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Abstract

We study the energy conservation for the weak solutions to the compressible Primitive
Equations (CPE) system with degenerate viscosity. We give sufficient conditions on the
regularity of weak solutions for the energy equality to hold, even for solutions that may
include vacuum. In this paper, we give two theorems, the first one gives regularity in the
classical isotropic Sobolev and Besov spaces. The second one state result in the anisotropic
spaces. We get new regularity results in the second theorem because of the special structure
of CPE system, which are in contrast to compressible Navier-Stokes equations.
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1 Introduction

In this paper, we investigate the relationship between regularity and conservation of energy

for the compressible Primitive Equations (CPE) system in the periodic domain T3. The system

has the following form ∂tρ+ divx(ρv) + ∂z(ρw) = 0,
∂t(ρv) + divx(ρv ⊗ v) + ∂z(ρvw) +∇xp(ρ) = divx(ρ∇xv) + ∂z(ρ∂zv),
∂zp(ρ) = 0,

(1.1)

where ρ,u, p represent the density, velocity and pressure, respectively. The velocity can be defined

as u = (v, w), v(t,x, z) ∈ R2 and w(t,x, z) ∈ R represent the horizonal velocity and vertical
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velocity respectively and where x ∈ R2 denotes the horizontal direction and z denotes the vertical

direction. From (1.1)3, we can assume that the density is independent of z, which means ρ =

ρ(t,x). Such assumption can be seen also in [23, 31], where the authors use the change of variables

to derive the density ρ is independent of z. Moreover we consider pressure as p(ρ) = ργ (γ > 1).

Primitive Equations (PE)1 system is an important model which is widely used in the geo-

physical research to describe and analyze the phenomena of atmosphere and ocean. It is derived

from the Navier-Stokes or Euler system by asymptotic analysis or numerical approximation. Let

us briefly recall some important results for such a system.

During the last decades, there is a vast body of literature about rigourous mathematical jus-

tification of deriving PE model. More precisely, for incompressible (PE) system, Azérad and

Guillén [2] proved that the incompressible Navier-Stokes equations converge to PE in the sense

of weak solutions. Further, Li and Titi [40] proved convergence of the weak solutions of incom-

pressible Navier-Stokes equations to the strong solutions of PE. Based on [2, 40], Donatelli and

Juhasz [20] give a justification that PE model with the pollution effect is the hydrostatic limit of

the Navier-Stokes equations with an advection-diffusion equation. Grenier [32] used the energy

estimates and Brenier [7] used the relative entropy inequality to prove that the smooth solutions

of incompressible Euler system converge to smooth solutions of inviscid PE. Precisely, Brenier [6]

proved the existence of smooth solutions in two-dimensions under the convex horizontal velocity

assumptions. Later, Masmoudi and Wong [47] extended Brenier’s result, removing the convex

horizontal velocity assumptions.

On the other hand, Ersoy et al. [23] used the asymptotic analysis to deduce the compressible

primitive system (CPE) with degenerate viscosity coefficients. Gao, Nečasová and Tang [30]

deduced the CPE from anisotropic Navier-Stokes equations with constant viscosity coefficient.

One of the typical features of the PE model is that there is no information for the vertical

velocity in the momentum equation and the vertical velocity is determined by the horizontal ve-

locity through the continuity equation that here reduces to incompressible constraint. Therefore,

the mathematical and numerical study of the PE model was unsolved until 1990s when Lions,

Teman and Wang [41, 42] were first to study the PE and received fundamental results in this

field. Then Guillén-González, Masmoudi and Rodŕıguez-Bellido [33] proved the local existence

of strong solutions and uniqueness with some interesting anisotropic estimates. The celebrated

result was made by Cao and Titi [12], where they first proved the global well-posedness of PE in

the three dimensional case. Then, by virtue of semigroup method, Hieber and Kashiwabara [35]

extended this result relaxing the smoothness on the initial data.

Compressible primitive equations system (CPE) was studied recently. Gatapov and

Kazhikhov [31] proved the global existence of weak solutions with the constant viscosity coeffi-

cients in 2D case. Liu and Titi [44, 46] proved the local existence of strong solutions in 3D case

1PE we mean incompressible primitive equations.
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and considered the zero Mach number limit of CPE. Regarding with degenerate viscosity case,

Ersoy et al. [23], and Tang and Gao [52] showed the stability of weak solutions. The stability

means that a subsequence of weak solutions will converge to another weak solutions if it satisfies

some uniform bounds. Liu and Titi [45] and Wang et al. [54], independently, used the B-D

entropy to prove the global existence of weak solutions. Readers can refer to Bresch et al. [8],

Cao et al. [13], Li and Titi [40], the book of Temam and Ziane [53] and references therein for

more physical background and other interesting mathematical results.

The existence of weak solutions is a fundamental question in PDE, especially for fluids models.

The case of the incompressible fluids was investigated already in thirties by famous works of Leray

[38]. He proved the global existence of weak solutions to incompressible Navier-Stokes equations.

On the other hand, the proof of existence for the compressible case is going back to nineties

years by Lions [43] and Feireisl [25, 26, 27] which proved the existence of global weak solutions

of compressible isentropic case and later to full system.

Generally, it is not clear known whether weak solutions satisfy the principle of conservation of

energy for both incompressible and compressible fluids. It is a nature question how high regularity

for weak solutions is needed to obtain the energy equality.

Onsager [49] gave a famous conjecture that the three dimensional incompressible Euler equa-

tions conserve energy if the velocity u ∈ L3((0, T );C0,α(T3)) with α > 1
3 . The second part of

conjecture said that there exist weak solutions of the Euler equation for α ≤ 1
3 which do not

conserve energy.

The second part of Onsager’s conjecture has been underlined by the celebrated work of Scheffer

[50] and Shnirelman [51]. And a series of breakthrough papers were done by De Lellis and

Székelyhidi [17, 18, 19] by virtue of convex integration. Recently, this part is fully solved by Isett

[36], Buckmaster et. al. [11].

The first part of Onsager’s conjecture was expressed as energy conservation, which is a lively

direction of research at the contemporary mathematical society. It was proved by Constantin,

E, Titi et [15] (also by Eyink [24], and the work of Duchon and Robert [22]), stating that if

u belongs to L3([0, T ];Bα,∞3 (T3)) ∩ C([0, T ];L2(T3)) with α > 1
3 , then the energy is conserved.

