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Summary 
It is widely accepted that sympathetic nervous system plays 
a crucial role in the development of hypertension. On the other 
hand, the role of adrenal medulla (the adrenomedullary 
component of the sympathoadrenal system) in the development 
and maintenance of high blood pressure in man as well as in 
experimental models of hypertension is still controversial. 
Spontaneously hypertensive rats (SHR) are the most widely used 
animal model of human essential hypertension characterized by 
sympathetic hyperactivity. However, the persistence of 
moderately elevated blood pressure in SHR subjected to 
sympathectomy neonatally as well as the resistance of adult SHR 
to the treatment by sympatholytic drugs suggests that other 
factors (including enhanced activity of the adrenomedullary 
hormonal system) are involved in the pathogenesis of 
hypertension of SHR. This review describes abnormalities in 
adrenomedullary hormonal system of SHR rats starting with the 
hyperactivity of brain centers regulating sympathetic outflow, 
through the exaggerated activation of sympathoadrenal 
preganglionic neurons, to the local changes in chromaffin cells of 
adrenal medulla. All the above alterations might contribute to the 
enhanced release of epinephrine and/or norepinephrine from 
adrenal medulla. Special attention is paid to the alterations in the 
expression of genes involved in catecholamine biosynthesis, 
storage, release, reuptake, degradation and adrenergic receptors 
in chromaffin cells of SHR. The contribution of the 
adrenomedullary hormonal system to the development and 
maintenance of hypertension as well as its importance during 
stressful conditions is also discussed. 
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Introduction 
 

The sympathetic nervous system (SNS) in 
cooperation with other humoral and local factors is 
involved in the regulation of arterial blood pressure (BP) 
through the changes of regional vascular resistance and/or 
cardiac output. SNS contribution varies under particular 
circumstances, such as postural changes, physical 
exercise, stress, etc. It is widely accepted that SNS plays 
a crucial role in the development of human hypertension 
(Fisher and Paton 2012) and various forms of 
experimental hypertension (Mancia and Grassi 2014). On 
the other hand, the role of adrenal medulla (the 
adrenomedullary component of the sympathoadrenal 
system) in the development and maintenance of high 
blood pressure in man as well as in experimental models 
is still controversial (Floras 1992, Elam and Grassi 2000). 
Spontaneously hypertensive rats (SHR) are the mostly 
used animal model of human essential hypertension 
(Yagil and Yagil 2001). They develop hypertension 
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without any physiological, pharmacological or surgical 
intervention at the age of 5-12 weeks and their mean 
arterial pressure in adulthood achieves 160-180 mm Hg, 
which is in contrast to 110-130 mm Hg in adult 
normotensive controls of Wistar-Kyoto (WKY) strain 
(Judy and Farrell 1979, Behuliak et al. 2015). Numerous 
functional and structural abnormalities were described in 
SHR including abnormal neurohumoral regulation, 
vascular hypertrophy, impaired endothelium-dependent 
relaxation, renal dysfunction, etc. (Zicha and Kunes 1999, 
Pintérová et al. 2011). The sympathetic nervous system is 
considered to be involved in the pathogenesis of 
hypertension in SHR since the sympathetic activity rises 
dramatically in parallel with BP development (Judy and 
Farrell 1979). Moreover, the development of 
hypertension in SHR can be substantially attenuated by 
neonatal sympathectomy (destruction of sympathetic 
nervous system, e.g. by guanethidine administration) (Lee 
et al. 1987, Korner et al. 1993) but this intervention is 
markedly less efficient in reducing BP in adult SHR 
(Yamori et al. 1972, Ferrari et al. 1991, Vavřínová et al. 
2019b). The persistence of moderately elevated BP in 
SHR subjected to neonatal sympathectomy as well as the 
resistance of adult SHR to guanethidine treatment 
suggests that other factors are involved in the 
pathogenesis of hypertension in SHR, including the 
enhanced activity of the adrenomedullary system 
(Borkowski 1991, Lee et al. 1991a, Lee et al. 1991b). 
Indeed, some papers reported increased plasma levels of 
epinephrine and its metabolite metanephrine in SHR 
compared to normotensive WKY rats (Vlachakis et al. 
1980, Szemeredi et al. 1988, Vavřínová et al. 2019b). On 
the other hand, similar plasma levels of epinephrine and 
metanephrine were described by many other researchers 
(Szemeredi et al. 1988, Moura et al. 2005, Behuliak et al. 
2018, Vavřínová et al. 2019a). These discrepancies can 
be partly explained by the influence of stress during 
particular experimental conditions since the plasma levels 
of epinephrine are increased more in SHR than in 
WKY rats following stress (McCarty et al. 1978, 
Kvetnansky et al. 1979). This review deals with 
numerous abnormalities in the adrenomedullary system 
described in SHR with established hypertension as well 
as before the development of high blood pressure (Kumai 
et al. 1994, Miranda-Ferreira et al. 2008, Vavřínová et al. 
2019a). This approach might help to distinguish the 
abnormalities that are rather the consequences of high 
blood pressure from those that can play a decisive role in 
the pathophysiology of hypertension in SHR. 

The functional organization of the adreno-
medullary system 
 

In general, the autonomic nervous system 
(sympathoadrenal and parasympathetic branch) is 
regulated by a complex central neural network  
(e.g. nucleus of the solitary tract, NTS; paraventricular 
nucleus of hypothalamus, PVN; rostral ventrolateral 
medulla, RVLM; nucleus ambiguous, NA etc.), which 
control the activity of particular efferent preganglionic 
neurons innervating either sympathetic postganglionic 
neurons, adrenal medulla or parasympathetic 
postganglionic neurons. The sympathetic and 
parasympathetic postganglionic neurons form synapses 
with target tissues (e.g. vascular smooth muscle cells, 
cardiac conduction system, etc.), whereas the chromaffin 
cells of adrenal medulla release catecholamines into the 
blood stream thus influencing the distant tissues in the 
organism. The regulation of sympathoadrenal and 
parasympathetic nervous system is complex and exerts 
reciprocal interactions of both systems at the level of 
PVN, RVLM, preganglionic neurons as well as at the 
level of postganglionic neurons and target tissues 
allowing the precise regulation of organ and tissue 
functions (Ondicova and Mravec 2010). Considering the 
adrenomedullary system, the evidence indicates that there 
are two separate populations of chromaffin cells releasing 
either epinephrine or norepinephrine, which are regulated 
by distinct neural pathways allowing the differential 
secretion according to the physiological demands of the 
organism (Flatmark 2000, de Diego et al. 2008). Thus, 
there is a high norepinephrine release by adrenal medulla 
during cold exposure (although the major part of 
norepinephrine during cold exposure is released by 
sympathetic nerve endings), whereas high epinephrine 
release was found during hypoglycemia (Khalil et al. 
1986, Vollmer et al. 1992). 

