of the functionK�r�ÂVrV2 (also termed X-ray transform
in [11; Chapter I, §6]).

Theorem 2 LetH¿ þ U�Cý reach�C�	 É C � Ten2 be given by

H¿�x� Æ L�x − x¿ý τ�x¿�	�b�
Vx − x¿V (1.6)

x x U�Cý reach�C�	 ÉCü Then there exist c Ï 0 and δ x �0ý reach�C�� such that

WH�x� −H¿�x�W Ð c log
1

Vx − x¿V (1.7)

for every x x U�Cý δ� ÉCü

Remarks (i) Equation (1.6) shows that the qualitative growth ofH¿ near C is

VH¿�x�V É 1

Vx − x¿V as dist�xýC� � 0ÿ

the field H has the same qualitative growth (by Inequality (1.7)).
(ii) The logarithm on the right-hand side of (1.7) is not essential (in contrast to

the logarithm in (1.15), below). The following weaker estimate suffices for the proof
of Theorem 3:

WH�x� −H¿�x�W Ð f�x�
for every x x U�Cý δ� ÉCý where f x L2�U�Cý δ�	ü
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The asymptotics ofH implies thatH is not square integrable; thus the total energy
of a dislocation loop is infinite,

§
R3

W�H�dv Æ îý (1.8)

as is well known. Here dv is the volume element in R3ü The infinite contribution to
the integral in (1.8) comes from the singularity ofH at C: one has

§
U

W�H�dv Æ î (1.9)

for any neighborhood U of CüOn the other hand, the energy of the complement ofU
is finite

§
R3ÉU

W�H�dv Î îü (1.10)

In view (1.8)–(1.10), we apply the finite-core regularization of the energy func-
tional. Namely, one removes a tubular coreU�Cý r� (0 Î r Î δ) along the dislocation
loop and determines the energy of the complementR2 ÉU�Cý r�ü That energy is fi-
nite, but has a singularity that is proportional to the log�1Âr�ü The regularized energy
is the limit, as r � 0ý of the core-cutoff energy minus the singular logarithmic part.
The following theorem gives formulas for the coefficient of logarithmic singularity
(the ‘prelogarithmic energy factor’) and for the regularized energy.

To this end, we define the normal space of C at y x C by

Nor�Cýy� þÆ !ρ x R3 Ø ρ ċ τ�y� Æ 0)
and the circle of radius r Ï 0 in the normal space by

Circ�Cýyý r� þÆ !σ x Nor�Cý y� Ø VσVÆ r)ü (1.11)

Furthermore, we denote by κ�y� the curvature vector of C at the point y x Cý i.e.,
the second derivative of the position on C with respect to arc-length parameter (see
Section 3), and introduce the function J þ U�Cý reach�C�	 � R by

J�x� Æ �1 − κ�x¿� ċ �x − x¿�	−1 (1.12)

for every x x U�Cý reach�C�	ü It will be shown in Section 3 that the denominator in
(1.12) is positive for all indicated xü It will be also shown that J is the jacobian of the
map x � x¿ü Let δ be as in Theorem 2.

Theorem 3 (i) The nested integrals in the formula

Θ Æ §
C

§
Circ�Cýyý1�

W�L�σý τ�y�	
 dl�σ�dl�y� (1.13)

absolutely converge; for any r x �0ý δ� the integrals in the formula
Φ Æ §

U�Cýr�

�W�H� − JW�H¿�
dv + §
R3ÉU�Cýr�

W�H�dv −Θ log
1

r
(1.14)

absolutely converge and the value of the right-hand side of (1.14) is independent of
the choice of rü

(ii)We have
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§
R3ÉU�Cýε�

W�H�dv Æ Θ log
1

ε
+ Φ + ��ε� (1.15)

for every 0 Î ε Ð δý where � þ �0ý δ� � R satisfies

��ε� � 0 as ε � 0ü (1.16)

The quantity Φ is the renormalized energy and Θ the prelogarithmic energy factor.
Both Φ and Θ are functions of the Burgers vector and the shape of the curve Cü

Future papers will treat dislocations in bounded domains, the variation of Φ un-
der variations of the shape of Cý the Peach-Köhler force, and the particular case of
isotropic materials.

This research was motivated by the paper [4] by Cermelli and Leoni and the sub-
sequent paper [3] by Blass and Morandotti. The autors consider point dislocations
in a bounded region in the two-dimensional space. The region is interpreted as the
cross section of a cyllindrical region inR3 containing straight dislocations. The cited
papers prove, among other things, the existence of the renormalized energy and show
that the derivative of the regularized energy with respect to the position of the dislo-
cation can be identified with the Peach-Köhler force.

After the research of the present paper was completed, a recent paper by Fonseca,
Ginster and Wojtowytsch [10] came to my attention. The paper deals with motion of
dislocations in a simplified elasticity, where the elastic energy depends quadratically
on the full displacement gradient rather than its symmetrized version. Thus the elas-
ticity tensor is given by C�H� Æ H for all H x Ten2 (and the minor symmetry
requirement (1.1) is dropped). In [10; Theorem 4.5] the authors determine the prel-
ogarithmic factor for their choice of Cý and it can be shown that the above formula
(1.13) yields this result of Fonseca, Ginster and Wojtowytsch in the particular case
of their choice of Cü (There is no counterpart in [10] of the formula (1.14) for the
renormalized energy.)

This article is organized as follows. Section 2 collects some preliminarplies, such
as some notations and the distributional versions of divergence and curl. Section 3 de-
scribes basic geometric propertie of the closed curve Cü First, a formula is given for
the gradient of the metric projection onto Cü Further, the coarea formula is used to
prove an equation that replaces the volume integration over U�Cý reach�C�	 by the
area integration over the cross sections of U�Cý reach�C�	 followed by the length
integration along Cü Finally, it is proved that the arc-length distance is majorized by
a multiple of the euclidean length of the secant. Section 4 introduces the Burgers
vector of the dislocation loop via the properties of normal currents [9]. Further, it is
proved that the distortion tensor is the sum of a divergence-free term and the gra-
dient of a globally defined displacement. Section 5 solves the equilibrium equations
by the Fourier transformation. Section 6 proves the asymptotic form of the distortion
field near the dislocation. The in Section 7 to describe the summability properties of
the equilibrium distortion field. Section 8 proves the above theorem on renormaliza-
tion of the energy. Finally, Appendix A summarizes some properties of the Fourier
transformation used in the proofs.