Cheskidov et al. [14], and Fjordhlom and Wiedemann [29] made the sharpest result in optimal

Besov spaces. Their main idea is using the suitable commutator estimates for incompressible Euler

system. These results were extended to the bounded domain by Bardos, Titi and Wiedemann

[4], Drivas and Nguyen [21]. Later this result was extended to incompressible inhomogeneous

Euler equations by Feireisl et al. [28]. Precisely speaking, the authors in [28] mollified the weak

solutions of the density ρ and velocity u and stated that if u belongs to Bα,∞p ([0, T ];×T3),%, %u ∈
Bβ,∞q ([0, T ];×T3), p ∈ Lp

∗

loc((0, T ) × T3) for some 1 ≤ p, q ≤ ∞, p∗ is the conjugate of p, and

0 ≤ α, β ≤ 1, then the energy is locally conserved. On the other hand, Leslie and Shvydkoy [39]

extended these results into the inhomogeneous Navier-Stokes case. Moreover, Gwiazda et al. [34]
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proved the corresponding result to general system of first order conservation laws.

Concerning compressible Euler system such result goes to Feireisl et al [28]. Inspired by

Constantin et al. [15] work, Feireisl et al. [28] proved the energy conservation for compressible

Euler system with initial data containing vacuum. Yu [55] used the Lions’s commutator estimates

to show energy conservation for compressible Navier-Stokes equations with degenerate viscosity

but without vacuum. Nguyen et al. [48] extended Yu’s result with weaker regularity condition in

bounded domain. Recently, Wiedmann et al. [1] proved the corresponding results for compressible

Euler and Navier-Stokes system by removing the key assumptions that the pressure is a twice

continuously differentiable function. One can refer to [5, 10, 16] for other related works.

Comparing with fruitful results for either incompressible Euler, Navier-Stokes system or com-

pressible case, there is a few results about PE model due to its special structure. There are many

differences at the mathematical structure between Navier-Stokes equations and PE model, due

to the hydrostatic approximation. There is no information for the vertical velocity in the

momentum equation of PE model, so it is very difficult to analyze the PE model. As far as

we know, there is only one result due to Boutros, Markfelder and Titi [9], in which they showed

the energy conservation for the incompressible inviscid PE. They gave three types of weak

solutions, where their vertical velocity is determined by horizontal velocity by virtue of incom-

pressible conditions. One of the sufficient condition for energy conservation is horizonal velocity

v ∈ L4((0, T );Bα4,∞(T3)) (α > 1
2 ) and vertical velocity w ∈ L2((0, T );L2(T3)). It is interesting

to find that the index for velocity regularity is different from conventional Onsager’s exponent,

which coincides what stated in [10], ”Several of these exponents were different from 1
3 , which is

the Onsager exponent for the Euler equations. This means that the Onsager exponent is not

universal and is plausibly determined by the regularity of the coefficient functions of the nonlin-

earity...” It also shows the PE has different mathematical structure and corresponding different

results compared with Navier-Stokes equations.

There is no result concerning the energy equality for CPE system. The goal of this

work is to investigate the energy equality for CPE system under some regularity conditions.

The paper is organized as follows: In Section 2, we introduce the definition of weak solutions,

give some useful lemmas and state the main theorems. Section 3 is devoted to the proof of the

energy conservation.

2 Definition and Preliminaries

2.1 Definition of weak solution

Definition 2.1. The (ρ,u) is called a weak solution to CPE system (1.1), if (ρ,u) satisfies the

following assumptions for any time t ∈ [0, T ]
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• ρ and v have the following regularity:

ρ ≥ 0, ρ ∈ L∞(0, T ;L1(T3) ∩ Lγ(T3)), ∇x
√
ρ ∈ L∞(0, T ;L2(T3)), ∇xρ

γ
2 ∈ L2((0, T )× T3),

√
ρ∇xv ∈ L2(0, T ;L2(T3)),

√
ρ∂zv ∈ L2(0, T ;L2(T3)),

√
ρ∂zw ∈ L2(0, T ;L2(T3));

• the continuity equation is satisfied in the sense of distributions as follows[∫
T3

ρϕ dxdz

] ∣∣∣t=τ
t=0

=

∫ τ

0

∫
T3

(ρ∂tϕ+ ρv∇xϕ+ ρw∂zϕ) dxdzdt,

for all ϕ ∈ C∞c ((0, T )× T3);

• the momentum equation is satisfied as[∫
T3

ρvϕdxdz

] ∣∣∣t=τ
t=0

=

∫ τ

0

∫
T3

(ρv∂tϕ+ ρv ⊗ v : ∇ϕ+ ρvw∂zϕ+ p(ρ)divxϕ) dxdzdt

−
∫ τ

0

∫
T3

(ρ∇xv : ∇xϕ+ ρ∂zv∂zϕ) dxdzdt = 0,

for all ϕ ∈ C∞c ([0, T )× Ω);

• the energy inequality

d

dt

∫
T3

(
1

2
ρ|v|2 + P (ρ)

)
dxdz

∣∣∣t=τ
t=0

+

∫ τ

0

∫
T3

(
ρ|∇xv|2 + ρ|∂zv|2

)
dxdz ≤ 0

for a.a τ ∈ (0, T ), where P (ρ) = ρ

∫ ρ

1

p(s)

s2
ds.

Remark 2.1. By virtue of the B-D entropy, Liu and Titi [45] obtained the extra estimates and

the existence of global weak solutions to CPE with degenerate viscosity. However, it is still an

open problem the existence of weak solutions to CPE with constant viscosity.