Transneuronal retrograde cell-body labeling 
technique demonstrated that there are at least 5 brain 
areas directly involved in the regulation of efferent 
sympathoadrenal preganglionic neurons: caudal raphe 
nuclei, ventromedial medulla, rostral ventrolateral 
medulla (RVLM), A5 cell group, and paraventricular 
nucleus of hypothalamus (PVN) (Strack et al. 1989). 
RVLM is one of the most important central regions 
involved in cardiovascular regulation, which integrates 
the information coming from various peripheral receptors 
(vestibular receptors, skeletal muscle receptors, 
nociceptors etc.), nucleus of the solitary tract (mediating 
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baroreceptor and chemoreceptor reflexes), PVN 
(involved in the regulation of body fluids, metabolism 
and temperature) and higher brain regions. RVLM is also 
a crucial structure for the baroreflex regulation which 
determines both sympathoadrenal and sympathoneural 
outflow (Guyenet 2006, Dampney 2016). Anterograde 
and retrograde tracing method demonstrated that neurons 
projecting to sympathoadrenal preganglionic neurons are 
concentrated in the more rostral part of the rat RVLM and 
less at the caudal level of the nucleus (Zagon and Smith 
1993, Pyner and Coote 1998). In contrast, the neurons 
projecting to cervical preganglionic neurons are more 
dispersed from rostral to caudal levels of the RVLM 
nucleus (Pyner and Coote 1998). However, a double-
virus transneuronal labeling technique revealed that some 
RVLM neurons are involved in the regulation of both 
sympathoneural and sympathoadrenal outflow, which 
probably work under certain circumstances where parallel 
sympathetic activation is desirable, such as during the 
fight-or-flight response (Jansen et al. 1995). 
Physiological studies in cats revealed the existence of the 
RVLM territories the stimulation of which could 
preferably activate particular sympathetic outflows 
regulating different functions of the organism, e.g. 
muscle vasoconstriction, visceral vasoconstriction and 
kidney function (McAllen and May 1994). However, no 
functional experiments differentiating RVLM areas 
involved in the regulation of either sympathoneural or 
sympathoadrenal outflows in the rat were published so 
far. In RVLM of SHR, immunohistochemical staining 
demonstrated increased basal number of Fos-positive 
immunoreactive neurons compared to WKY rats (Minson 
et al. 1996, Palmer and Printz 1999). On the other hand, 
the BP reduction after the administration of NO donor 
sodium nitroprusside increased a number of Fos-positive 
immunoreactive RVLM neurons in WKY rats but not in 
SHR (Minson et al. 1996). Similarly, a psychological 
stimulus (airpuff startle) caused lower activation of 
RVLM neurons in SHR than in WKY rats (2-fold or  
4-fold increase, respectively) (Palmer and Printz 1999). 
A faster firing rate was described in RVLM and PVN 
neurons of SHR compared to WKY rats (Matsuura et al. 
2002, Li et al. 2008, Stern et al. 2012) which is in line 
with the above mentioned increased basal Fos 
immunoreactivity. Moreover, the hyperpolarization of 
RVLM and PVN neurons (induced by the microinjection 
of a viral vector coding for human inward-rectifier 
Kir2.1-potassium channel) resulted in the reduction of 
sympathetic outflow and BP decrease in SHR (Geraldes 

et al. 2014, Geraldes et al. 2016). Thus, it is clear that the 
hyperactivity of the brain centers regulating sympathetic 
outflow contribute to high BP in SHR but a more detailed 
information concerning the regulation of sympathoneural 
and sympathoadrenal outflows would be desirable. 

The cell bodies of sympathoadrenal 
preganglionic neurons are located in the intermediolateral 
cell column between the first and the thirteenth thoracic 
segments (Zagon et al. 1993, Pyner and Coote 1994, 
Pyner and Coote 1998, Mueller et al. 2011). 
Sympathoadrenal preganglionic neurons occupy the 
lateral aspect of the intermediolateral cell column, 
whereas preganglionic neurons projecting to superior 
cervical ganglion and stellate ganglion are located more 
medially or centrally, respectively (Pyner and Coote 
1994). The axons of the sympathoadrenal preganglionic 
neurons arise from the sympathetic trunk as the 
splanchnic nerves and form the synapses with chromaffin 
cells of adrenal medulla (Mueller et al. 2011). It was 
proposed that there are two distinct populations of 
sympathoadrenal preganglionic neurons differing in their 
sensitivity to various stimuli and also in their conduction 
velocity. Morrison et al. (2000) demonstrated that the 
first group comprised slowly conducting preganglionic 
neurons. These neurons were markedly excited during the 
pseudo-hypoglycemia induced by 2-deoxy-D-glucose, but 
they exhibited little or no sensitivity to the baroreceptor 
reflex activation. They probably innervate epinephrine-
producing chromaffin cells. By contrast, the second group 
of sympathoadrenal preganglionic neurons showed rapid 
conduction velocity similar to barosensitive 
vasoconstrictor sympathetic preganglionic neurons. These 
neurons were unaffected by pseudo-hypoglycemia, but 
they were highly sensitive to baroreceptor reflex 
activation. They likely regulate norepinephrine release 
from the adrenal medulla (Morrison et al. 2000). This 
suggests that norepinephrine-producing chromaffin cells 
of adrenal medulla might be regulated in concert with 
sympathetic neurons innervating blood vessels. In the 
spinal cord of SHR, there is a greater basal incidence of 
Fos-positive sympathoadrenal preganglionic neurons 
compared to WKY rats (Minson et al. 1996), which is in 
accordance with the increased constitutive activity of the 
splanchnic nerves in this hypertensive strain (Morrison 
and Whitehorn 1984, Ricksten et al. 1984). Moreover, 
a greater number of sympathoadrenal preganglionic 
neurons was activated by nitroprusside administration in 
SHR (Minson et al. 1996) and the enhanced response to 
hypothalamic stimulation was described in splanchnic 
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nerves of SHR compared to WKY rats (Takeda and 
Buñag 1978, Morrison and Whitehorn 1984). 
Furthermore, SHR exhibited more pronounced activation 
of sympathoadrenal preganglionic fibers to various 
stimuli, including ganglionic blockade by trimethaphan, 
mental stress caused by air-jet and pseudo-hypoglycemia 
induced by 2-deoxy-D-glucose when compared to 
normotensive WKY rats (Zhang and Thorén 1998). The 
enhanced activation of preganglionic neurons observed 
after various stimuli in SHR is not associated with the 
augmented activation of RVLM neurons (see above) and 
the contribution of other brain areas remains to be 
elucidated. However, excitatory stimulation elicited 
greater adrenal nerve responses in anesthetized spinally 
transected SHR compared to WKY rats (Schramm and 
Chornoboy 1982). Taken together, the hyperexcitability 
of sympathoadrenal preganglionic neurons in SHR seems 
to be at least partially independent of the central 
influence. This abnormality contributes to the greater 
stress-induced catecholamine release by adrenal medulla 
in SHR and potentially participates in hypertension 
development. 