Throughout the proofs in the succeeding sections c denotes a “generic” constant
that may change from line to line.
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2 Distributional gradient, divergence and curl

2.1 Vector product The vector product of uý and v x R
3 is denoted by w Æ u·vÿ

in components wi Æ εi jkuj vký where εi jk is the alternating tensor and ui , vi and
wi are the components of uý v and wü The suffixes iý jý kýÚ range from 1 to 3 and
the summation convention is used. The vector product of a second-order tensor A
with a vector u is a second-order tensor B Æ u · A x Ten2 with the components
Bi j Æ εjklAiluk ü Note the identity

u · �v · A� Æ �Au� ¸ v − �u ċ v�Aý (2.1)

which is an analog of u · �v · w� Æ v�u ċ w� − w�u ċ v�ü
2.2 Gradient, divergence and curl for smooth functions If R3 is an open subset
ofR3 and u a continuously differentiable functiononR3 with values inR3

ýwe define
the divergence, curl, and gradient of u as functions on R3 with values in Rý R3 and
Ten2ý respectively, given by

div u Æ ui ýi ý

�curl u�i Æ εi jkukýj

�∇u�i j Æ ui ýj ü

If A a continuously differentiable function on R3 with values in Ten2ý we define the
divergence and curl ofA as functions onR3 with values inR3 and Ten2ý respectively,
given by

�divA�i Æ Ai j ýj ý

�curlA�i j Æ εjklAilýkü

2.3 Gradient, divergence and curl for distributions Wenow introduce the scalar-
vector- and tensor-valued distributions and the corresponding gradient, divergence
and curl in the sense of distributions. To unify the treatment, we introduce distribu-
tions with values in a finite dimensional real inner product space Yü To this end, we
define the Schwartz testfunction space D�R3ýY� as the set of all infinitely differ-
entiable functions f þ Rn � Y with compact support. We denote by D

′ �R3ýY�
the set of all real linear functionals on D�R3

ýY� which are continuous under the
Schwartz topology inD�R3ýY�ü The elements T ofD ′�R3ýY� are called Y-valued
distributions on R3

ü We denote the value of T on f x D�R3
ýY� by 1Týf9 ü

Two particular cases of Y-valued distributions to be used below are the distribu-
tion Tg corresponding to a locally integrable function g þ R3 � Y and the distribu-

tion Tµ corresponding to an Y-valued measure µ on R3. These are given by

1Tgýf9 Æ §
R3

f�x� ċ g�x�dv�x�ý 1Tµý f9 Æ §
R3

f�x� ċ dµ�x�ý

f x D�R3ýY�ü We denote by L1
loc�R3ýY� the set of all locally integrable Y-valued

functions on R3 and byM�R3ýY� the set of all (finite) Y-valued measures on R3ü

We define the distributional versions of differential operators ∇ý div and curl
by formal integration by parts. Let v x D

′ �R3ýR3� and B x D
′�R3ýTen2� be
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vector- and tensor-valued distributions. We define the gradient of v as a distribution
∇v x D

′ �R3ýTen2� by
1∇výA9 Æ −1vý divA9 ý

for any A x D�R3ýTen2�ü Similarly, we define the divergence B as a distribution
divB x D

′ �R3ýR3� by
1 divBý u9 Æ −1Bý∇u9

for any u x D�R3ýR3�ü as above. Finally, we define the curls of v and B as distri-
butions curlv x D

′�R3
ýR

3� and curlB x D
′�R3

ýTen2� by
1 curl vý u9 Æ 1vý curl u9 ý
1 curlBýA9 Æ 1Bý curlA9

for any u and A as above.
Throughout the rest of the paper, the operators∇ý div and curl are interpreted in

the distributional sense (unless stated otherwise).

3 Geometry of closed curves

The purpose of this section is to summarize some properties of closed curves that will
be used in the proof in the subsequent sections. Proposition 1 determines the gradient
∇P of the metric projection P onto Cü Proposition 2 determines the formula for the
replacement of the volume integration over a tube U�Cý ε� by a successive integra-
tion over the perpendicular cross-sections of U�Cý ε� followed by a line integration
along Cü The formula involves the jacobian which is equal to V∇PVü Proposition 3
estimates the arc-length distance along segments on S3 and on C by a multiple of the
euclidean distance of the endpoints of the segment. This will be used in Section 6 to
estimate the difference of the functionH¿�x� at two points by integrating its gradient
along a curve that avoids the singularity at the origin (rather than along the segment
connecting these points).

By a loop we mean the range C of a twice continuously differentiable map γ þ

�aý b� � R
3 (−î Î a Î b Î î) which satisfies

(i) γ�a� Æ γ�b�ý 6�a� Æ 6�b� and ��a� Æ ��b�ÿ
(ii) V6�t�V Æ 1 for every t x �aý b�ÿ
(iii) the restriction of γ to �aý b� is injective (i.e., if tý s x �aý b� satisfy γ�t� Æ

γ�s� then t Æ s).

Any map γ with these properties is called a parametrization of Cü The tangent and
curvature vectors are maps τ þ C � R3 and κ þ C � R3 given by

τ�γ�t�	 Æ 6�t�ý κ�γ�t�	 Æ ��t�ý t x �aý b�ÿ
clearly,

τ ċ κ Æ 0 everywhere on Cü

Recall that C is a set with finite reach and that the metric projection associates
with any point x in the tubular neighborhoodU�Cý reach�C�	 its projection x¿ x Cý

which we alternatively denote by P�x�ü
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Proposition 1 Themetric projectionP is continuously differentiable onU�Cý reach�C�	ÿ
for every x x U�Cý reach�C�	 we have

1 − κ�x¿� ċ �x − x¿� Ï 0 (3.1)

and

∇P�x� Æ �1 − κ�x¿� ċ �x − x¿��−1
τ�x¿� ¸ τ�x¿�ü (3.2)

Proof Let x x U�Cý reach�C�	ü Then
Vx − x¿V2 Ð Vx − yV2 for all y x Cü

Let x¿ Æ γ�t0� where t0 x �aý b� and let � þ �aý b� � R be given by ��t� þÆ
Vx − γ�t�V2ý t x �aý b�ü The function � has a minimum at t0ü We have

H�t� Æ −2�x − γ�t�� ċ 6�t�ý
��t� Æ 2V6�t�V2 − 2�x − γ�t�� ċ ��t� Æ 2�1 − �x − x¿� ċ ��t��ü

The conditions H�t0� Æ 0ý ��t0� Ñ 0 yield

τ�x¿� ċ �x − x¿	 Æ 0ý 1 − κ�x¿� ċ �x − x¿� Ñ 0ü (3.3)

Let us show that we have the strict inequality sign in (3.3)2 for every point x x
U�Cý reach�C�	ü Assume, to the contrary that

1 − κ�x¿0� ċ �x0 − x¿0� Æ 0 (3.4)

for some x0 x U�Cý reach�C�	ü Let x x U�Cý reach�C�	 be such that x¿ Æ x¿0ü

Then the last equation and (3.4) give

1 − κ�x¿� ċ �x − x¿� Æ −κ�x¿0� ċ �x − x0�
and as (3.4) requires κ�x¿0� Ç 0ý we see that there are points x in the vicinity of x0
for which the left-hand side of (3.3)2 is negative. This contradiction shows that we
have the strict inequality sign in (3.3)2 for every point x x U�Cý reach�C�	ü This
also completes the proof of (3.1).