2.2 Function spaces

Let Ω := (0, T ) × T3, and we define the Besov space: Bα,∞p (Ω) with 1 ≤ p < ∞, 0 < α < 1,

normed by

‖w‖Bα,∞p (Ω) = ‖w‖Lp(Ω) + sup
ξ∈Ω
{|ξ|−α‖w(·+ ξ)− w‖Lp(Ω∩(Ω−ξ))}

is finite. In order to understand the anisotropic structure in CPE, inspired by [9, 33], we introduce

the following anisotropic spaces:

‖w‖H1
x(T2)L2

z(T1) = ‖‖w(x, ·)‖L2(T1)‖H1
x(T2)

and considering ξ = (τ, ξh, ξz),

‖w‖Bα,∞p ((0,T );Bα,∞p (T;Bβ,∞p (T2)) =‖w‖Lp(Ω) + sup
ξ∈Ω
{|ξ|−α‖w(·+ ξ)− w‖Lp(Ω)∩(Ω−ξ))}
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+ sup
ξh∈T2

{|ξh|−β‖w(·+ (0, ξh, 0))− w‖Lp(Ω)∩(Ω−(0,ξh,0))},

where 0 < α < β < 1. The space H1
x(T2)L2

z(T1) means its horizontal regularity is H1 and vertical

regularity is L2. On the other hand, the space Bα,∞p (T;Bβ,∞p (T2)) means that it is Besov regular

in the z− direction with exponent α while Besov regular in the horizontal direction with exponent

β.

Let η ∈ C∞c (Rd+1) (d is the number of the space dimension) be a standard mollification kernel

and set

ηε(x) =
1

εd+1
η
(x
ε

)
, wε = ηε ∗ w, fε(w) = f(w) ∗ ηε.

We should notice that wε is well-defined on Ωε = {x ∈ Ω : d(x, ∂Ω) > ε}. We first recall some

useful lemmas which will be frequently used throughout the paper.

Lemma 2.1. ([28, 16]) For any function u ∈ Bα,∞p (Ω), we have

‖u(·+ ξ)− u‖Lp(Ω∩(Ω−ξ)) ≤ |ξ|α‖u‖Bα,∞p (Ω),

‖uε − u‖Lp(Ω) ≤ εα‖u‖Bα,∞p (Ω),

‖∇uε‖Lp(Ω) ≤ εα−1‖u‖Bα,∞p (Ω),

where ∇ stands for space-time gradient.

Remark 2.2. It is easy to prove the following equality [28]

fεgε − (fg)ε = (fε − f)(gε − g)

−
∫ ε

−ε

∫
T3

ηε(τ, ξh, ξz) (f(t− τ,x− ξh, z − ξz)− f(t, x., z)) (g(t− τ,x− ξh, z − ξz)− g(t,x, z)) dξhdξzdτ.

Lemma 2.2. ([3] Besov space embedding) Let s ∈ R, 1 ≤ p, r ≤ ∞, then

Bs,rp ↪→ B
s−d( 1

p−
1
p1

),r
p1 , p1 ≥ p.

It is easy to obtain the following remark

Remark 2.3. H1(T3) ↪→ B1,∞
2 (T3) ↪→ Bα,∞3 (T3) (α > 1

2 ).

The following two lemmas can be proved as [16]

Lemma 2.3. Let u ∈ Bα,∞p (Ω,Rm). Suppose f : Rm → R is a C1 function with ∂f
∂ui
∈ L∞

i = 1...m. Then

‖∇f(uε)‖Lp(Ω) ≤ Cεα−1‖u‖Bα,∞p (Ω),

where ∇ stands for space-time gradient
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Lemma 2.4. Let 1 ≤ q <∞ and suppose v ∈ L2q((0, T )× Td;Rk) and f ∈ C2(Rk;RN ). If

sup
i,j
‖ ∂2f

∂vi∂vj
‖L∞ <∞,

then there exists a constant C > 0 such that

‖f(vε)− fε(v)‖Lq < C
(
‖vε − v‖L2q + sup

(s,y)∈suppηε

‖v(·, ·)− v(· − s, · − y)‖2L2q

)
.

The following lemma, known as Lions’s commutator lemma ([55] Lemma 2.3 and [37] Lemma

3.2) will be very useful for the estimates below

Lemma 2.5. Let ∂ be a partial derivative in space or time. Let f , ∂f ∈ Lp(R+ × Ω), g ∈
Lq(R+ × Ω) with 1 ≤ p, q ≤ ∞, and 1

p + 1
q ≤ 1. Then, we have

‖∂(fg)ε − ∂(fgε)‖Lr ≤ C‖∂f‖Lp‖g‖Lq

for some constant C > 0 independent of ε, f and g, with 1
r = 1

p + 1
q . In addition,

∂(fg)ε − ∂(fgε)→ 0, inLr,

as ε→ 0, if r <∞.

Remark 2.4. The original version in [55] is ‖(∂(fg))ε − ∂(fgε)‖Lr ≤ C‖∂f‖Lp‖g‖Lq . Using

Lemma 3.1 in [37], ∂(fg)ε = (∂(fg))ε, we get the statement of Lemma 2.5 as

‖∂(fg)ε − ∂(fgε)‖Lr = ‖(∂(fg))ε − ∂(fgε)‖Lr .

2.3 Main result

Our main results can be stated as follows:

Theorem 2.1. Let (ρ,u) be a weak solution of CPE (1.1) with ρ > 0. Let us assume v ∈
Bα,∞3 ((0, T );Bα,∞3 (T3)), ρ, ρv ∈ Bβ,∞3 ((0, T );Bβ,∞3 (T3), and

0 ≤ ρ ≤ ρ ≤ ρ, a.e.in (0, T )× Ω

for some constants ρ, ρ and 0 ≤ α, β ≤ 1, α > 3
4 and α + β > 3

2 . Moreover, we assume the

additional regularity w ∈ L2(0, T ;L2(T3)), v ∈ L2((0, T );H1(T3)), ρv ∈ L3((0, T );H1(T3)) and

p ∈ C[ρ, ρ]. Then the energy is locally conserved i.e.

∂t

(
1

2
ρ|v|2 + P (ρ)

)
+ ρ|∇xv|2 + ρ|∂zv|2 + divx

[
(
1

2
ρ|v|2 + p(ρ) + P (ρ)− ρ∇xv)v

]
+∂z

[(
1

2
ρ|v|2 + p(ρ) + P (ρ)

)
w − ρ∂zv · v

]
= 0.

(2.1)
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Remark 2.5. Our result is still valid for the constant viscosity coefficient whose corresponding

energy is

∂t

(
1

2
ρ|v|2 + P (ρ)

)
+ |∇xv|2 + |∂zv|2 + divx

[(
1

2
ρ|v|2 + p(ρ) + P (ρ)−∇xv

)
v

]
+∂z

[(
1

2
ρ|v|2 + p(ρ) + P (ρ)

)
w − ∂zv · v

]
= 0.

