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HOMOGENIZATION OF THE UNSTEADY COMPRESSIBLE
NAVIER-STOKES EQUATIONS FOR ADIABATIC EXPONENT γ > 3

FLORIAN OSCHMANN AND MILAN POKORNÝ

Abstract. We consider the unsteady compressible Navier-Stokes equations in a perforated
three-dimensional domain, and show that the limit system for the diameter of the holes going to
zero is the same as in the perforated domain provided the perforations are small enough. The
novelty of this result is the lower adiabatic exponent γ > 3 instead of the known value γ > 6.
The proof is based on the use of two different restriction operators which lead to two different
types of pressure estimates. We also discuss the extension of this result for the unsteady
Navier-Stokes-Fourier system as well as the optimality of the known results in arbitrary space
dimension for both steady and unsteady problems.

1. Introduction

The homogenization in mathematical fluid mechanics and thermodynamics is usually con-
nected with the sequence of problems studied in perforated domains containing many holes
with a small radius ε > 0 approaching zero. Based on the relation of the size of the holes and
their number, the question is which problem is satisfied in the limit on the domain without
holes.

The first studies of this type were indeed performed for the steady incompressible Stokes
and Navier-Stokes equations, where the problem in a fixed bounded domain is well under-
stood. Based on the original work of L. Tartar [Tar80], G. Allaire achieved the full picture for
this problem in [All89], [All90a], and [All90b]. Assuming the number of holes is of order ε−3

and their diameter of order εα, if 1 ≤ α < 3 which corresponds to the case of large holes, the
limit problem is the classical Darcy’s law; for α > 3 corresponding to tiny holes, the limit prob-
lem remains the same as the original one (Stokes or Navier-Stokes equations depending on the
sequence of problems). Finally, for the critical case α = 3, the limit problem is the Brinkman
equations, that is, the original problem with an extra damping term. The same problems in
the evolutionary case were studied by A. Mikelić [Mik91], E. Feireisl, Y. Namlyeyeva, and Š.
Nečasová [FNN16], and the picture was completed by Y. Lu and P. Yang in [LY23].

The case of compressible fluid flow is more complex and the complete picture has not been
achieved yet. Assuming an adiabatic pressure law of the form p(ϱ) ∼ ϱγ, the case α = 1 for the
compressible Navier-Stokes equations was studied by N. Masmoudi in [Mas02]. The same situ-
ation for heat conducting fluids was investigated by E. Feireisl, A. Novotný, and T. Takahashi
[FNT10]. The problems for small holes, i.e., the limit problem is the same as the original one,
was for the steady compressible Navier-Stokes system and an adiabatic exponent γ > 2 given
by L. Diening, E. Feireisl, and Y. Lu in [DFL17], and the evolutionary case was considered for
γ > 6 by Y. Lu and S. Schwarzacher in [LS18]. Similar results for the heat conducting case were
obtained by Y. Lu and M. Pokorný in the steady case (see [LP21]), and by M. Pokorný and
E. Skř́ı̌sovský for the evolutionary system (see [PS21]). All the aforementioned results concern
the case of three spatial dimensions. The situation in two space dimensions is more complex
and has been recently resolved by Š. Nečasová and J. Pan in the steady case (see [NP22]), and
by Š. Nečasová and F. Oschmann in the evolutionary case (see [NO22]), for γ > 1 and γ > 2,
respectively. The last result is based on the ideas of M. Bravin for the case of flow around
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an obstacle (see [Bra22]). Randomly distributed holes were considered by A. Giunti and R.
Höfer in [GH19], as well as in the thesis by F. Oschmann [Osc22b], see also [Osc22a] and [BO21].

In this paper, we want to focus on the value of the adiabatic exponent γ in the pressure law
p(ϱ) ∼ ϱγ. The physical values are in the range 1 ≤ γ ≤ 1 + 2

d
, where the space dimension

d ∈ {2, 3} (see, e.g., [Cla57]). However, as mentioned above, the mathematically known values
are γ > d− 1 in the steady case, and γ > 4d− 6 for the evolutionary systems. Our aim is to
lower the last bound to γ > d by giving two different proofs. Moreover, we discuss why this
bound seems to be optimal in terms of the dimension d.