The main physiological stimulus for 
catecholamine secretion from adrenal medulla is 
acetylcholine (released by preganglionic neurons) which 
induces depolarization of chromaffin cells and 
subsequent increase in their intracellular calcium 
(Burgoyne 1991). Catecholamine release is modulated by 
substances such as neuropeptide Y, angiotensin II, 
substance P, cholecystokinin or adrenocorticotropic 
hormone (Mravec 2005, Guérineau 2020). It was 
hypothesized that adrenal medulla might play a role as 
a sensory organ and thus the non-cholinergic stimulation 
of chromaffin cells might participate in more complex 
regulation of catecholamine release (Mravec 2005). 
Catecholamine release evoked by the stimulation of 
cholinergic receptors as well as the membrane 
depolarization was described to be augmented in perfused 
adrenal glands of SHR in comparison to those of 
WKY rats (Lim et al. 2002, Bomfim et al. 2017). This 
was caused by both enhanced calcium signaling (de 
Pascual et al. 2013) and faster exocytosis of more 
vesicles as well as by greater quantal catecholamine 
content in hypertensive rats (Miranda-Ferreira et al. 
2008). Moreover, the adrenal medulla of SHR contains 
a greater area of the norepinephrine releasing cell islets. 
Moreover, the increased number of both norepinephrine 
granules and vesicles was demonstrated in SHR from the 
prehypertensive stage to adulthood as compared to 

WKY rats (Tabei et al. 1988). Thus, the local alterations 
of catecholamine biosynthesis, storage, release, reuptake 
and degradation in chromaffin cells might also contribute 
to the enhanced release of epinephrine and/or 
norepinephrine from adrenal medulla in hypertensive rats. 
These aspects will be discussed in detail in the following 
parts of this review. 
 
Catecholamine biosynthesis 
 

The scheme of catecholamine biosynthesis, 
storage, release, reuptake and degradation in chromaffin 
cells is shown in the Figure 1. The catecholamine 
biosynthesis starts with an import of amino acid 
L-tyrosine and its hydroxylation by the enzyme tyrosine 
hydroxylase (TH, encoded by Th gene; Nagatsu et al. 
1964). For catecholamine biosynthesis, TH enzyme 
requires Fe2+, molecular oxygen and the regulatory 
cofactor tetrahydrobiopterin (Nagatsu et al. 1964) which 
is synthesized by guanosine triphosphate cyclohydro-
lase 1 (encoded by Gch1 gene) and recycled by quinoid 
dihydropteridine reductase (encoded by Qdpr gene; 
Thöny et al. 2000). Tyrosine hydroxylation is a rate-
limiting step of catecholamine synthesis and it is 
a subject of complex regulation, including direct 
inhibition of the enzyme by catecholamines, post-
translational modifications and changes in the 
transcription of Th gene (for review see Tekin et al. 
2014). The second enzyme involved in catecholamine 
synthesis is L-DOPA decarboxylase (DDC, encoded by 
Ddc gene) which converts L-DOPA to dopamine 
(Blaschko 1942). Subsequently, dopamine is converted 
by the enzyme dopamine β-hydroxylase (DBH, encoded 
by Dbh gene) to form norepinephrine (Friedman and 
Kaufman 1965). The last enzyme phenylethanolamine  
N-methyl transferase (PNMT, encoded by Pnmt gene), 
which synthesizes epinephrine from norepinephrine, can 
be predominantly found in chromaffin cells of adrenal 
medulla, whereas extra-adrenal PNMT is expressed in 
a small number of epinephrine-producing neurons in the 
central nervous system and in some non-neuronal cells of 
the heart. Morphological studies showing the greatest 
expression of PNMT and/or epinephrine in the peripheral 
portion of the medulla, closest to the cortex, suggest that 
glucocorticoids are critical for efficient epinephrine 
synthesis in the chromaffin cells (Wong et al. 1987, 
Wong et al. 2003). It was shown that the expression and 
activity of catecholamine biosynthetic enzymes in 
chromaffin cells is regulated in a stimulus-specific 
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manner by several mechanisms including acetylcholine 
(released from sympathetic innervation), glucocorticoids 
and Ang II (Livett and Marley 1993, Stachowiak et al. 
1990, Wong 2006). Other experiments using a combi-
nation of stress with various interventions (including 
hypophysectomy, preganglionic denervation of 
sympathetic nerves or the adrenal medulla, treatment with 

hormones or neural agents, e.g. ACTH, glucocorticoid, 
acetylcholine etc.) further suggest that the induction of 
Th gene may be primarily mediated by the neural activity, 
whereas the regulation of Pnmt gene is dependent mainly 
on hormonal influences (Axelrod and Reisine 1984, 
Viskupic et al. 1994). 

 
 

 
 
Fig. 1. The scheme of catecholamine biosynthesis, storage, release and degradation in chromaffin cells of the adrenal medulla. The 
amino acid L-tyrosine is imported into the cytoplasm of chromaffin cells by L-type amino acid transporter (LAT) and converted to  
L-3,4-dihydroxyphenylalanine (L-DOPA) by the enzyme tyrosine hydroxylase (TH). TH requires the regulatory cofactor 
tetrahydrobiopterin (BH4) which is synthesized by guanosine triphosphate cyclohydrolase (GCH) and recycled by quinoid 
dihydropteridine reductase (QDPR). L-DOPA is converted by L-DOPA decarboxylase (DDC) to form dopamine (DA). DA is transported to 
the chromaffin vesicles by the vesicular monoamine transporter (VMAT). The enzyme dopamine β-hydroxylase (DBH) catalyzes  
DA conversion to norepinephrine (NE). The final step of biosynthesis is performed in the cytoplasm by phenylethanolamine N-methyl 
transferase (PNMT) which synthesizes epinephrine (EPI) from NE. The content of chromaffin vesicles (NE, EPI, granins, neuropeptide Y 
(NPY) and ATP) is released from the cells by the process of exocytosis. Monoamine oxidases (MAO) and catechol-O-methyltransferase 
(COMT) remove catecholamines from the cytoplasm (after vesicular leakage). 
 