Remark 2.6. There are some major differences between our work and Feireisl et

al. [28], Wiedemann et al. [1], Titi et al.[9]. Theorem 2.1 seems similar and parallel to

the results in [28, 1]. However, in contrast with compressible Euler and Navier-Stokes system,

we have only information on the horizontal velocity in CPE. It means it is a hurdle to control

the estimate of vertical velocity in the isotropic space. In order to overcome this difficulty,

we need the additional assumption ρv ∈ L3((0, T );H1) in Theorem 2.1. Fortunately, by deep

investigation of the structure of CPE, we find that we can work with the anisotropic space to

solve the corresponding problems. Therefore, we are able to remove this restriction by virtue of

the anisotropic regularity in Theorem 2.2.

Compared with [9], we deal with the compressible situation which completely changes the

behaviour of fluid: Firstly, the only way to obtain the information of vertical velocity is through

continuity equation instead of incompressible constraint. Moreover, the pressure depends on

density and needs to be controlled. Last but not least, we have dissipative term and the viscosity

depends on density, which brings the new commutator estimates. Therefore, the conventional

method used in incompressible PE [9] can not be applied straightforwardly to the CPE model.

Here, we find a new observation and use the Lions’s commutator lemma (Lemma 2.5) to control

the convergence of vertical viscosity commutator which is different to [1].

Inspired by [9, 33], we introduce the horizontal and vertical regularity and obtain the following

theorem:

Theorem 2.2. Let (ρ,u) be a weak solution of CPE (1.1) with ρ > 0. Let us assume v ∈
Bα,∞3 ((0, T );Bα,∞3 (T;Bβ,∞3 (T2))), ρ, ρv ∈ Bα,∞3 ((0, T );Bα,∞3 (T;Bβ,∞3 (T2))), where 0 < α < β ≤
1, α > 1

3 and 2α+ β > 2. Moreover, we assume future

0 ≤ ρ ≤ ρ ≤ ρ, a.e.in (0, T )× Ω

for some constants ρ, ρ. Moreover, we assume w ∈ L2(0, T ;L2(T3)) v ∈ L2((0, T );H1
x(T2)L2

z(T1))

and p ∈ C[ρ, ρ]. Then the energy is locally conserved i.e.

∂t

(
1

2
ρ|v|2 + P (ρ)

)
+ ρ|∇xv|2 + ρ|∂zv|2 + divx

[(
1

2
ρ|v|2 + p(ρ) + P (ρ)− ρ∇xv

)
v

]
+∂z

[(
1

2
ρ|v|2 + p(ρ) + P (ρ)

)
w − ρ∂zv · v

]
= 0.
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Remark 2.7. The corresponding constant viscosity coefficient result is also valid as in Remark

2.5.

Remark 2.8. Notice that our assumption β > α, in the definition of the anisotropic Besov

space and Theorem 2.2, satisfies the special structure of CPE, which means that the hori-

zontal regularity is higher than vertical one. Moreover, from the assumptions β > α and

2α + β > 2, we can deduce β > 2
3 . It is important to point out that our result could be ex-

tended to different regularity with v and ρ, such as v ∈ Bα,∞3 ((0, T );Bα1,∞
3 (T;Bβ1,∞

3 (T2))) and

ρ ∈ Bβ,∞3 ((0, T );Bα2,∞
3 (T;Bβ2,∞

3 (T2))). But it will produce many complex index relationships.

In order not to bring confuse to readers, we just uniform the regularity and assume they are in

the same regularity space.

Remark 2.9. It should be noticed that vertical regularity of v in the Theorem 2.2 is lower than

in [1], in which they assume v ∈ L2((0, T );H1), by virtue of the anisotropic regularity and the

special structure of CPE.

3 Proof of Theorem 2.1 and Theorem 2.2

3.1 Energy equality

We follow the strategy from [1, 28]. Precisely speaking, we mollify the CPE in both space and

time, then derive the local energy equality for regularized quantities, estimate commutator errors

generated by nonlinear terms and, passing (ε, δ)→ 0 (see below), commutators tend to zero and

the result is obtained in the original quantities.

Firstly, we mollify the momentum equation (1.1)2 and obtain

∂t(ρv)ε + divx(ρv ⊗ v)ε + ∂z(ρvw)ε +∇xp
ε(ρ) = divx(ρ∇xv)ε + ∂z(ρ∂zv)ε. (3.1)

Notice that the pressure term in (3.1) does not belong to C2, thus it does not satisfy the conditions

in [28]. Therefore, we need mollify the pressure as the following (based on [1]): Take a sequence

pδ ∈ C2[ρ, ρ] that converges uniformly to p ∈ C[ρ, ρ], that is for each δ > 0

‖pδ − p‖L∞ ≤ δ.

Replacing pδ in (3.1), we obtain

∂t(ρv)ε + divx(ρv ⊗ v)ε + ∂z(ρvw)ε +∇x

(
pδ(ρ)

)ε
= divx(ρ∇xv)ε + ∂z(ρ∂zv)ε +∇x

(
(pδ(ρ))ε − pε(ρ)

)
.

It is easy to obtain

∂t(ρ
εvε) + divx

(
(ρv)ε ⊗ vε

)
+ ∂z

(
(ρw)εvε

)
+∇xp

δ(ρε)− divx (ρε∇xvε)− ∂z (ρε∂zv
ε)
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= ∂t

(
ρεvε − (ρv)ε

)
+ divx

(
(ρv)ε ⊗ vε − (ρv ⊗ v)ε

)
+ ∂z

(
(ρw)εvε − (ρvw)ε

)
− divx

(
ρε∇xvε − (ρ∇xv)ε

)
− ∂z

(
ρε∂zv

ε − (ρ∂zv)ε
)

+∇x

(
pδ(ρε)− (pδ(ρ))ε

)
+∇x

(
(pδ(ρ))ε − pε(ρ)

)
= Rε =

7∑
i=1

Rεi . (3.2)

Multiplying with vε, we get

∂tρ
ε|vε|2 + ρε∂t

|vε|2

2
+ divx(ρv)ε|vε|2 + (ρv)ε∇x

|vε|2

2
+ ∂z(ρw)ε|vε|2 + (ρw)ε∂z

|vε|2

2
+ ρεvε · ∇x(P δ(ρε))′ + ρε|∇xvε|2 + ρε|∂zvε|2 − divx(ρε∇xvε · vε)− ∂z(ρε∂zvε · vε)

= Rεvε (3.3)

where

∇xp
δ(ρε) = (pδ(ρε))′∇xρ

ε = ρε(P δ(ρε))′′∇xρ
ε,= ρε∇x(P δ(ρε))′.