Notation. We use the standard notations for Lebesgue and Sobolev spaces, and denote them
even for vector- or matrix-valued functions as in the scalar case, e.g., we use Lp(D) instead of
Lp(D;R3). The Frobenius inner product of two matrices A,B ∈ R3×3 is denoted by A : B =∑3

i,j=1AijBij. Moreover, we use the notation a ≲ b whenever there is a generic constant C > 0
which is independent of a, b, and ε such that a ≤ Cb. Lastly, we denote for a function f with
domain of definition G ⊂ R3 its zero prolongation by f̃ , that is,

f̃ = f in G, f̃ = 0 in R3 \G.

Organization of the paper. The paper is organized as follows. In Section 2, we introduce
the compressible Navier-Stokes equations and the underlying domain, and formulate our main
result. In Section 3 we give uniform bounds on the functions as well as a refined pressure
decomposition crucial in our analysis. Sections 4 and 5 are devoted to show the convergence
result for the Navier-Stokes and Navier-Stokes-Fourier equations, respectively. A different
approach and its main ideas for the proof of the main result are given in Section 6. Finally,
in Section 7 we discuss the optimality of the adiabatic exponent in terms of the space-time
dimension of the problem.

2. The model, weak solutions, and the main result
sec2

In this section, we introduce the perforated domain, the evolutionary compressible Navier-
Stokes equations, and state our main result. We start with the description of the perforated
domain and the equations governing the fluid’s motion.

2.1. The perforated domain and the Navier-Stokes equations. For ε ∈ (0, 1), let D ⊂
R3 be a bounded domain with smooth boundary, and let Kε ⊂ D be a compact set. Define
now

Dε = D \Kε.defDepsdefDeps (1)

Moreover, we assume that there exists a family of balls Bεα(xi(ε)), i = 1, ..., N(ε), α ≥ 1, such
that

Kε ⊂
N(ε)⋃
i=1

Bεα(xi(ε)),

dist(xi(ε), ∂D) > ε,

∀i ̸= j : |xi(ε)− xj(ε)| ≥ 2ε.

defKepsdefKeps (2)

Note that this implies

|Kε| ≲ N(ε)ε3α ≲ ε3(α−1).



HOMOGENIZATION OF NSE FOR LOWER ADIABATIC EXPONENT 3

For fixed T > 0, we consider in (0, T )×Dε the evolutionary compressible Navier-Stokes equa-
tions 

∂tϱε + div(ϱεuε) = 0 in (0, T )×Dε,

∂t(ϱεuε) + div(ϱεuε ⊗ uε) +∇p(ϱε) = div S(∇uε) + ϱεf in (0, T )×Dε,

uε = 0 on (0, T )× ∂Dε,

ϱε(0, ·) = ϱε,0, (ϱεuε)(0, ·) = mε,0 in Dε.

NSENSE (3)

Here, ϱε and uε denote the fluid’s density and velocity, respectively, p(s) = sγ for some γ > 3
2
,

S(∇u) is the Newtonian viscous stress tensor of the form

S(∇u) = µ
(
∇u+∇uT − 2

3
div(u)I

)
+ η div(u)I, µ > 0, η ≥ 0,

and f ∈ L∞((0, T )×D) is given. The exact range of the adiabatic exponent γ we can handle
will be specified in Theorem 2.4 below.

Remark 2.1. As a matter of fact, we are able to consider pressure laws p(s) satisfying

p ∈ C([0,∞)) ∩ C1((0,∞)), p(0) = 0, p′(s) > 0 (s > 0), lim
s→∞

p′(s)

sγ−1
= a > 0,

however, we don’t want to unnecessarily complicate the analysis.

2.2. Weak solutions and main result. For further use, we introduce the concept of finite
energy weak solutions.

def1 Definition 2.2. Let T > 0 be fixed, γ > 3
2
, and let the initial data satisfy

ϱ(0, ·) = ϱ0, (ϱu)(0, ·) = m0,

together with the compatibility conditions

initinit (4)

ϱ0 ≥ 0 a.e. in Dε, ϱ0 ∈ Lγ(Dε),

m0 = 0 on {ϱ0 = 0}, m0 ∈ L
2γ
γ+1 (Dε),

|m0|2

ϱ0
∈ L1(Dε).