 

Many studies have been published concerning 
the catecholamine biosynthesis in the adrenal glands of 
SHR with established hypertension, but their results are 
quite contradictory (see Table 1). The mRNA and protein 
expression of Th and Pnmt genes in the adrenal gland of 
adult SHR was reported to be higher (Kumai et al. 1994, 
Reja et al. 2002a, Reja et al. 2002b, Nguyen et al. 2009) 
or lower than in adrenals of WKY rats (Moura et al. 
2005, Grundt et al. 2009, Vavřínová et al. 2019a). 
Moreover, we observed the downregulated adrenal 
expression of other enzymes involved in catecholamine 
biosynthesis (Ddc and Dbh) as well as the enzymes 

producing cofactor tetrahydrobiopterin (Gch1, Qdpr) for 
TH in adult SHR compared to WKY rats (Vavřínová  
et al. 2019a). The studies concerning adrenal content of 
dopamine, norepinephrine and epinephrine also provided 
rather conflicting results (Lee et al. 1991a, Korner et al. 
1993, Moura et al. 2005, Vavřínová et al. 2019a, 
Vavřínová et al. 2019b). The inconsistent results might 
be caused by extreme susceptibility of the catechol-
aminergic system to stressful conditions and the 
differences in stress response between SHR and 
WKY rats. It is well known that acute stress elevates 
plasma levels of catecholamines and induces the 
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Table 1. The overview of papers evaluating the adrenal mRNA expression, protein expression and the enzyme activity of genes 
involved in catecholamine biosynthesis in spontaneously hypertensive rats (SHR). Gene symbols referring to mRNA expression are 
italicized, whereas all letters are in upper-case when describing protein expression or enzyme activity. The information about 
anesthesia, euthanasia and other important factors can be found in a note section. Symbols ↓, ↑ and = represent lower, higher or 
similar expression in SHR, respectively, compared to Wistar-Kyoto controls, if not stated otherwise. AG, adrenal gland; AM, adrenal 
medulla; IP, intraperitoneal; qPCR, quantitative real-time PCR; sqPCR, semiquantitative real-time PCR; w, weeks; WB, western-blot. 
 

Reference Age Parameter 
(method) Tissue Gene change in SHR  Note 

Friese et al. 
2005 

4w mRNA (chip) AG Dbh, Pnmt 
Th, Gch1 

↓ 
= 

Anesthesia not specified 
Euthanasia not specified 

Grobecker et 
al. 1982 

2w 
4w 
8w 

 
14w 

Enzyme activity AG TH, DBH, PNMT 
TH, DBH, PNMT 

TH 
DBH, PNMT 

TH 
DBH, PNMT 

↓ 
↓ 
= 
↓ 
↑ 
= 

Tail-cuff (timepoint not specified) 
Decapitation 

Grundt et al. 
2009 

20w mRNA (qPCR) AG Th ↓ Stress-naive 
Decapitation 

Grundt et al. 
2009 

20w mRNA (qPCR) AG Th = Immediately after tail-cuff 
Decapitation 

Jirout et al. 
2010 

6w mRNA (chip) AG Th, Ddc, Dbh 
Pnmt, Gch1, Qdpr 

↓ 
= 

Brown-Norway control 
Cervical dislocation 

Kumai et al. 
1994 

25w mRNA 
(Northern blot) 
Enzyme activity 

AM Th 
 

TH 

↑ 
 

↑ 

Tail-cuff (timepoint not specified) 
Anesthesia not specified 
Euthanasia not specified 

Kumai et al. 
2001 

15w Protein (WB) 
Enzyme activity 

 TH 
TH 

↑ 
↑ 

Tail-cuff (timepoint not specified) 
Pentobarbital anesthesia 

Decapitation 

Moura et al. 
2005 

5w 
 

12w 
 

22w 

Protein (WB) 
Enzyme activity 

Protein (WB) 
Enzyme activity 

Protein (WB) 
Enzyme activity 

AG TH 
TH 
TH 
TH 
TH 
TH 

↓ 
↓ 
↓ 
↓ 
↓ 
↓ 

Tail-cuff (timepoint not specified) 
Sodium pentobarbital 

Nagatsu et 
al. 1976 

3w Enzyme activity AG DBH ↑ Decapitation 

Nagatsu et 
al. 1977 

16w Enzyme activity AG TH, DBH ↑ Tail-cuff (timepoint not specified) 
Decapitation 

Nguyen et 
al. 2009 

16w mRNA (sqPCR) 
Protein (WB) 

AG Dbh 
Th, Pnmt 
PNMT 

= 
↑ 
↑ 

Repeated tail-cuff 
Ketamine-xylazine anesthesia 

Decapitation 

O'Connor et 
al. (1999) 

20-
24w 

Enzyme activity AG DBH 
PNMT 

↓ 
= 

Tail-cuff (timepoint not specified) 
Anesthesia not specified 
Euthanasia not specified 

Reja et al. 
2002a 

18w mRNA (qPCR) AM Th ↑ Tail-cuff 2 weeks before sampling 
Euthanasia by sodium 

pentobarbitone IP 

Reja et al. 
2002b 

20w mRNA (qPCR) AM Pnmt ↑ Tail-cuff 2 weeks before sampling 
Euthanasia by sodium 

pentobarbitone IP 
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Vavřínová et 
al. 2019a 

4w 
 
 
 
 

24w 

mRNA (qPCR) 
 
 

Protein (WB) 
 

mRNA (qPCR) 
 

Protein (WB) 

AM 
 
 

AG 
 

AM 
 

AG 

Dbh, Pnmt 
Th, Ddc, Qdpr 

Gch1 
DDC, DBH 
TH, PNMT 

Th, Ddc, Dbh, Pnmt, 
Qdpr, Gch1 

TH, DDC, DBH 
PNMT 

↓ 
= 
↑ 
↓ 
= 
↓ 
↓ 
↓ 
= 

Isoflurane 
Exsanguination 

Vavřínová et 
al. 2019b 

22-
24w 

mRNA (qPCR) AM Th 
Ddc, Dbh, Pnmt 

= 
↓ 

Daily IP injection of saline for 
2 weeks 

Isoflurane 
Exsanguination 

 
 
expression of catecholamine biosynthetic enzymes in 
adrenal medulla (Kvetnansky et al. 2004, Kvetnansky  
et al. 2009). By contrast, the chronic stress induced by 
social isolation decreases basal expression of Th gene 
(Gavrilovic et al. 2008), but chronically stressed animals 
exhibit higher plasma epinephrine levels and the 
augmented induction of adrenal Th expression when 
exposed to a novel stressor (McCarty et al. 1988, 
Gavrilovic et al. 2008). Adult SHR acutely exposed to 
immobilization show higher plasma levels of 
norepinephrine and epinephrine compared to WKY rats 
(Kvetnansky et al. 1979). Moreover, the increase in 
adrenal mRNA expression of Th, induced by 25 min of 
mild stress due to tail cuff measurement of blood 
pressure, was found to be greater in adult SHR compared 
to WKY rats (Grundt et al. 2009). These findings are in 
agreement with the above mentioned exaggerated 
activation of sympathoadrenal preganglionic fibers 
observed in SHR subjected to physical or psychological 
stressors (Zhang and Thorén 1998). Actually, several 
research groups, which reported on the hyperactivation of 
the adrenomedullary system in SHR, exposed the rats 
acutely or repeatedly to the stressful procedures such as 
tail-cuff BP measurement or repeated intraperitoneal 
administration of drugs (Korner et al. 1993, Kumai et al. 
1994, Nguyen et al. 2009). It should be realized that the 
use of various types of anesthesia (sodium pentobarbital, 
ketamine-xylazine, isoflurane, etc.) as well as methods of 
anesthesia (decapitation, cervical dislocation, overdose by 
anesthetics, etc.) might influence the results, but the 
details concerning these procedures are often not included 
in the papers (see notes in Table 1). Besides the 
differences in the adrenomedullary system, SHR 
exhibited many other signs of their vulnerability to stress, 
including higher stress-induced plasma corticosterone 

levels (Kvetnansky et al. 1979) or ACTH levels 
(Behuliak and Vavřínová unpublished data). Furthermore, 
adult stress-naive SHR showed adrenal hypertrophy, 
increased locomotion (Vavřínová et al. 2019a, Vavřínová 
et al. 2019b), hyperthermia (Hajós and Endberg 1986) 
and thymic atrophy (Suzuki et al. 1999), that might be 
considered as the hallmarks of adaptation to chronic 
stress (Ulrich-Lai et al. 2006). Brown et al. (1988) 
demonstrated that intracerebroventricular administration 
of corticotropin-releasing hormone (CRH) produced 
a greater increase of plasma epinephrine in SHR 
suggesting that the central stress pathways might trigger 
the augmented activation of the adrenomedullary system 
in this rat strain. 