We nowproceed to the proof of (3.2). By [7; Theorem 4.1 and Corollary 4.5],P is
continuously differentiable. Formula (3.2) is a particular case of the derivative of the
metric projection onto aC2 manifoldM ⊂ R

n given in a coordinate form in [1; The-
orem 4.1] and in the coordinate-free form from [16; Theorem 2.3.4(ii)]. However, we
give a direct derivation here. Let x x U�Cý reach�C�	ü Since the function is constant
on the set x¿+ Nor�Cýx¿�ý we see that the kernel of ∇P�x� contains Nor�Cýx¿�ü
Further, since the values of the map P are constrained to belong to Cý the range of
∇P�x� is contained in the tangent space Tan�Cýx¿�ü The described properties of the
kernel and range of ∇P�x� imply that ∇P�x� is of the form

∇P�x� Æ m�x�τ�x¿� ¸ τ�x¿� (3.5)

where m is a scalar-valued function on U�Cý reach�C�	ü We rewrite (3.3)1 as

τ�P�x�� ċ �x −P�x�� Æ 0

and differentiate in the direction a x R3 to obtain

mκ ċ �x − x¿��τ ċ a� + τ ċ �a −m�τ ċ a�τ� Æ 0ý
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where we write κ and τ for κ�x¿� and τ�x¿�ü As a is arbitrary, this simplifies to

�κ ċ �x − x¿� − 1	m + 1 Æ 0ý

i.e., m Æ �1 − κ ċ �x − x¿�	−1 and (3.5) gives (3.2). æ
For any numbers rý s satisfying 0 Ð r Î s Ð reach�C� and any y x C we put

U�Cý rý s� Æ !x x R
3 Ø r Ð dist�xýC� Î s)ý (3.6)

Ann�yý rý s� Æ !ρ x Nor�Cýy� Ø r Ð VρV Î s)ü (3.7)

Finally, define the function J þ U�Cý reach�C�	 � R by (1.12), where we recall
(3.1).

Proposition 2 Let 0 Ð r Î s Ð reach�C�ý and let f þ U�Cý rý s� � R be a

Lebesgue measurable function satisfying

§
U�Cýrýs�

VfVJdv Î îü

Then

§
U�Cýrýs�

fJ dv Æ §
C

§
Ann�yýrýs�

f�y + ρ�da�ρ�dl�y� (3.8)

da is the area element of the plane Nor�Cýy�ü
Proof We use the coarea formula for maps with values in manifolds [9; Theorem
3.2.22] to the map metric projection P from U�Cý reach�C�	 into the manifold Cü

The application to the situation of the present proposition gives

§
U�Cýrýs�

fJdv Æ §
C

§
U�Cýrýs�pP−1�y�

f�x�da�x�dl�y� (3.9)

where J is the jacobian of the mapPü In the present case of the unidimensional target
manifold C we have J Æ V∇PV and hence (3.2) provides (1.12). Further, observing
that

U�Cý rý s� p P−1�y� Æ U�Cý rý s� p �y + Nor�Cý y�	 Æ y + Ann�yý rý s�ý
we see that (3.9) reduces to

§
U�Cýrýs�

fJdv Æ §
C

§
y+Ann�yýrýs�

f�x�da�x�dl�y�
and the substitution x � ρ Æ x − y in the inner integral yields (3.8). æ

Recall that the arc-length distance d�pý q� of two points p and q on a compact
manifold M ⊂ Rn is the length of the shortest curve on M that connects p and
qü Clearly, the euclidean distance of p and q in R

n is majorized by the arc-length
distance:

Vp − qV Ð d�pý q�ü
We now show that for a sphere inRn and forC conversely the arc-length distance is
majorized by a constant multiple of the euclidean distance in R3ü
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Proposition 3 (i) LetM be a spere M in R
n
ý n Ñ 2ü Then the arc-length distance

d0 onM satisfies

d0�pý q� Ð 1

2
πVp − qV (3.10)

for any pý q x Mü

(ii) There exists c Ï 0 such that the arc-length distance dC on C satisfies

dC�yý z� Ð cVy − zV (3.11)

for any yý z x Cü

Proof (i): Since (3.10) is invariant under scaling and translation, it suffices to con-
siderM Æ Sn−1ü Let c be the shortest arc onM that connects p and qý letΠ ⊂ Rn

be the plane in Rn that contains pý q and 0ý and let Σ þÆ M p Π (i.e., Σ is the
great circle containing p and q). It is well-known that c is the shorter of the two seg-
ments onΣ with endpoints p and qü We identifyΠ withR2ý Σ with the unit circle in
R2ý and the points with p Æ �1ý0� and q Æ �cos�ý sin��ý where � x �0ý π�ü Then
d�pý q� Æ �ÿ further, denoting l þÆ Vp − qVý we have

l2 Æ �cos� − 1�2 + sin2 � Æ 2 − 2 cos�ý

i.e.,

l Æ 2

√

1 − cos�
2

Æ 2 sin��Â2�ü
Consider l as a function of � on the interval �0ý π� and put f��� þÆ lÂ�ü We have

f′��� Æ � cos��Â2� − 2 sin��Â2�
2�2

ü

The numerator on the right-hand side is non-positive: indeed, a differentiation shows
that the numerator is a decreasing function of � on �0ý π� and its value at 0 is 0ü Thus
f′ Ð 0 and hence f is a decreasing function. Its minimum value is f�π� Æ πÂ2 since
l�π� Æ 2ü Hence f��� Ñ πÂ2ý i.e., (3.10) holds.