Mollifying the continuity equation (1.1)1 with space and time, we have

∂tρ
ε + divx(ρv)ε + ∂z(ρw)ε = 0. (3.4)

It is easy to obtain the following equality

(∂tρ
ε + divx(ρv)ε + ∂z(ρw)ε)

|vε|2

2
= 0. (3.5)

We rewrite (3.5) and get

∂tρ
ε + divx(ρεvε) + ∂z(ρw)ε = divx(ρεvε − (ρv)ε),

then

∂tP
δ(ρε) + divx(ρεvε)(P δ(ρε))′ + ∂z(ρw)ε(P δ(ρε))′ = divx

(
ρεvε − (ρv)ε

)
(P δ(ρε))′. (3.6)

We define sε = divx(ρεvε − (ρv)ε)(P δ(ρε))′, and put (3.3)-(3.6) together to obtain

∂t

(
1

2
ρε|vε|2 + P δ(ρε)

)
+ρε|∇xvε|2 + ρε|∂zvε|2

+divx

(
(ρv)ε

1

2
|vε|2 + (ρεvε)(P δ(ρε))′−ρε∇xvεvε

)
+∂z

(
(ρw)ε

1

2
|vε|2 + (ρw)ε(P δ(ρε))′ − ρε∂zvε · vε

)
= Rεvε + sε. (3.7)

Therefore, we just need to prove the limit ε→ 0 for each fixed δ > 0, then consider δ → 0 in the

following section.
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3.2 Commutator estimates

Section 3.1 can be seen as the prior estimates of energy equality. We will deduce the local

energy equality for the regularized quantities as follows:

Let ϕ ∈ C∞c (Ω) be a test function and take ε > 0 small enough so that supp(ϕ) ⊂ (ε, T−ε)×T3.

Multiplying (3.2) with ϕvε and integrating in time and space, we have∫ τ

0

∫
T3

∂t(ρ
εvε) · ϕvε dxdzdt+

∫ τ

0

∫
T3

divx

(
(ρv)ε ⊗ vε) · ϕvε + ∂z

(
(ρw)εvε) · ϕvε dxdzdt

+

∫ τ

0

∫
T3

∇xp
δ(ρε) · ϕvε dxdzdt

=

∫ τ

0

∫
T3

divx(ρε∇xvε) · ϕvε + ∂z(ρ
ε∂zv

ε)ϕvε dxdzdt

+
7∑
i=1

∫ τ

0

∫
T3

Rεi · ϕvε dxdzdt.

Then, multiplying (3.4) by
1

2
ϕ|vε|2, multiplying (3.6) by ϕ and combining together, so that

we obtain the form of (3.7) in the distribution sense. By the same taken as [1, 28], we just need

to show that each commutator error term converges to zero as∫ τ

0

∫
T3

Rεiϕdxdzdt→ 0,

∫ τ

0

∫
T3

sεϕdxdzdt→ 0.

In the following sections, we will divide into two parts to prove the above convergence. Therefore,

we complete the proof of both theorems.

3.2.1 Proof of Theorem 2.1

The terms Rεi (i = 1, 2) and sε is dealt by the same way as [28]. For readers’ convenience, we

recall the main steps and take Rε2 as an example to show the proof. Using Remark 2.2, we have

(ρv)ε ⊗ vε − (ρv ⊗ v)ε =
(
(ρv)ε − ρv

)
⊗ (vε − v)

−
∫ ε

−ε

∫
T3

ηε(τ, ξh, ξz) (ρv(t− τ,x− ξh, z − ξz)− ρv(t,x, z))

⊗ (v(t− τ,x− ξh, z − ξz)− v(t,x, z)) dξhdξzdτ. (3.8)

Therefore, for the first term we split it into two parts according to (3.8),∫ τ

0

∫
T3

divx

(
(ρv)ε − ρv)⊗ (vε − v)

)
ϕvεdxdzdt

≤ ‖ϕ‖C1‖(ρv)ε − ρv‖L3‖vε − v‖L3‖vε‖L3 + ‖ϕ‖C0‖(ρv)ε − ρv‖L3‖vε − v‖L3‖∇xvε‖L3

≤ C
(
εα+β + ε2α+β−1

)
‖ρv‖Bβ,∞3

‖v‖2Bα,∞3
.

From the assumption in Theorem 2.1 α+ β > 3
2 , it is easy to deduce 2α+ β > 1, so that we can

obtain the term vanishes when ε → 0. For another part of Rε2, we use the Fubini’s theorem and
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Holder’s inequality, and get∫ τ

0

∫
T3

div

(∫ ε

ε

∫
T3

ηε(τ, ξ)
(
ρv(t− τ,x− ξh, z − ξz)− ρv(t,x, z)

)
·
(
v(t− τ,x− ξh, z − ξ)− v(t,x, z)

)
dξh dξz dτ

)
· ϕvεdxdzdt

≤ C
(
εα+β + ε2α+β−1

)
‖ρv‖Bβ,∞3

‖v‖2Bα,∞3
. (3.9)

Next, we turn to estimate the commutators Rε6 and Rε7, the proof is inspired by [1] and we include

the proof here for completeness∫ τ

0

∫
T3

∇x

(
pδ(ρε)− (pδ(ρ))ε

)
ϕvεdxdzdt

= −
∫ τ

0

∫
T3

(
pδ(ρε)− (pδ(ρ))ε

)
(ϕdivxvε +∇xϕvε)dxdzdt

≤ ‖ϕ‖C0‖pδ(ρε)− (pδ(ρ))ε‖
L

3
2
‖divxvε‖L3 + C‖ϕ‖C1‖pδ(ρε)− (pδ(ρ))ε‖

L
3
2
‖vε‖L3

≤ C‖pδ(ρε)− (pδ(ρ))ε‖
L

3
2
εα−1‖v‖Bα,∞3

+ C‖pδ(ρε)− (pδ(ρ))ε‖
L

3
2
‖vε‖L3

≤ C
(
‖ρε − ρ‖2L3 + sup

y∈suppηε
‖ρ(·)− ρ(· − y)‖2L3

)
(εα−1 + 1)‖v‖Bα,∞3

≤ C ε2β(εα−1 + 1)‖ρ‖2
Bβ,∞3

‖v‖Bα,∞3
,

where we have used Lemma 2.4 in the second inequality and∫ τ

0

∫
T3

∇x

(
(pδ(ρ))ε − pε(ρ)