The adrenomedullary system might be prone to 
the greater activation already in the prehypertensive 
stage. Similar to adult SHR, catecholamine biosynthetic 
pathway was described to be downregulated, unchanged 
or upregulated in adrenal gland of 4-week-old 
prehypertensive SHR compared to WKY rats (Grobecker 
et al. 1976, Nagatsu et al. 1976, Friese et al. 2005, Moura 
et al. 2005, Vavřínová et al. 2019a). Accordingly, the 
increased cardiac index and heart rate was observed in 
conscious partially restrained 4-week-old SHR compared 
to WKY rats (Smith and Hutchins 1979, Behuliak et al. 
2015, Vavřínová et al. 2019a). It seems that the central 
stress pathways are hyperresponsive in prehypertensive 
SHR because the exaggerated CRH-induced ACTH 
response and higher corticosterone levels were described 
in this strain already at the age of 5-6 weeks (Hattori  
et al. 1986, Hashimoto et al. 1989, Sterley et al. 2011). 
Indeed, the acute central administration of tranquilizing 
agent muscimol (GABA type A receptor agonist) reduced 
sympathoadrenal activity, lumbar sympathetic nerve 
activity and BP, the effects being more pronounced in 
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SHR than in WKY rats (Unger et al. 1984, Allen 2002). 
Moreover, chronic treatment with tranquilizing drug 
diazepam (positive allosteric modulator of the GABA 
type A receptors) given from the newborn period 
markedly reduced BP and vascular resistance in SHR to 
the levels only slightly above those found in WKY rats 
(Schieken 1979). Thus, the genetic predisposition of SHR 
might determine their vulnerability to stress and these rats 
probably perceive usual care and handling as more 
stressful. This state of chronic stress can contribute to the 
above mentioned alterations of the adrenomedullary 
system in SHR (the decreased basal expression of 
catecholamine biosynthetic enzymes but the pronounced 
induction of the expression and the augmented 
catecholamine release under stress conditions). The 
alternative explanation is that the downregulation of 
catecholamine biosynthetic pathway might be a conse-
quence of the high blood pressure, e.g. a compensatory 
mechanism counteracting the hyperactivity of sympatho-
neural system in SHR. Indeed, SHR with transgenically 
overexpressed Dbh gene exhibited higher plasma levels 
of epinephrine and norepinephrine as well as higher 
blood pressure compared to non-transgenic SHR controls 
(Pravenec et al. 2016). Guanethidine-induced sympathec-
tomy for 14 days increased the mRNA expression of  
Th, Dbh and Pnmt genes in adrenal medulla and elevated 
plasma levels of epinephrine of adult SHR and 
WKY rats. However, these effects were more pronounced 
in WKY rats than in SHR, which does not support the 
idea that the sympathetic hyperactivity is a cause of the 
downregulation of catecholamine biosynthetic pathway in 
SHR (Vavřínová et al. 2019b). 

Taken together, the available evidence indicates 
that the catecholamine biosynthetic pathway is 
downregulated at different levels, i.e. mRNA expression, 
protein expression and the catecholamine content in the 
adrenal glands of stress-naive SHR with established 
hypertension when compared to WKY rats. However, the 
acute or chronic stressful stimuli cause a more 
pronounced activation of the adrenomedullary system in 
SHR, which should be taken into account during the 
design of experiments and also during the interpretation 
of results. 
 
Catecholamine vesicles 
 

The speed and the effectiveness of 
catecholamine release from the chromaffin cells of 
adrenal medulla depend on the immediate availability of 

vesicles filled with high content of catecholamines. The 
filling of catecholaminergic vesicles is mediated by 
vesicular monoamine transporters (VMAT) of two types 
(Blakely and Edwards 2012). Colocalization study 
showed that VMAT1 (encoded by Slc18a1 gene) is 
widely expressed in all rat adrenal chromaffin cells, while 
VMAT2 (Slc18a2 gene) is co-localized with TH but not 
with PNMT enzyme (Tillinger et al. 2010). This suggests 
that VMAT2 is expressed in norepinephrine- but not in 
epinephrine-synthesizing chromaffin cells. The mRNA 
expression of both Vmat1 and Vmat2 was reported to be 
decreased in adrenal medulla of adult SHR compared to 
WKY rats (Vavřínová et al. 2019a). The literature 
concerning expression of Vmat genes (and other genes 
related to catecholamine vesicles, reuptake or degradation 
which are discussed hereafter) in adrenal gland of SHR is 
summarized in Table 2. Our research group reported 
unchanged mRNA expression of Vmat1 and lower 
expression of Vmat2 in adrenal gland of prehypertensive 
SHR (Vavřínová et al. 2019a), whereas Friese et al. 
(2005) demonstrated the attenuated expression of Vmat1 
and the augmented expression of Vmat2. The inconsistent 
results might be caused either by different methods of 
measurement (quantitative real-time PCR vs. microarray 
analysis) or by different sampling of tissue (adrenal 
medulla vs. whole adrenal gland). It would be desirable to 
verify the expression of Vmat2 in prehypertensive SHR 
since the augmented expression of this gene might be 
a sign of the transition of adrenal chromaffin cells from 
epinephrine-producing to norepinephrine-producing 
phenotype. 