(ii): The length of C is L Æ b − aü Let M be the circle in R
2 with the center

at the origin and of the circumference Lý and denote the arc-length distance on M

by d0ü It will be shown below that there exists a continuously differentiable map
G þ R3 � R2 with bounded gradient that maps C isometrically onto the circle M
(under the arc-length distances on C and M), i.e., G�C� Æ M and

dC�yý z� Æ d0�G�y�ý G�z�� (3.12)

for all yý z x Cü By (3.10),

d0�G�y�ý G�z�� Ð 1

2
πVG�y� − G�z�Vÿ (3.13)

note also that
VG�y� − G�z�V Ð kVy − zV (3.14)

for every yý z x R3ý where k Æ max  V∇G�x�V Ø x x R3(ü Relations (3.12), (3.13),
and (3.14) give (3.11) with c Æ πkÂ2ü

The proof is now concluded with the construction of the mapGü Letω þ C � M

be given by
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ω�γ�t�	 Æ �LÂ2π��cos tý sin t�ý t x �aý b�ü
Then ω is an isometry under the arc-length distances on C and Mü Let further
θ þ R � �0ý 1� be a continuously differentiable function such that θ Æ 1 on
� − îý reach�C�Â2� and θ Æ 0 on � reach�C�ýî	ü Finally, let G þ R3 � R2 be
given by

G�x� Æ














θ� distC�xý C�	ω�P�x�	 if x x U�Cý reach�C�	ý
0 x R

2 if x x R
3 ÉU�Cý reach�C�	ü

One finds that G is continuously differentiable onU�Cý reach�C�	 and its derivative
is bounded and that G vanishes on U�Cý reach�C�	 ÉU�Cý reach�C�Â2	ü Thus the
extension by 0 outsideU�Cý reach�C�	 results in a continuously differentiable func-
tion on R3 with bounded derivative. Finally, since P reduces to the identity map on
Cý we have G�x� Æ ω�x� for all x x Cü As ω is an isometry under the arc-length
distances on C and Mý we have (3.12). Thus G has all the required properties. æ

4 Dislocation density tensor. Burgers vector

In the present approach to dislocations, a deformation with defects is described by a
distortion tensor field H x L1

loc�R3
ýTen2� such that the dislocation density tensor

α Æ curlH

is a measure inM�R3
ýTen2�ü The definition gives that α is divergence-free:

div α Æ 0ü

The distortion tensor field H is said to be defect-free if there exists a function u x
W1ý1

loc
�R3ýR3�ý called the displacement, such that

H Æ ∇uü

We now analyze defective deformations for which the dislocation density is a
measure that is supported on a loop C in R3ü We denote by δC x M�R3ýR� the
length l measure (Æ the 1-dimensional Hausdorff measure) restricted to Cü Thus δC
is defined as to satisfy

§
R3

fdδC Æ b

§
a

f�γ�t�	 dt

for any continuous scalar-valued function f on R3ý where γ þ �aý b� � R3 is a
parametrization of Cü

Proposition 4 If α x M�R3ýTen2� is a measure supported on a loopC ⊂ R3 then

div α Æ 0 (4.1)

if and only if there exists a (constant) vector b x R3 such that

α Æ −b¸ τ δCü (4.2)
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The vector b in (4.2) is the Burgers vector corresponding to the dislocation density
αü The form of α in equation (4.2) is traditionally postulated; here it will be shown to
be a consequence of the tangentiality of Federer-Fleming’s normal currents [9]. The
reader is referred to [5–6] and [13–14] for earlier usages of currents in the theories
of dislocations.

Proof We prove preliminarily the following assertion about a vector-valued mea-
sures: if µ x M�R3ýR3� is a measure supported on a loop C ⊂ R3 then

divµ Æ 0 (4.3)

if and only if there exists a constant c x R such that

µ Æ −cτ δCü (4.4)

The necessity of (4.4): Assume that µ satisfies (4.3). In the language of the geometric
measure theoryµ is a normal 1-dimensional current [9; Chapter Four]with the support
contained in C. We first note that µ represents a 1-dimensional flat chain and invoke
[15; Proposition 4.1] to learn that µ is absolutely continuous with respect to l and the
corresponding the density a is parallel with τý i.e., a Æ gτý where g þ C � Rü In
terms of the parametrization, Equation (4.3) reads

b

§
a

g�γ�t�	6�t� ċ ∇f�γ�t�	 dt Æ 0

for every f x D�R3ýR�ü This is rewritten as
b

§
a

g�γ�t�	 d

dt
f�γ�t�	 dt Æ 0

and the Du Bois-Reymond lemma implies that g is constant. The sufficiency of (4.4)
follows by reversing the last few steps of the preceding part. This completes the proof
of the preliminary assertion.

To complete the proof of Proposition 4, we apply the preliminary assertion to the
measures µi Æ αTei ý i Æ 1ý 2ý 3ý where  ei Ø i Æ 1ý 2ý 3( is the standard basis in
R3ü If α satisfies (4.1), then each µi satisfies (4.3) and thus µi Æ −ciτ δC with some
constants ci x Rü Then, if we define b Æ �c1ý c2ý c3�ý the measure α satisfies (4.2).
This completes the proof of the direct implication in Proposition 4. The converse
implication follows from the converse implication in the preliminary assertion. æ

The following proposition determines the distortion field H corresponding the
dislocation density tensor α of the form (4.2). It will be apparent from the proof that
the result can be generalized to the dislocation density represented by any divergence-
free tensor-valued measure αü

Proposition 5 LetM þ R3 ÉC � Ten2 be given by

M�x� Æ 1

4π
§
C

b ¸��x − y� · τ�y�	
Vx − yV3 dl�y� (4.5)

for each x x R
3 ÉCü ThenM is locally integrable and

curlM Æ −b ¸ τ δCü (4.6)
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A fieldH x L1
loc�R3

ýTen2� is a solution of the equation

curlH Æ −b ¸ τ δC (4.7)

if and only if

H Æ M +∇v

where v is some function inW1ý1
loc

�R3ýR3�ü
Proof To prove the local integrability ofMý it suffices to prove the local integrability
of the functionmý given by

m�x� Æ §
C

�x − y� · τ�y�
Vx − yV3 dl�y�ý

x x R3 ÉCü Then

Vm�x�V Ð §
C

1

Vx − yV2 dl�y�
and hence the integration over the ball B�x0ý r� of center x0 x R3 and radius r Ï 0

gives

§
B�x0ýr�

Vm�x�Vdv�x� Ð §
C

§
B�x0ýr�

1

Vx − yV2 dv�x�dl�y�ü (4.8)

We now choose and fix an arbitrary value of the radius r Ï 0 (e.g., r Æ 1) and prove
that there exists a c Î î such that

§
B�x0ýr�

1

Vx − yV2 dv�x� Ð c (4.9)

for all x0 and y in R3ü This can be proved elementarily, but it also follows by using
an estimate for the Riesz potentials. Indeed, the integrand in (4.9) is the Riesz poten-
tial I1�x − y� (up to the Riesz normalization constant, which is not essential here).
Inequality (4.9) then follows from [2; Proposition 3.1.2(a)] with α Æ p Æ 1 and f Æ
the characteristic function of B�x0ý r�ü (The constant c then turns to be equal to c1r

where c1 is independent of rý which is not needed here.) Inequalities (4.8) and (4.9)
then give

§
B�x0ýr�

Vm�x�Vdv�x� Ð cl�C�ý
i.e., m (and hence M) is locally integrable.