)
ϕvεdxdzdt

=−
∫ τ

0

∫
T3

(
pδ(ρ)− p(ρ)

)ε
ϕdivxvεdxdzdt−

∫ τ

0

∫
T3

(
pδ(ρ)− p(ρ)

)ε∇xϕvεdxdzdt

≤ C ‖ϕ‖C0‖
(
pδ(ρ)− p(ρ)

)ε‖L∞‖divxvε‖L2 + C‖ϕ‖C1‖
(
pδ(ρ)− p(ρ)

)ε‖L∞‖vε‖L3

≤ Cδ.

The remaining is to estimate Rε4 and Rε5. We give a different proof compared with [1] as the

following:

∫ τ

0

∫
T3

divx(ρε∇xvε − (ρ∇xv)ε)ϕvεdxdzdt

= −
∫ τ

0

∫
T3

(ρε∇xvε − (ρ∇xv)ε)∇xϕvεdxdzdt−
∫ τ

0

∫
T3

(ρε∇xvε − (ρ∇xv)ε)ϕ∇xvεdxdzdt.

(3.10)

Using Remark 2.2, we split the two terms on the right hand side of (3.10) into four terms:∫ τ

0

∫
T3

(ρε∇xvε − (ρ∇v)ε)∇xϕvεdxdzdt

=

∫ τ

0

∫
T3

(ρε − ρ)(∇xvε −∇xv)vε · ∇xϕdxdzdt

+

∫ ε

−ε

∫
T3

ηε(τ, ξ)
(
ρ(t− τ,x− ξh)− ρ(t,x)

)(
∇xv(t− τ,x− ξh, z − ξz)−∇xv(t, x, z)

)
vε · ∇xϕdξhdξzdτ
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= J1 + J2,

and∫ τ

0

∫
T3

(ρε∇xvε − (ρ∇xv)ε)ϕ∇xvεdxdzdt

=

∫ τ

0

∫
T3

(ρε − ρ)(∇xvε −∇xv) : ∇xvεϕdxdzdt

+

∫ ε

−ε

∫
T3

ηε(τ, ξ)
(
ρ(t− τ,x− ξh)− ρ(t,x)

)(
∇xv(t− τ,x− ξh, z − ξz)−∇xv(t,x, z)

)
: ∇xvεϕdξhdξzdτ

= J3 + J4.

Observe that J2 and J4 has been written taking into account that ρ is independent of z.

We just concern on the terms J1 and J3, the remaining ones can be estimated similarly by

applying the Fubini’s theorem (see in [1, 28]).

|J1|+ |J3|

=

∣∣∣∣∫ τ

0

∫
T3

(ρε − ρ)(∇xvε −∇xv)vε · ∇xϕdxdzdt

∣∣∣∣+

∣∣∣∣∫ τ

0

∫
T3

(ρε − ρ)(∇xvε −∇xv) : ∇xvεϕdxdzdt

∣∣∣∣
≤ ‖ϕ‖C1‖ρε − ρ‖L3‖∇x(vε − v)‖L2‖vε‖L6 + ‖ϕ‖C0‖ρε − ρ‖L3‖∇x(vε − v)‖L2‖∇xvε‖L6

≤ ‖ϕ‖C1εβ‖ρ‖Bβ,∞3
‖∇x(vε − v)‖L2‖v‖H1 + ‖ϕ‖C0εβ+α−3/2‖ρ‖Bβ,∞3

‖∇x(vε − v)‖L2‖v‖
B
α−1/2,∞
6

≤ ‖ϕ‖C1εβ‖ρ‖Bβ,∞3
‖∇x(vε − v)‖L2‖v‖H1 + ‖ϕ‖C0εβ+α−3/2‖ρ‖Bβ,∞3

‖∇x(vε − v)‖L2‖v‖Bα,∞3
.

where we have used Lemma 2.1 and Lemma 2.2 to get

‖∇xvε‖L6 ≤ εα− 3
2 ‖v‖

B
α− 1

2
,∞

6

≤ εα− 3
2 ‖v‖Bα,∞3

. (3.11)

Because we deduce v ∈ B
α− 1

2 ,∞
6 by virtue of the assumption v ∈ Bα,∞3 and the embedding

Bα,∞3 ↪→ B
α− 1

2 ,∞
6 from Lemma 2.2.

Remark 3.1. In (3.11) we applied Lemma (2.1)3 with ω

‖∇xvε‖L6 ≤ εω−1‖v‖Bω,∞6
.

Setting ω = α− 1/2 we get (3.11). Since α > 3
4 , it converges to zero.

Recalling v ∈ L2((0, T );H1), we have Rε4 → 0 as ε → 0. For the term Rε5, it is similar as

Rε4 → 0, hence we omit the detail.

Finally, we turn to analysis the difficult commutator error Rε3. As usual, the decomposition

to Rε3 is similar to Rε2, we divide it into two parts as the following:

(ρw)εvε − (ρwv)ε = ((ρw)ε − ρw)(vε − v)

−
∫ ε

ε

∫
T3

ηε(τ, ξ)
(
ρw(t− τ,x− ξh, z − ξz)− ρw(t,x, z)

)(
v(t− τ,x− ξh, z − ξz)− v(t,x, z)

)
dξhdξzdτ.
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We only focus on the first part only, as the second part produce the same estimates after applying

Fubin’s theorem. It is difficult to estimate this term directly, because we do not have enough

regularity for the regularity of vertical velocity. This is the essential difficulty and distinction

between Navier-Stokes system and CPE system.

Remark 3.2. The following equality plays a key role in the existence of CPE [45], which is also

helpful and important in our analysis,

(ρw) = −
∫ z

0

divx[ρ(v(x, z′, t)−
∫ 1

0

v(x, s, t)ds)]dz′.

= −
∫ z

0

divx(ρṽ)dz′, (3.12)

where ṽ = v−v = v−
∫ 1

0
v(x, s, t)ds. Observe that here it is crucial the fact that ρ is independent

of the z-variable (see [45]).