Catecholamine storage vesicles of the adrenal 
medulla contain remarkably high concentrations of 
chromogranins (encoded by Chga and Chgb genes), 
secretogranin (Scg2 gene), neuropeptide Y (Npy gene) 
and adenosine triphosphate (ATP). These molecules 
might influence the amount of catecholamines ready for 
exocytosis or when released they can mediate feedback 
regulation of catecholamine release from chromaffin cells 
(Burnstock 2014). Granins stabilize the vesicle core 
osmotically and they are involved in the regulation of 
exocytosis (Zhang et al. 2011). Chga knockout mice had 
the decreased size and number of chromaffin granules as 
well as the reduced adrenal content of epinephrine and 
norepinephrine (Mahapatra et al. 2005). In the adrenal 
medulla of prehypertensive SHR, the mRNA expression 
of Chga, Chgb and Scg2 was similar or slightly decreased 
compared to WKY rats (Friese et al. 2005, Vavřínová  
et al. 2019a). We reported the attenuated mRNA 
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expression of Chga, Chgb and Scg2 genes in the adrenal 
medulla of adult SHR (Vavřínová et al. 2019a), whereas 
the increased mRNA and protein expression of Chga was 
shown in the adrenal medulla of adult SHR by O'Connor 
et al. (1999) and Nguyen et al. (2009). Nevertheless, the 
latter two studies used the repeated tail-cuff measurement 

of BP, which might influence the results of these studies. 
Thus, similarly with the genes involved in the 
catecholamine biosynthesis, the basal expression of 
granins seems to be downregulated in adrenal medulla of 
SHR, but the expression might be activated by stressful 
conditions such as tail-cuff measurement use. 

 
 
Table 2. The overview of papers evaluating the adrenal mRNA expression, protein expression and the enzyme activity of genes related 
to catecholamine vesicles, reuptake or degradation in spontaneously hypertensive rats (SHR). Gene symbols referring to mRNA 
expression are italicized, whereas all letters are in upper-case when describing protein expression or enzyme activity. The information 
about anesthesia, euthanasia and other important factors can be found in a note section. Symbols ↓, ↑ and = represent lower, higher or 
similar expression in SHR, respectively, compared to Wistar-Kyoto controls, if not stated otherwise. AG, adrenal gland; AM, adrenal 
medulla; IP, intraperitoneal; NB, northern blot; qPCR, quantitative real-time PCR; RIA, radioimmunoassay; sqPCR, semiquantitative real-
time PCR; w, weeks; WB, western-blot. 
 

Reference Age Parameter 
(method) Tissue Gene change in SHR  Note 

Friese et al. 
2005 

4w mRNA (chip) AG Vmat1, Scg2, Maob 
Chga, Chgb, Maoa, Net 

Vmat2, Comt 

↓ 
= 
↑ 

Anesthesia not specified 
Euthanasia not specified 

Guffroy and 
Strollin 
Benedetti 
1984 

14-17w Enzyme activity AG MAOA, MAOB = Cervical dislocation 

Higuchi et 
al. 1993 

6w 
 

12w 
 

17w 

mRNA (NB) 
Protein (RIA) 
mRNA (NB) 
Protein (RIA) 
mRNA (NB) 

AG Npy 
NPY 
Npy 
NPY 
Npy 

↓ 
= 
↓ 
↑ 
= 

Decapitation 

Jirout et al. 
2010 

6w mRNA (chip) AG Npy, Comt 
Vmat1, Chga, Chgb, Scg2, 

Maoa, Maob 

↓ 
= 
= 

Brown-Norway control 
Cervical dislocation 

Nguyen et 
al. 2009 

16w mRNA (sqPCR) AG Chga ↑ Repeated tail-cuff 
Ketamine-xylazine anesthesia 

Decapitation 

O'Connor et 
al. (1999) 

4w 
20-24w 

Protein (WB) 
mRNA (NB) 
Protein (WB) 

AG CHGA 
Chga, Chgb 

CHGA 

↑ 
↑ 
↑ 

Tail-cuff (timepoint not specified) 
Anesthesia not specified 
Euthanasia not specified 

Reja et al. 
2002b 

18w mRNA (qPCR) AM Net ↑ Tail-cuff 2 weeks before sampling 
Euthanasia by sodium 

pentobarbitone IP 

Tsunoda and 
Imai 2004 

20-25w Enzyme activity AG COMT = Diethyl ether anesthesia 

Vavřínová et 
al. 2019a 

4w 
 
 

24w 

mRNA (qPCR) 
 
 

mRNA (qPCR) 

AM Vmat2, Npy 
Vmat1, Chga, Chgb, Scg2, 
Net, Maoa, Maob, Comt 

Vmat1, Vmat2, Chga, Chgb, 
Scg2, Npy, Net, Maoa 

Comt 
Maob 

↓ 
= 
= 
↓ 
↓ 
= 
↑ 

Isoflurane 
Exsanguination 
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Catecholamine storage vesicles of the adrenal 
medulla contain remarkably high concentrations of 
chromogranins (encoded by Chga and Chgb genes), 
secretogranin (Scg2 gene), neuropeptide Y (Npy gene) 
and adenosine triphosphate (ATP). These molecules 
might influence the amount of catecholamines ready for 
exocytosis or when released they can mediate feedback 
regulation of catecholamine release from chromaffin cells 
(Burnstock 2014). Granins stabilize the vesicle core 
osmotically and they are involved in the regulation of 
exocytosis (Zhang et al. 2011). Chga knockout mice had 
the decreased size and number of chromaffin granules as 
well as the reduced adrenal content of epinephrine and 
norepinephrine (Mahapatra et al. 2005). In the adrenal 
medulla of prehypertensive SHR, the mRNA expression 
of Chga, Chgb and Scg2 was similar or slightly decreased 
compared to WKY rats (Friese et al. 2005, Vavřínová  
et al. 2019a). We reported the attenuated mRNA 
expression of Chga, Chgb and Scg2 genes in the adrenal 
medulla of adult SHR (Vavřínová et al. 2019a), whereas 
the increased mRNA and protein expression of Chga was 
shown in the adrenal medulla of adult SHR by O'Connor 
et al. (1999) and Nguyen et al. (2009). Nevertheless, the 
latter two studies used the repeated tail-cuff measurement 
of BP, which might influence the results of these studies. 
Thus, similarly with the genes involved in the 
catecholamine biosynthesis, the basal expression of 
granins seems to be downregulated in adrenal medulla of 
SHR, but the expression might be activated by stressful 
conditions such as tail-cuff measurement use. 

Neuropeptide Y (NPY) is a peptide stored 
together with the catecholamines in the adrenal medulla 
which acts as a co-transmitter, a neuromodulator and 
a neurohormone (Lymperopoulos et al. 2016). NPY ad-
ministered intravenously caused prolonged BP increase, 
which was augmented in SHR compared to WKY rats 
(Miller and Tessel 1991). Westfall et al. (1990) 
demonstrated that NPY potentiated the vasoconstriction 
of the mesenteric arterial bed induced by phenylephrine, 
angiotensin II and arginine vasopressin. This effect was 
enhanced in SHR compared to WKY rats. On the other 
hand, NPY decreased norepinephrine release from the 
mesenteric arterial bed evoked by periarterial nerve 
stimulation and this NPY action was attenuated in SHR 
(Westfall et al. 1990). Only few studies reported about 
the effect of NPY on chromaffin cells and their results are 
contradictory. NPY co-released due to cholinergic 
stimulation inhibited the parallel catecholamine secretion 