Thus the theory of Fourier transformations of tempered distributions can be used
to prove (4.6). Appendix A summarizes the properties of the Fourier transformation
that will be needed in the proof. We first determine the Fourier transform Ö of Mü

To this end, we rewrite (4.5) in the form

M�x� Æ §
R3

g�x − y� · dC�y� (4.10)

where g is the function

g�r� Æ �4π�−1rÂVrV3ý 0 Ç r x R
3

and C is the measure
C Æ b ¸ τ δCü
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The right-hand side of (4.10) is the convolution of g with Cü By Property 3 in Ap-
pendix A, Ö is the product of the Fourier transforms ê and Ì of g and Cý i.e.,

Ö Æ ê · Ìü (4.11)

To determine ê ý we note that g Æ ∇fý where f�r� Æ −�4π�−1VrV−1 is Newton’s
potential. The Fourier transform é of f is given by é �ξ� Æ −VξV−2ü This follows,
e.g., from the general formula [12; Equation (25.25)]. Here and below we assume that
ξ Ç 0ü Thus

ê �ξ� Æ iξÂVξV2
by (A.1). The Fourier transform of C is represented by a bounded continuous Ten2-
valued function. Then (4.11) gives thatÖ is represented by a locally integrable func-
tion

Ö �ξ� Æ iξ · Ì�ξ�ÂVξV2ü (4.12)

By (A.5) and (2.1),

�curlM��Æ ξ · �ξ · Ì�ξ�	ÂVξV2 Æ �Ì�ξ�ξ	 ¸ ξÂVξV2 − Ì�ξ�ü
By Proposition 4 we have divC Æ 0 and hence Ì�ξ�ξ Æ 0 by (A.4). Thus

�curlM��Æ −Ì�ξ�
and the inverse Fourier transformation yields (4.6).

To complete the proof of Proposition 5, we note that S is a solution of Equation
(4.7) if and only if

curl�S −M� Æ 0

and the last equation is satisfied if and only if

S −M Æ ∇v

for some distribution v x D
′�R3

ýR
3�ÿ the requirement S x L1

loc�R3
ýTen2� gives

that∇v is represented by a locally integrable function; hence v x W
1ý1
loc

�R3
ýR

3�ü æ

5 The solution of equilibrium equations (Proof of Theorem 1)

We first assume that the system has a solution H and prove that then H is given
by (1.4) with K having the properties described in Theorem 1. This will prove the
uniqueness. The existence will follow by showing that (1.4) with the just constructed
function K gives the solution.

By Proposition 5, any solution of (1.3)1 is given by

H Æ M +∇v (5.1)

whereM is given by (4.5) and v is some function inW1ý1
loc�R3

ýR
3�ü Thus the goal is

to determine vü If we insertH from (5.1) into (1.3)1, we obtain the equation

divC�∇v� Æ − divC�M�ü (5.2)

We employ the Fourier transformation of tempered distributions to describe the
solution v of (5.2). In the notation of the proof of Proposition 5, the Fourier transform
Ö is given by (4.12) and consequently, the Fourier transform of C�M� is



6. Asymptotics of the solution near C (Proof of Theorem 2) 16

iC�ξ · Ì�ξ��ÂVξV2ü
By (A.4), − divC�M� is transformed into

−C�ξ · Ì�ξ��ξÂVξV2ü (5.3)

Let A be the acoustic tensor of the material, i.e., the function A þ R3 � Ten2

defined uniquely by the equation

A�ξ�a ċ b Æ C�a ¸ ξý b ¸ ξ�
for every ξý aý b x R3ü The tensor A�ξ� is symmetric and positive semidefinite for
all ξ x R

3 and positive definite if ξ Ç 0ü If ξ Ç 0ý we denote by B�ξ� the inverse of
A�ξ�ü Since A� ċ � is 2-homogeneous, its inverse B� ċ � is degree −2 homogeneous
and infinitely differentiable function on R3 É  0(ü

By (A.2) and (A.4), divC�∇v� is transformed into−A�ξ�÷ where ÷ is the Fourier
transform of vü Hence (5.2) transforms into

A�ξ�÷ Æ C�ξ · Ì�ξ��ξÂVξV2
by (5.3). Thus

÷�ξ� Æ B�ξ�C�ξ · Ì�ξ��ξÂVξV2ü
By (A.2), the Fourier transform of the gradient of v is given by

�∇v���ξ� Æ 1

i
B�ξ�C�ξ · Ì�ξ��ξ ¸ ξÂVξV2ü (5.4)

Let D x Ten2 ü The second-order tensor-valued function

Z�ξýD� þÆ 1

i
B�ξ�C�ξ ·D�ξ ¸ ξÂVξV2

is linear in D and degree −1 homogeneous in ξ (recall that B� ċ � is degree −2
homogeneous). Hence there exists a function G1 þ R

3 É  0( � Ten4 such that
Z�ξýD� Æ G1�ξ��D� for all ξ Ç 0 and D x Ten2ÿ Equation (5.4) is then rewritten
as

�∇v���ξ� Æ G1�ξ��Ì�ξ��
for all ξ Ç 0ü Similarly, (4.12) can be rewritten as

Ö �ξ� Æ G2�ξ��Ì�ξ��
where G2 þ R3 É 0( � Ten4 degree −1 homogeneous. Thus the Fourier transform
Ñ ofH is given by

Ñ �ξ� Æ G�ξ��Ì�ξ�� (5.5)

where G Æ G1 + G2.
The inverse Fourier transform �G of the function G is therefore degree −2 homo-

geneous by Property 2 in Appendix A, and hence of the form

�G�r� Æ K�r�
VrV2 ý r Ç 0ý

where K þ R3 É  0( � Ten4 is an infinitely differentiable degree 0 homogeneous
function. The inverse Fourier transformation changes Equation (5.5) into Equation
(1.4) by Property 3 in Appendix A.

The proof is complete.
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6 Asymptotics of the solution near C (Proof of Theorem 2)

We put

F�r� þÆ K�r�
VrV2 ý (6.1)

0 Ç r x R
3
ý where K is as in Theorem 1. Since K is infinitely differentiable, VKVand

V∇KV have finite maxima on the unit sphere S2 in R3ÿ since K is degree 0 homoge-
neous function, the maximum of VKVon S2 is also the maximum of VKVonR3É 0(ü
Thus

m0 þÆ max !VK�r�V Ø r x R3ý r Ç 0) and m1 þÆ max !V∇K�r�V Ø r x S2)
are finite numbers.