We call a duplet (ϱ,u) a renormalized finite energy weak solution to system (3) if:

• The solution belongs to the regularity class

ϱ ≥ 0 a.e. in (0, T )×Dε, ϱ ∈ L∞(0, T ;Lγ(Dε)),

∫
Dε

ϱ dx =

∫
Dε

ϱ0 dx,

u ∈ L2(0, T ;W 1,2
0 (Dε)), ϱu ∈ L∞(0, T ;L

2γ
γ+1 (Dε));

• We have

∂tϱ+ div(ϱu) = 0 in D′((0, T )×Dε),

∂tϱ̃+ div(ϱ̃ũ) = 0 in D′((0, T )× R3),

∂tb(ϱ̃) + div(b(ϱ̃)ũ) + (ϱ̃b′(ϱ̃)− b(ϱ̃)) div ũ = 0 in D′((0, T )× R3)

renCErenCE (5)

for any b ∈ C([0,∞)) ∩ C1((0,∞)) satisfying

b′(s) ≤ cs−λ0 for s ∈ (0, 1], b′(s) ≤ csλ1 for s ∈ [1,∞)

with

c > 0, λ0 < 1, −1 < λ1 ≤
1

2

(
5

3
γ − 1

)
− 1;
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• For any φ ∈ C∞
c ([0, T )×Dε;R3),∫ T

0

∫
Dε

ϱu · ∂tφ dx dt+

∫ T

0

∫
Dε

ϱu⊗ u : ∇φ dx dt+

∫ T

0

∫
Dε

ϱγ divφ dx dt

−
∫ T

0

∫
Dε

S(∇u) : ∇φ dx dt+

∫ T

0

∫
Dε

ϱf · φ dx dt = −
∫
Dε

m0 · φ(0, ·) dx;
wkMomwkMom (6)

• For almost any τ ∈ [0, T ], the energy inequality holds:∫
Dε

1

2
ϱ|u|2(τ, ·) + ϱγ(τ, ·)

γ − 1
dx+

∫ τ

0

∫
Dε

S(∇u) : ∇u dx dt

≤
∫
Dε

|m0|2

2ϱ0
+

ϱγ0
γ − 1

dx+

∫ τ

0

∫
Dε

ϱf · u dx dt.

EIEI (7)

Regarding existence of weak solutions, we have the following

Theorem 2.3 ([FNP01, Theorem 1.1]). Let Dε ⊂ R3 be a bounded domain with smooth bound-
ary, γ > 3

2
, T > 0 be given. Let the initial data satisfy (4). Then, there exists a renormalized

finite energy weak solution (ϱ,u) to system (3) in the sense of Definition 2.2.

We are now in the position to state our main result in this paper.

thm1 Theorem 2.4. Let D ⊂ R3 be a bounded domain with smooth boundary, Kε ⊂ D comply with
(2), and Dε be defined as in (1). Let (ϱε,uε) be a sequence of renormalized finite energy weak
solutions to system (3) emanating from the initial data (ϱε,0,mε,0), and assume

ϱ̃ε,0 → ϱ0 weakly in Lγ(D),
|m̃ε,0|2

ϱ̃ε,0
→ |m0|2

ϱ0
weakly in L1(D).initConvinitConv (8)

Then, there exists a subsequence (not relabelled) such that

ϱ̃ε ⇀
∗ ϱ weakly-∗ in L∞(0, T ;Lγ(D)) and weakly in L

5
3
γ−1((0, T )×D),

ũε ⇀ u weakly in L2(0, T ;W 1,2
0 (D)),

where (ϱ,u) is a solution to system (3) in the domain (0, T )×D with initial conditions ϱ(0, ·) =
ϱ0 and (ϱu)(0, ·) = m0, provided

γ > 3 and α > max

{
3,

2γ − 3

γ − 3

}
.cond1cond1 (9)

Remark 2.5. We remark that (9) with γ ≥ 6 yields the γ-independent bound α > 3, which is

sharper than the known bound α > 3(2γ−3)
γ−6

> 6 in [LS18].

3. Uniform bounds
sec:Bds

In this section, we show uniform in ε bounds on the velocity, density, and momentum.
Additionally, we give a refined pressure decomposition.