from cultured rat chromaffin cells (Shimoda et al. 1993). 
By contrast, Cavadas et al. (2006) showed that NPY 
increased catecholamine release from the cultured mouse 
chromaffin cells, but the constitutive catecholamine 
release from adrenal medulla was elevated in NPY Y1 
receptor knockout mice. Furthermore, it was reported that 
stress-induced increase of catecholamine release is 
prevented in NPY knockout mice (Wang et al. 2013). 
Apart from the effects on the catecholamine release NPY 
is also involved in the regulation of catecholamine 
biosynthesis. Hong et al. (1995) showed that acute 
intravenous NPY administration increased mRNA 
expression of Th gene in rat adrenal medulla. On the 
other hand, NPY Y1 receptor knockout mice exhibited 
higher TH activity in the adrenal glands and the 
incubation with NPY decreased Th promotor activity in 
Y1 receptor expressing cells (Cavadas et al. 2006). In 
NPY knockout mice, basal TH immunoreactivity was 
increased in adrenals compared to wild-type animals 
suggesting that NPY exerts tonic inhibitory action on  
Th expression (Wang et al. 2013). In contrast, 
NPY knockout mice exhibited smaller stress-induced 
increase in the adrenal TH immunoreactivity than wild-
type mice (Wang et al. 2013). Thus, the regulation of 
adrenal medulla by NPY is very complex and further 
investigation would be desirable. The decreased mRNA 
expression of Npy gene was found in adrenal gland of 
young as well as adult SHR (Higuchi et al. 1993, 
Vavřínová et al. 2019a). The contribution of lower NPY 
expression to the observed alterations in the 
adrenomedullary system in SHR remains to be 
elucidated. 
 
Catecholamine reuptake and degradation 
 

Catecholamine uptake at the neuroeffector 
junction is an important mechanism for the regulation of 
the synaptic norepinephrine concentrations. The 
catecholamine reuptake by norepinephrine transporter 
(NET, encoded by Slc6a2 gene) was enhanced in the 
blood vessels of SHR where it possibly compensates 
greater norepinephrine release from the sympathetic 
nerve endings (Whall et al. 1980, Hano and Rho 1989). 
On the other hand, the adrenal medulla is an endocrine 
organ and thus there is no reason for reuptake of released 
epinephrine and norepinephrine. Accordingly, the drugs 
using NET to enter the target cell (e.g. tyramine, 6-hydro-
xydopamine or guanethidine) work in the sympathetic 
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nerve endings but they do not influence the adrenal 
medulla (Thoenen and Tranzer 1973, Johnson and 
O'Brien 1976, Wakade and Wakade 1984). However, 
NET was surprisingly present in epinephrine- but not in 
norepinephrine-producing cells of rat adrenal medulla 
(Phillips et al. 2001). Moreover, NET was shown to be 
localized primarily in the cytoplasm rather than in the cell 
membrane (Kippenberger et al. 1999, Phillips et al. 
2001). Reja et al. (2002b) reported higher mRNA 
expression of Net in the adrenal medulla of adult SHR 
compared to WKY rats. By contrast, we observed lower 
mRNA expression of Net in the adrenal medulla of adult 
SHR, but similar Net expression in 4-week-old SHR and 
WKY rats (Vavřínová et al. 2019a). However, the role of 
NET in rat adrenal chromaffin cells was not explained 
yet. Thus, it is not clear whether the altered mRNA 
expression of Net in adrenals of adult SHR might have 
any physiological effect. 

Catecholamines are degraded by the enzymes 
monoamine oxidases (MAO, encoded by Maoa and 
Maob genes) or catechol-O-methyltransferase (COMT, 
encoded by Comt gene). Epinephrine is converted by 
COMT to more stable metanephrine. Norepinephrine can 
be converted by both MAO and COMT and thus several 
metabolites can be produced, e.g. 3,4-dihydroxymandelic 
acid, normetanephrine, vanillylmandelic acid etc. 
Sympathetic nerves contain only MAO, while adrenal 
medulla and other non-neural tissues contain both 
enzymes – MAO and COMT (Eisenhofer et al. 2004a). It 
was reported that adrenal medulla is a source of about 
90 % of circulating metanephrine and 30 % of 
normetanephrine. However, this is rather a consequence 
of intracellular catecholamine metabolism following the 
leakage of norepinephrine and epinephrine from the 
chromaffin storage granules to the cytoplasm (MAO and 
COMT protecting the chromaffin cells from 
catecholamine toxicity) than the clearance of 
catecholamines from the extracellular space (Eisenhofer 
et al. 1995a, b). This process of catecholamine leakage 
was proposed to be an important mechanism for “gearing 
down” the requirement for necessary increases in 
catecholamine biosynthesis under the stress conditions, 
which provides a capacity for a more extended range of 
sustainable rates of catecholamine release (Eisenhofer  
et al. 2004b). 

The decreased catecholamine degradation was 
observed in both neural and in non-neural tissues of SHR 
(Masuda et al. 2006, Tsunoda and Imai 2004). In the 
adrenal gland of prehypertensive SHR, microarray 

analysis revealed more than 30-fold higher mRNA 
expression of Comt but lower expression of Maob gene 
compared to WKY rats (Friese et al. 2005). However, 
these strain differences were not confirmed by our recent 
study (Vavřínová et al. 2019a). In the adrenal medulla of 
adult SHR, slightly downregulated mRNA expression of 
Maoa, upregulated expression of Maob but unchanged 
expression of Comt was described (Vavřínová et al. 
2019a). The activities of MAOA, MAOB and COMT 
were reported to be similar in the adrenals of adult SHR 
and WKY rats (Guffroy and Strollin Benedetti 1984, 
Tsunoda and Imai 2004). Taken together, the influence of 
catecholamine reuptake and degradation on the function 
of the adrenomedullary system is still not well 
understood. The studies concerning catecholamine 
reuptake and degradation are scarce and provide 
inconsistent results. 
 
Adrenergic receptors 
 

Adrenergic receptors are involved in the 
feedback regulation of catecholamine release. The 
activation of α2-adrenergic receptors inhibits 
catecholamine release from the sympathetic terminals, 
neurons in the brainstem as well as from the adrenal 
medulla (Brede et al. 2003, Gilsbach et al. 2009, Urban  
et al. 1995), thus exhibiting a hypotensive effect. As the 
adrenal medulla is an endocrine organ, the physiological 
role of α2-adrenergic receptors-mediated negative 
feedback in chromaffin cells is still questionable. 
However, PC12 rat pheochromocytoma cell line, which 
does not express α2-adrenergic receptors, secretes 
abnormal catecholamine quantities (Taraviras et al. 
2002). The specific subtypes of α2-adrenergic receptors 
prevailing in the adrenal glands are still unknown and it 
seems there could be differences between species. In 
adrenal gland of the rat, mRNA expression of α2A, α2B 
and α2C was detected (Moura et al. 2011, Behuliak and 
Vavřínová unpublished results). All three types were 
expressed similarly in the adrenal medulla of young as 
well as of adult SHR and WKY rats and the α2-mediated 
inhibition of catecholamine release was comparable in 
normotensive and hypertensive rats (Moura et al. 2011). 
By contrast, Reja et al. (2002a) reported lower mRNA 
expression of α2A-adrenergic receptor subtype in adrenal 
medulla of adult SHR than in WKY rats. Furthermore, 
Friese et al. (2005) described decreased mRNA 
expression of α2C- and unchanged expression of α2A- and 
α2B-adrenergic receptor subtypes in the adrenal gland of 
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prehypertensive SHR. However, the comparison of 
mRNA expression results from various laboratories is 
quite complicated by the use of different conditions of 
quantitative real-time polymerase chain reaction and 
different reference genes for data normalization, which 
might influence the results (Vavřínová et al. 2016). 