Lemma 1 There exists m Ï 0 such that

VF�r� − F�s�V Ð mr−3
0 Vr − sV (6.2)

for every nonzero rý s in R3ý where

r0 Æ min VrVý VsV(ü
Proof We shall prove (6.2) with

m Æ 2m0 + 1

2
πm1ü (6.3)

We put r þÆ VrV and s þÆ VsV and assume, without loss in generality, that r Ð sü We
write

F�r� − F�s� Æ A + Bý

where

A Æ � 1

r2
− 1

s2
�K�r�ý B Æ K�r� − K�s�

s2
ü

We have

VAV Ð m0[ 1r2 − 1

s2
[ü

We have

[ 1
r2

− 1

s2
[ Æ 1

r2
− 1

s2
Ð 2�s − r	

r3
Ð 2Vr − sV

r3

where the first inequality follows from r Ð s and the second from s − r Æ Vs − rV Ð
Vr − sVü Thus

VAV Ð 2m0r
−3
0 Vr − sV (6.4)

since r0 Æ r by r Ð sü

The quantity B will be estimated by integrating∇K along the shortest arc on S2

that connects the projections of rý s onto S
2
ü Thus let p þÆ rÂr and q þÆ sÂs be the

projections of r and s onto S2ý let c be the shortest arc on S2 that connects p with q
(see Section 4) and let d be the length of c ü Let us show that

Vp − qV Ð Vr − sV
r

ü (6.5)
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Splittig the difference r − s into the sum of r − rsÂs and rsÂs − sý we obtain

Vr − sV2 Æ Wr − rsÂsW2 + WrsÂs − sW2 + 2�r − rsÂs	 ċ �rsÂs − s	ÿ (6.6)

using the identity

�r − rsÂs	 ċ �rsÂs − s	 Æ r�1Âs − 1Âr	�r ċ s − rs�
and the inequalities 1Âs − 1Âr Ð 0 and r ċ s − rs Ð 0ý we see that the third term on
the right-hand side of (6.6) is non-negative. Thus (6.6) provides

Vr − sV2 Ñ Wr − rsÂsW2 Æ r2Vp − qV2
which proves (6.5). Letω þ �0ý d� � c be an arc-length parametrisation of c ü By the
homogeneity of degree 0 of Ký we have K�r� − K�s� Æ K�p� − K�q�ü Then

VK�r� − K�s�V Æ Zd§
0

∇K�ω��S�dtZ Ð d

§
0

V∇K�ω�VVSVdt Ð m1d

and Inequalities (3.10) and by (6.5) yield

VK�p� − K�s�V Ð 1

2
πm1Vp − qV Ð 1

2
πm1

Vr − sV
r

ü

Thus

VBV Ð 1

2
πm1

Vr − sV
r3

ü (6.7)

Inequalities (6.4) and (6.7) give (6.2) with m as in (6.3). æ
Proof of Theorem 2 Let H and H¿ be as in Theorems 1 and 2. Let x x

U�Cý reach�C�	 É C be fixed. To simplify the notation, we temporarily translate
the coordinate system to achieve that x¿ Æ 0. Accordingly, it is possible to choose
a parametrization such that γ þ �−aý a� � R3, γ�0� Æ 0, and V6�t�V Æ 1 for all
tü Throughout the proof, t denotes any element of �−aý a� and c denotes a positive
constant that is independent of x and tý but whose value changes from line to line.
We also use the abbreviations

n�t� þÆ �VxV2 + t2	1Â2 and γ¿�t� þÆ tτ¿ü

Since τ¿ is a unit vector orthogonal to x (the latter being a consequence of the fact
that 0 is the closest point on C to x), we have

n�t� Æ Vx − γ¿�t�Vü (6.8)

We rewrite (1.4) and (1.6) as

H�x� Æ a

§
−a

F�x − γ�t�	�b ¸ 6�t�� dtý H¿�x� Æ §
R

F�x − γ¿�t�	�b ¸ τ¿�dtý
where the second relation uses the definition of L in (1.5). Next we split the difference
H�x� −H¿�x� into the sum A + B where

A Æ a

§
−a

�F�x − γ�t�	�b ¸ 6�t�� − F�x − γ¿�t�	�b ¸ τ¿�	dtý (6.9)
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B Æ − §
VtVÏa

F�x − γ¿�t�	�b ¸ τ¿�dtü
We denote the integrand in (6.9) by I�t� and write

I�t� Æ I1�t� + I2�t�
where

I1�t� Æ F�x − γ�t�	�b ¸ 6�t�� − F�x − γ¿�t�	�b ¸ 6�t��ý
I2�t� Æ F�x − γ¿�t�	�b ¸ �6�t� − τ¿��ü

We have
VI1�t�V Ð WF�x − γ�t�	 − F�x − γ¿�t�	WVbV

since Vb ¸ 6�t�V Æ VbVü By (6.2),
WF�x − γ�t�	 − F�x − γ¿�t�	W Ð AR−3

0 �t�Vγ�t� − γ¿�t�V
where

r0�t� Æ min!Vx − γ�t�Vý Vx − γ¿�t�V)ü
Further, since K is bounded by m0 and m0 Ð mý the definition (6.1) of F gives

VI2�t�V Ð mVbVW6�t� − τ¿WÂWx − γ¿�t�W2 Ð mVbVr−2
0 W6�t� − τ¿Wü

Thus

VI�t�V Ð mVbVr−3
0 �t�Vγ�t� − γ¿�t�V+mVbVr−2

0 �t�V6�t� − τ¿V (6.10)

for any tü We estimate the right-hand side of (6.10). Prove first that

r0�t� Ñ cn�t� (6.11)

for any t and some c Ï 0ü By [8; Theorem 4.8, Assertion (13)], the map Λ þ

U�Cý reach�C�� � R3 ·R3, given by

Λ�x� Æ �x¿ý x − x¿�ý x x U�Cý reach�C��ý
is lipschitzian onU�Cý ε ′� for every ε ′ Î reach�C�ü Thus there exists c Æ c�ε ′� Ï 0

such that
VΛ�x� −Λ�y�V Ð cVx − yV

for any xý y x U�Cý ε ′�ÿ in particular,
Vx¿− yV+ Vx − x¿V Ð cVx − yV (6.12)

for any x x U�Cý ε ′� and y x Cü Using x¿ Æ 0ý we see that Inequality (6.12) with
y Æ γ�t� provides

VxV+ Vγ�t�V Ð cVx − γ�t�Vü (6.13)

Next we apply Inequality (3.11) with y Æ γ�t� and z Æ 0 to obtain

dC�γ�t�ý0� Ð cVγ�t�Vÿ
noting that dC�γ�t�ý0� Æ VtVý this reduces to VtV Ð cVγ�t�Vü Hence (6.13) gives

n�t� Ð VxV+ VtV Ð cVx − γ�t�Vü
A combination with (6.8) establishes (6.11).
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Finally, we estimate the differences Vγ�t�−γ¿�t�V and V6�t�−τ¿V in (6.10). Since
the second derivative of the function δ�t� þÆ γ�t�− γ¿�t� is bounded on �−aý a� and
δ�0� Æ 7�0� Æ 0ý we obtain by Taylor’s expansion that there exists a constant c such
that