Since ρv ∈ L3((0, T );H1(T3)), which means ρw ∈ L3((0, T );L2(T3)) from (3.12), thus we get

∫ τ

0

∫
T3

((ρw)ε − ρw)(vε − v)(∂zϕvε + ϕ∂zv
ε) dxdzdt

≤ ‖(ρw)ε − ρw‖L2‖vε − v‖L3

(
‖ϕ‖C1‖vε‖L6 + ‖ϕ‖C0‖∂zvε‖L6

)
≤ C‖ρw‖L2εα‖v‖Bα,∞3

(
‖v‖

B
α− 1

2
,∞

6

+ εα−
3
2 ‖v‖

B
α− 1

2
,∞

6

)
≤ C

(
εα + ε2α− 3

2

)
‖v‖2Bα,∞3

,

where we use similar method from (3.11) to get

‖∂zvε‖L6 ≤ εα− 3
2 ‖v‖

B
α− 1

2
,∞

6

≤ εα− 3
2 ‖v‖Bα,∞3

. (3.13)

Recalling the assumption α > 3
4 , we could deduce this term converges to zero.

Remark 3.3. We used similar argument as in (3.11). From Lemma 2.1, it is easy to obtain

that ‖∂zvε‖L6 ≤ εω−1‖v‖Bω,∞6
. Then, setting again ω = α− 1/2 (since α > 3/4), we can deduce

(3.13).

In order to complete the proof of Theorem 2.1, we need to show the final level of convergence

for δ. For each fixed δ > 0, we have the in the limit (3.7) as ε→ 0

∂t

(
1

2
ρ|v|2 + P δ(ρ)

)
+ ρ|∇xv|2 + ρ|∂zv|2 + divx

(
(ρv)

1

2
|v|2 + (pδ(ρ) + P δ(ρ))v − ρ∇xvv

)
+∂z

(
(ρw)

1

2
|v|2 + (pδ(ρ) + P δ(ρ))w − ρ∂zv · v

)
,

(3.14)
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where P δ(ρ) = ρδ
∫ ρ

1

pδ(r)

r2
dr.

We will prove (3.14) converges in the sense of distributions on Ω as δ → 0 to (2.1). This limit

process of δ is similar to Wiedemann et al. [1]. We just show the slight difference in contrast to

[1], since our system has different behavior in vertical direction, that is w ∈ L2(0, T ;L2(T3)).

Taking ϕ ∈ C∞c (Ω), we have∣∣∣ ∫ τ

0

∫
T3

∂zϕ(pδ(ρ)− p(ρ))w dxdzdt
∣∣∣ ≤ C ‖ϕ‖C1‖pδ(ρ)− p(ρ)‖L∞‖w‖L2 ≤ Cδ.

Recalling the estimates from [1]

|P δ(ρ)− P (ρ)| ≤ ρ
∫ ρ

1

|pδ(r)− p(r)|
r2

dr ≤ ‖pδ − p‖L∞ρ
∣∣∣∣∫ ρ

1

1

r2
dr

∣∣∣∣ ≤ (1 + ρ)‖pδ − p‖L∞ ,

we can obtain that∣∣∣ ∫ τ

0

∫
T3

∂zϕ(P δ(ρ)− P (ρ))w dxdzdt
∣∣∣ ≤ ‖ϕ‖C1

(
1 + ‖ρ‖L2

)
‖pδ − p‖L∞‖w‖L2 ≤ Cδ.

3.2.2 Proof for Theorem 2.2

Comparing with the Theorem 2.1, we delicately combine the anisotropic regularity with the

special structure of CPE system, and observe some new results. The process of proving Theorem

2.2 is similar to Theorem 2.1. We just focus on some different estimates for commutators Rε2 and

Rε6. First we observe for Rε2∫ τ

0

∫
T3

divx

(
(ρv)ε − ρv)⊗ (vε − v)

)
ϕvε dxdzdt

≤ ‖ϕ‖C1‖(ρv)ε − ρv‖L3‖vε − v‖L3‖vε‖L3 + ‖ϕ‖C0‖(ρv)ε − ρv‖L3‖vε − v‖L3‖∇xvε‖L3

≤ Cε2α‖ρv‖Bα3,t(Bα3,z(Bβ3,h))‖v‖
2
Bα3,t(B

α
3,z(Bβ3,h))

+ Cε2α‖ρv‖Bα3,t(Bα3,z(Bβ3,h))‖v‖Bα3,t,Bα3,z(Bβ3,h)ε
α−1‖v‖Bα3,t(Bα3,z(Bβ3,h))

≤ C
(
ε2α + ε3α−1

)
‖ρv‖Bα3,t(Bα3,z(Bβ3,h))‖v‖

2
Bα3,t(B

α
3,z(Bβ3,h))

.

We can use the same the idea on the commutator of horizontal dissipative term Rε4. For the

vertical dissipative commutator term Rε5, we utilize the anisotropic regularity to give an different

and interesting proof. Recalling the density is independent of z, we integrate Rε5 by parts and

rewrite it as ∫ τ

0

∫
T3

∂z

(
ρε∂zv

ε − (ρ∂zv)ε
)
· ϕvεdxdzdt

=

∫ τ

0

∫
T3

∂z

(
∂z(ρ

εvε)− ∂z(ρv)ε
)
· ϕvεdxdzdt

= −
∫ τ

0

∫
T3

(
∂z(ρ

εvε)− ∂z(ρv)ε
)
·
(
vε∂zϕ+ ∂zv

εϕ
)
dxdzdt

= −
∫ τ

0

∫
T3

(
∂z(ρv

ε)− ∂z(ρv)ε
)
·
(
vε∂zϕ+ ∂zv

εϕ
)
dxdzdt
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−
∫ τ

0

∫
T3

(
∂z(ρ

ε − ρ)vε
)
·
(
vε∂zϕ+ ∂zv

εϕ
)
dxdzdt.

For the first term, we use Holder’s inequality to obtain∣∣∣ ∫ τ

0

∫
T3

(
∂z(ρv

ε)− ∂z(ρv)ε
)
·
(
vε∂zϕ+ ∂zv

εϕ
)
dxdzdt

∣∣∣
≤ ‖∂z(ρvε)− ∂z(ρv)ε‖L3

(
‖vε‖L3‖∂zϕε‖L3 + ‖∂zvε‖L3‖ϕε‖L3

)
.