β-adrenergic receptors facilitate norepinephrine 
release from the sympathetic terminals (Guimarães and 
Moura 2001). The stimulation of β-adrenergic receptors 
increases catecholamine release from bovine chromaffin 
cells (Parramón et al. 1995). β1-adrenergic receptors 
mediated the slow potentiation of Ca2+ currents into the 
rat chromaffin cells. By contrast, β2-adrenergic receptors 
caused the fast inhibition of Ca2+ currents in the rat 
adrenal medulla (Cesetti et al. 2003). Both mechanisms 
might be involved in the autocrine regulation of 
chromaffin cells, but their impact on catecholamine 
release has not been studied up to now. In rats with heart 
failure, the chronic treatment with β1-adrenergic receptor 
blocker bisoprolol reduced catecholamine overproduction 
in the adrenal medulla (Rengo et al. 2012). Lower mRNA 
expression of β2- but unchanged expression of β1- and  
β3-adrenergic receptor subtypes was reported in adrenal 
gland of young SHR (Friese et al. 2005). However, no 
physiological study determining the function of  
β-adrenergic receptors in the adrenal medulla of SHR has 
been published so far. Taken together, the study on the 
role of adrenal adrenergic receptors in the regulation of 
catecholamine release from chromaffin cells of SHR 
would be desirable since these receptors might alter 
calcium signaling and contribute to the enhancement of 
catecholamine release in SHR subjected to physical or 
psychological stressors. 
 
Adrenal demedullation 
 

There is clear evidence that the adrenomedullary 
system participates in the development of high blood 
pressure in SHR, but it is not a crucial cause of 
hypertension in this model. Adrenal demedullation 
performed in 4-week-old prehypertensive SHR attenuated 
but did not prevent the development of high BP in these 
rats (Borkowski and Quinn 1983, Borkowski 1991), the 
effect being reversed by epinephrine supplementation 
(Borkowski 1991). Chronic as well as acute adrenal 
demedullation decreased BP responses to the electrical 
stimulation in pithed rats, whereas it did not affect 
vascular smooth muscle contractility to phenylephrine 
(Borkowski and Quinn 1983). This suggests that 

epinephrine might potentiate norepinephrine release from 
the sympathetic nerve terminals. Indeed, a combination of 
sympathectomy with adrenal demedullation (Lee et al. 
1991a, Lee et al. 1991b) or with α1-adrenergic blockade 
(Korner et al. 1993) completely prevented the 
development of high blood pressure in SHR. Moreover, 
epinephrine produced by the adrenal medulla might be 
involved in vascular hypertrophy and remodeling in SHR 
(Lee et al. 1991a, Lee et al. 1991b, Korner et al. 1993). 
These early structural and functional changes of 
cardiovascular system induced by pronounced activation 
of the adrenomedullary system (in cooperation with 
sympathoneural system) in immature SHR are probably 
irreversible because the effects of adrenal demedullation 
became insignificant since the age of 7 weeks 
(Borkowski 1991). Thus it seems that the adrenome-
dullary system does not actively contribute to the 
maintenance of high blood pressure in adult SHR. This is 
also in line with the age-dependent downregulation of 
catecholamine biosynthetic pathway described in the 
adrenal medulla of SHR with established hypertension 
(Vavřínová et al. 2019a). However, the adrenomedullary 
system might substitute the function of the suppressed 
sympathoneural system in both young and adult rats. The 
increased adrenal catecholamine content and the elevated 
plasma levels of epinephrine were demonstrated in rats 
treated neonatally or in adulthood with the sympatholytic 
drug guanethidine (Korner et al. 1993, Tipton et al. 1984, 
Vavřínová et al. 2019b). The activation of the 
adrenomedullary system in sympathectomized rats is 
probably mediated centrally because peripheral 
sympathectomy by 6-hydroxydopamine increased Fos 
immunoreactivity in many brain nuclei, including PVN 
(Callahan et al. 1998). Thereby, the activation of the 
adrenomedullary system might oppose the blood pressure 
lowering effects of the treatment targeting peripheral 
sympathetic system in SHR, being one of the reasons for 
the resistance of adult SHR to the treatment of 
hypertension. 
 
Conclusions 
 

Spontaneously hypertensive rats (SHR) exhibit 
numerous abnormalities in the adrenomedullary system 
from the hyperactivity of brain centers regulating 
sympathetic outflow, through the exaggerated activation 
of sympathoadrenal preganglionic neurons, the altered 
morphology of adrenal medulla, up to the local changes 
in catecholamine biosynthesis, storage and degradation in 
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chromaffin cells. Although it is quite difficult to highlight 
one particular abnormality that would be responsible for 
the development and maintenance of high blood pressure 
in SHR, the present evidence suggests that this 
hypertensive strain is highly prone to various stressful 
stimuli. This is apparent already from the prehypertensive 
stage and hence the repeated excessive activation of the 
adrenomedullary system and the enhanced catecholamine 
release can promote other pathological changes observed 
in SHR, including the potentiation of norepinephrine 
release from the sympathetic nerve terminals or the 
structural changes of vascular arteries. Indeed, 
hypertension development is attenuated in animals 
subjected to adrenal demedullation before the age of 
7 weeks and the combination of demedullation with 
neonatal sympathectomy normalized blood pressure of 
SHR to the level of normotensive controls. The 
deleterious effects of the stress are widely accepted and 
therefore SHR could be a suitable model for studying the 
connection between the stress susceptibility and the 
development of cardiovascular diseases. On the other 
hand, the contribution of the adrenomedullary system to 
the maintenance of high blood pressure in adult SHR 

seems to be minimal. Actually, the expression of genes 
involved in catecholamine biosynthesis and genes related 
to catecholamine vesicles is downregulated in adult 
stress-naïve SHR, but their adrenomedullary system is 
still more responsive to stressful conditions. Moreover, 
the activation of the adrenomedullary system is one of the 
mechanisms opposing the blood pressure lowering effects 
of treatment targeting peripheral sympathetic system in 
SHR. This finding points out to the interconnection of 
particular systems involved in the regulation of blood 
pressure and their mutual substitution. It also suggests 
that the treatments targeting central regulation of blood 
pressure might be effective for the lowering of blood 
pressure in hypertension in general. 
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