Vγ�t� − γ¿�t�V Ð ct2ý V6�t� − τ¿V Ð cVtVü (6.14)

By (6.11) and (6.14), the two terms on the right-hand side of (6.10) are estimated
by

ct2n−3�t� Ð cVtVn−2�t� and cVtVn−2�t�ý
respectively. Here we have used the inequality VtVÂn�t� Ð 1ý which is a direct conse-
quence of the definition of n�t�ü Hence WI�t�W Ð 2cVtVn−2�t� and consequently

VAV Ð 2

a

§
0

VI�t�Vdt Ð a

§
0

4ctn−2�t�dt Æ 2c log �1 + a2ÂVxV2	ü (6.15)

Since VKV is bounded, we obtain from (6.1) the estimate

WF�x − γ¿�t�	�b ¸ τ¿�W Ð cVbVn−2�t�
and hence

VBV Æ c §
VtVÏa

n−2�t�dt Æ 2c
î

§
a

n−2�t�dt Ð 2c
î

§
a

dtÂt2 Æ 2cÂaü (6.16)

Inequalities (6.15) and (6.16) provide

VH�x� −H¿�x�V Ð VAV+ VBV Ð 2c log �1 + a2ÂVxV2	 + 2cÂaü (6.17)

Elementary properies of logarithm yield that there exist c Ï 0 and δ x �0ý reach�C��
(with c possibly larger than the current value of c) such that the last expression in
(6.17) is majprozed by c log 1ÂVxV for all VxV Î δü Thus (6.17) reduces to

VH�x� −H¿�x�V Ð c log
1

VxVü
This proves (1.7) in the particular case x¿ Æ 0ü Returning to the original coordinate
system (with x¿ possibly Ç 0), we obtain (1.7) in full generality. æ

7 Summability properties of the solution

This section is devoted to establishing the convergence of various integrals occurring
in this paper. The following lemma will be used in Section 8 to establish the conver-
gence of the integrals in the definition (1.14) of the renormalized energy and to prove
Proposition 6 on the integrability properties of the distortionHü

Lemma 2 Let 0 Î δ Î reach�C� and let f be a measurable function on U�Cý δ�
such that

Vf�x�V Ð g�Vx − x¿V	 (7.1)

for all x x U�Cý δ� ÉCý where the function g þ �0ý δ� � �0ýî� satisfies
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δ

§
0

tg�t�dt Î îü (7.2)

Then

§
U�Cýδ�

VfVdv Î îü (7.3)

Proof We apply Proposition 2 with r Æ 0ý s Æ δ and with f replaced by VfVü Formula
(3.8) then takes the form

§
U�Cýδ�

VfVJdv Æ §
C

§
Disc�yýδ�

Vf�y + ρ�Vda�ρ�dl�y�ý
where we put

Disc�Cýyý r� þÆ Ann�Cý yý0ý r� È !ρ x Nor�Cý y� Ø VρV Î r)ü
Inequality (7.1) then reduces to Vf�y + ρ�V Ð g�VρV	ÿ hence

§
Disc�yýδ�

Vf�y + ρ�Vda�ρ� Ð §
Disc�yýδ�

g�VρV	da�ρ�ü

By Fubini’s theorem the last integral is equal to 2π §δ0 tg�t�atü Thus
§

U�Cýδ�

VfVJ dv Î îü (7.4)

Since δ Î reach�C�ý Equation (1.12) shows that there exists a c Ï 0 such that c Î
J�x� Î c−1 for all x x U�Cý δ�ü Thus (7.4) implies (7.3). æ
Proposition 6 The solutionH of the equilibrium equations (1.3) satisfies

H x







































L
p
loc

�R3� if 1 Ð p Î 2ý

Lp�R3� if 3Â2 Î p Î 2ý

L2�R3 ÉU�Cý ε�	 for every ε Ï 0

(7.5)

and

H z L2�R3�ü (7.6)

We omit to indicate the target space Ten2 in the above Lp spaces.

Proof Let L and H¿ be as in Theorem 2.
Inclusion (7.5)1: since H is bounded on each compact subset of R2 É Cý we

have H x Lp�KýTen2� for every p x �1ýî� by continuity. We further prove that
H x Lp�U�Cý δ�ýTen2� for all p x �1ý 2�ü Indeed, Inequality (1.7) can be rewritten
as

H�x� Æ H¿�x� +N�x�
for every x x U�Cý δ�ý where

VN�x�V Ð c log
1

Vx − x¿Vü (7.7)

Since L is bounded, we have
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VH¿�x�V Ð c

Vx − x¿Vü
Thus majorizing the right-hand side of (7.7) by cÂVx − x¿Vý we obtain

VH�x�Vp Ð c

Vx − x¿Vp ü
Thus the function f�x� þÆ VH�x�Vp satisfies Inequality (7.1) with g�t� Æ cÂtp and
hence (7.2) reduces to

δ

§
0

t1−p dt Î îý

which holds if and only if p x �1ý 2�ü Thus
§

U�Cýδ�

VH�x�Vp dv�x� Î î (7.8)

by Lemma 2. The proof of (7.5)1 is complete.
Inclusion (7.5)2: It follows from (1.4) that if e�0ýR� is a closed ball of suffi-

ciently large radius Rý there exists a constant c such that

VH�x�V Ð c

VxV2 for all x x R3 É e�0ýR�ü
Hence

§
R3Ée�0ýR�

VH�x�Vp dv�x� Ð c §
R3Ée�0ýR�

VxV−2p dv�x�

and the last integral is finite if and only if p Ï 3Â2ü On the other hand,

§
e�0ýR�

VH�x�Vp dv�x� Î î

if 1 Ð p Î 2 by (7.5)1ü The proof of (7.5)2 is complete.
Inclusion (7.5)3: If e�0ýR� is as above then

§
R3Ée�0ýR�

VH�x�V2 dv�x� Î î

and

§
e�0ýR�ÉU�Cýε�

VH�x�Vp dv�x� Î î

for every p x �1ýî� and ε Ï 0 since H is bounded on e�0ýR� É U�Cý ε� by
continuity. The proof of (7.5)3 is complete.

Relation (7.6): it follows from the proof of (7.5)1 that (7.8) does not hold for
p Æ 2ü æ

8 Renormalization of the energy (Proof of Theorem 3)

Let δ be as in Theorem 2.
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Proof of Theorem 3, Part (i) The convergence of the integrals in (1.13) is
immediate since both the inner and outer integrals involve continuous functions on
compact sets.