Recalling Lemma 2.5, we have ‖∂z(ρvε) − ∂z(ρv)ε‖L3 → 0 as ε → 0, where we take ρ = f and

v = g.

Due to the independence of ρ with respect to z, Besov estimates for ρ only depends on

variations in the β-index, which is the index related to the horizontal components. Based on this

fact, we observe the second term as the following∣∣∣ ∫ τ

0

∫
T3

(
∂z(ρ

ε − ρ)vε
)
·
(
vε∂zϕ+ ∂zv

εϕ
)
dxdzdt

∣∣∣
=
∣∣∣ ∫ τ

0

∫
T3

(
ρε − ρ)(∂zv

ε
)
·
(
vε∂zϕ+ ∂zv

εϕ
)
dxdzdt

∣∣∣
≤ C‖ρε − ρ‖L3‖∂zvε‖L3

(
‖vε‖L3 + ‖∂zvε‖L3

)
≤ Cεβ‖ρ‖Bα3,t(Bα3,z(Bβ3,h))ε

α−1‖v‖Bα3,t(Bα3,z(Bβ3,h))

(
‖v‖L3 + εα−1‖v‖Bα3,t(Bα3,z(Bβ3,h))

)
≤ C

(
εα+β−1 + ε2α+β−2

)
‖ρ‖Bα3,t(Bα3,z(Bβ3,h))‖v‖

2
Bα3,t(B

α
3,z(Bβ3,h))

.

Then for Rε6, it is similar to obtain∣∣∣ ∫ τ

0

∫
T3

∇x

(
pδ(ρε)− (pδ(ρ))ε

)
ϕvε dxdzdt

∣∣∣
=
∣∣∣− ∫ τ

0

∫
T3

(
pδ(ρε)− (pδ(ρ))ε

)
(ϕdivxvε +∇xϕvε) dxdzdt

∣∣∣
≤ ‖ϕ‖C0‖pδ(ρε)− (pδ(ρ))ε‖

L
3
2
‖divxvε‖L3 + C‖ϕ‖C1‖pδ(ρε)− (pδ(ρ))ε‖

L
3
2
‖vε‖L3

≤ C‖pδ(ρε)− (pδ(ρ))ε‖L3/2εα−1‖vε‖Bα3,t(Bα3,z(Bβ3,h)) + C‖pδ(ρε)− (pδ(ρ))ε‖L3/2‖v‖L3

≤ C
(
‖ρε − ρ‖2L3 + sup

y∈suppηε
‖ρ(·)− ρ(· − y)‖2L3

)(
εα−1 + 1

)
‖v‖Bα3,t(Bα3,z(Bβ3,h))

≤ Cε2β
(
εα−1 + 1

)
‖ρ‖2

Bα3,t(B
α
3,z(Bβ3,h))

‖v‖Bα3,t(Bα3,z(Bβ3,h))

≤ C
(
ε2β+α−1 + ε2β

)
‖ρ‖2

Bα3,t(B
α
3,z(Bβ3,h))

‖v‖Bα3,t(Bα3,z(Bβ3,h)),

where we use the assumption 2α+ β − 2 > 0 and β > α to deduce α+ 2β − 1 > 0.

Let us stress that for the term Rε3, we need to apply the important property of (CPE), see Re-

mark 3.2 and the equality (3.12). Due to the assumption ρv ∈ Bα,∞3 ((0, T );Bα,∞3 (T;Bβ,∞3 (T2))),

then we can deduce ρw ∈ Bα,∞3 ((0, T );Bα+1,∞
3 (T;Bβ−1,∞

3 (T2)). It means ρw has Bα+1,∞
3 regu-

larity in the z− direction, Bβ−1,∞
3 regularity in the horizontal directions, and Bα,∞3 regularity in

time. Therefore, we can estimate Rε3 as follows∫ τ

0

∫
T3

((ρw)ε − ρw)(vε − v)(∂zϕvε + ϕ∂zv
ε) dxdzdt
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≤
(∫ t

0

‖(ρw)ε − ρw‖3L3(T3)dt

) 1
3

· ‖vε − v‖L3

(
‖ϕ‖C1‖‖vε‖L3 + ‖ϕ‖C0‖‖∂zvε‖L3

)
≤ Cεβ−1

(∫ t

0

‖ρw‖3
Bα+1

3,z (Bβ−1
3,h )

dt

) 1
3

εα‖v‖2
Bα3,t(B

α
3,z(Bβ3,h))

+ Cεβ−1

(∫ t

0

‖ρw‖3
Bα+1

3,z (Bβ−1
3,h )

dt

) 1
3

εα‖v‖Bα3,t(Bα3,z(Bβ3,h))ε
α−1‖v‖Bα3,t(Bα3,z(Bβ3,h))

= C
(
εα+β−1 + ε2α+β−2

) ( ∫ t

0

‖ρw‖3
Bα+1

3,z (Bβ−1
3,h )

dt
)

)
1
3 ‖v‖2

Bα3,t(B
α
3,z(Bβ3,h))

=
(
εα+β−1 + ε2α+β−2

)
‖ρw‖Bα3,t(Bα+1

3,z (Bβ−1
3,h ))‖v‖

2
Bα3,t(B

α
3,z(Bβ3,h))

4 Conclusion

Theorem 2.1 can be seen as a kind of generalization of Feireisl et al. [28] and Wiedeman

et al. [1], by different proof of some part of estimates (like Rε4) together by observation of the

special structure of CPE. But the conventional isotropic spaces in Theorem 2.1 do not reflect the

different regularity in the horizontal and the vertical directions of the velocity field. Since the

regularity of the w follows from the continuity equation under assumptions that the density is

independent on the vertical direction, we need additional regularity condition about ρv to control

the convergence of Rε3. In Theorem 2.2, we show that we can solve the corresponding problem

and remove this additional regularity condition by virtue of anisotropic space. Theorem 2.2 not

only considers the continuity of the pressure but also reflects the anisotropy of the velocity field

in the vertical and horizontal directions of the velocity field, the density and also the momentum.

Moreover, our CPE model also contains dissipation term, vacuum and it is compressible which

means different from the structure of the problem investigated by Titi et al. [9].
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