The convergence of the integrals in (1.14). To prove the convergence of the first
integral, we let

f�x� Æ W�H� − JW�H¿�ü
Using the major symmetry of Cý this can be rearranged as

f�x� Æ W�H −H¿� +H¿ ċ C�H−H¿� + �J − 1�W�H¿�ü
We estimate each term on the right-hand side separately. By Inequality (1.7),

VW�H −H¿�V Ð c log2
1

Vx − x¿Vü (8.1)

Further, as a direct consequence of (1.6) and the properties of Lý we have

VH¿V Ð c

Vx − x¿V
and hence

VH¿ ċ C�H −H¿�V Ð c

Vx − x¿V log
1

Vx − x¿Vü (8.2)

Finally, we have

J − 1 Æ − κ�x¿� ċ �x − x¿�
1 − κ�x¿� ċ �x − x¿� ÿ

and as the denominator is bounded by our choice of reach�C� and as κ is bounded,
we have

VJ − 1V Ð cVx − x¿Vü
Consequently,

V�J − 1�W�H¿�V Ð c

Vx − x¿Vü (8.3)

Hence, by (8.1), (8.2) and (8.3),

Vf�x�V Ð g�Vx − x¿V	ý
where

g�t� Æ c� log2
1

t
+ 1

t
log

1

t
+ 1

t
ü

Since g satisfies (7.2), Lemma 2 says that f is integrable, i.e., the first integral in
(1.14) converges.

The second integral in (1.14) converges by (7.5)3ü
Finally, let us prove that the value of the right-hand side of (1.14) is independent

of the choice or rü Let rý s satisfy 0 Î r Î s and denote by ∆1 and ∆2 the values of
the right-hand side of (1.14) with r Æ r and r Æ sý respectively. Then

∆2 − ∆1 Æ §
U�Cýrýs�

�W�H� − JW�H¿�	dv

− §
U�Cýrýs�

W�H�dv −Θ� log
1

r
− log

1

s
�
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whereU�Cý rý s� is defined in (3.6). The first integral can be split into the difference

§
U�Cýrýs�

W�H�dv − §
U�Cýrýs�

JW�H¿�dv
and a cancellation reduces the last equation to

∆2 − ∆1 Æ − §
U�Cýrýs�

JW�H¿�dv +Θ� log 1

r
− log

1

s
�ü

By Proposition 2,

§
U�Cýrýs�

JW�H¿�dv Æ §
C

§
Ann�yýrýs�

W�H¿�da�x�dl�y�ü
where Ann�yý rý s� is given by (3.7). By Fubini’s theorem and (1.6),

§
U�Cýrýs�

JW�H¿�dv Æ §
C

s

§
r

1

t2
§

Circ�Cýyýt�

W�L�ρý τ�y�	
 dl�ρ�dt dl�y� (8.4)

where Circ�Cýyý t� is given by (1.11). Since L is degree 0 homogeneous in the first
variable, the integrand in the inner integral in (8.4) is independent of t and thus the
whole integral scales only due to the change of the radius of the circle. Thus

§
U�Cýrýs�

JW�H¿�dv Æ §
C

s

§
r

1

t
§

Circ�Cýyý1�

W�L�ρý τ�y�	
dl�ρ�dt dl�y�

Æ §
Circ�Cýyý1�

W�L�ρý τ�y�	
dl�σ�� log 1

r
− log

1

s
�

Æ Θ� log
1

r
− log

1

s
�ý

i.e.,

§
U�Cýrýs�

JW�H¿�dv Æ Θ� log
1

r
− log

1

s
�ü (8.5)

Thus ∆1 Æ ∆2 and hence the value of the right-hand side of (1.14) is independent of
the choice or rü

This completes the proof of Part (i) of Theorem 3.

Proof of Theorem 3, Part (ii) Let 0 Î ε Î δ and let r be any number satisfying
ε Î r Î δü We write

§
R3ÉU�Cýε�

W�H�dv Æ §
U�Cýεýr�

W�H�dv + §
R3ÉU�Cýr�

W�H�dv ý (8.6)

A rearrangement gives

§
U�Cýεýr�

W�H�dv Æ §
U�Cýεýr�

�W�H� − JW�H¿�	dv + §
U�Cýεýr�

JW�H¿�dv

Æ §
U�Cýεýr�

�W�H� − JW�H¿�	dv +Θ� log
1

ε
− log

1

r
�ý

where we have used (8.5). Next, we split the integral
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§
U�Cýεýr�

�W�H� − JW�H¿�	 dv
into the difference

§
U�Cýr�

�W�H� − JW�H¿�	dv − §
U�Cýε�

�W�H� − JW�H¿�	dv ü
Thus

§
U�Cýεýr�

W�H�dv Æ §
U�Cýr�

�W�H� − JW�H¿�	dv −Θ log
1

r

− §
U�Cýε�

�W�H� − JW�H¿�	dv +Θ log
1

ε
ü

(8.7)

A combination of (8.6) and (8.7) and simple rearrangements provide (1.15) with

��ε� Æ − §
U�Cýε�

�W�H� − JW�H¿�	dv ü
Since the functionW�H�−JW�H¿� is integrable onU�Cý r� by the preceding proof,
we have (1.16). This completes the proof of Part (ii) of Theorem 3.

Appendix A: Fourier transformation

Generally, if f is a function defined on R
3 É  0( with values in a vector space and

if z is a complex number, f is said to be degree z homogeneous if f�λr� Æ λzf�r�
for every r and λ as in the preceding sentence.

If Y is a finite dimensional inner product space, S�R3
ýY� denotes the space of

rapidly decaying Y-valued testfunctions on R3 and S
′�R3ýY� denotes the space

of tempered Y-valued distributions on R
3
ü The Fourier transform of a function f x

S�R3ýY� is the function é x S�R3ýY� defined by

é �ξ� Æ §
R3

f�x�eixċξ dxý ξ x R3ü

The Fourier transform of T x S
′�R3ýY� is Ý x S

′ �R3ýY� defined by

1Ýýf9 Æ 1Tý é 9
for every f x S�R3ýY�ü
Property 1 Fourier transformation changes of the operator∇ into themultiplication
by −iξü This implies transformations of linear differential operators with constant
coefficients. The following table reviews the transforms of gradients and divergences
of scalar-, vector- and tensor-valued distributions f x S

′�R3ýR�ý u x S
′�R3ýR3�

and B x S
′�R3

ýTen2�:
∇f � −iξé ý (A.1)

∇u � −iö ¸ ξý (A.2)

div u � −iξ ċ öý (A.3)

divB � −iËξý (A.4)

curlB � −iξ · Ëü (A.5)
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Property 2 Fourier transformation of homogeneous distributions. If z Ï −3ý any
degree z homogeneous function f on R3 É  0( represents a tempered distribution
Tü If additionally z Ð 0ý the Fourier transformation of T is represented by a −3− z-
homogeneous function é ü Moreover, if f is infinitely differentiable, then é is in-
finitely differentiable also; see [17; Chapter 3, Proposition 8.1].

Property 3 Fourier transformation changes the convolution of distributions into the
product of their Fourier transforms.
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