3.1. Bounds obtained from the energy inequality.

Lemma 3.1. Under the assumptions of Theorem 2.4, we have

∥ϱε∥L∞(0,T ;Lγ(Dε)) + ∥√ϱεuε∥L∞(0,T ;L2(Dε)) + ∥uε∥L2(0,T ;W 1,2
0 (Dε))

≤ Cunifbdsunifbds (10)

for some constant C > 0 independent of ε.

Proof. By the energy inequality (7) and the assumptions on the initial data (8), we obtain∫
Dε

1

2
ϱε|uε|2(τ, ·) +

ϱγε (τ, ·)
γ − 1

dx+

∫ τ

0

∫
Dε

S(∇uε) : ∇uε dx dt ≤ C +

∫ τ

0

∫
Dε

ϱεf · uε dx dt.
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Note further that the conservation of mass and the convergence of the initial data ϱε,0 yields

∥ϱε∥L∞(0,T ;L1(Dε)) = ∥ϱε,0∥L1(Dε) ≤ |Dε|1−
1
γ ∥ϱ̃ε,0∥Lγ(D) ≤ C

since |Dε| ≤ |D|. Using now Hölder’s and Young’s inequality, we get for almost any τ ∈ [0, T ]∫
Dε

ϱεf · uε(τ) dx dt ≤ C∥ϱε(τ)∥
1
2

L1(Dε)
∥ϱε|uε|2(τ)∥

1
2

L1(Dε)
≤ C +

1

2
∥ϱε|uε|2(τ)∥L1(Dε).

Thus, we end up with the inequality∫
Dε

1

2
ϱε|uε|2(τ, ·) +

ϱγε (τ, ·)
γ − 1

dx+

∫ τ

0

∫
Dε

S(∇uε) : ∇uε dx dt ≤ C +

∫ τ

0

∫
Dε

1

2
ϱε|uε|2 dx dt.

Using Grönwall’s inequality, we conclude that

sup
t∈(0,T )

∫
Dε

1

2
ϱε|uε|2(t, ·) +

ϱγε (t, ·)
γ − 1

dx+

∫ T

0

∫
Dε

S(∇uε) : ∇uε dx dt ≤ C(T ).

Since we may extend both ϱε and uε by zero to D without influencing the inequality, by virtue
of the Korn and Poincaré inequalities we conclude easily. □

Let us moreover remark that the bounds (10) immediately imply for the linear momentum

∥ϱεuε∥
L∞(0,T ;L

2γ
γ+1 (Dε))

= ∥√ϱε
√
ϱεuε∥

L∞(0,T ;L
2γ
γ+1 (Dε))

≤ ∥√ϱε∥L∞(0,T ;L2γ(Dε))∥
√
ϱεuε∥L∞(0,T ;L2(Dε)) ≲ 1.

3.2. Improved integrability of the density. The uniform bound for the density is not
enough to pass to the limit in the pressure since we just have p(ϱε) uniformly bounded in
L∞(0, T ;L1(Dε)). To pass to a suitable weakly convergent subsequence, we need the following

lem:RegDens Lemma 3.2. Let θ = 2
3
γ − 1. Then ∫ T

0

∫
Dε

ϱγ+θ
ε ≲ 1.

Before we prove Lemma 3.2, let us recall two known facts. First, a crucial tool for the sequel
will be the Bogovskĭı operator constructed in [DFL17, Theorem 2.3].

thm:Bog Theorem 3.3. Let 1 < q <∞. There exists a bounded linear operator

Bε : L
q
0(Dε) =

{
f ∈ Lq(Dε) :

∫
Dε

f dx = 0
}
→ W 1,q

0 (Dε)

such that for any f ∈ Lq
0(Dε),

divBε(f) = f, ∥Bε(f)∥qW 1,q
0 (Dε)

≲
(
1 + ε(3−q)α−3

)
∥f∥qLq(Dε)

.

We remark that a similar operator with the same scaling in ε for any 3
2
< q < 3 was given in

[Lu21], the construction of which relies on the construction of a so-called restriction operator.
We will come back to this in Section 3.3.

Second, we recall a result from [LS18, Proposition 2.2], which we state in form of a lemma.

Lemma 3.4. Let Bε be the Bogovskĭı operator from Theorem 3.3. Then, for any r > 3
2
, we

can extend Bε to an operator

Bε :
{
g = div f ∈ [W−1,r′(Dε)]

′ : ⟨g, 1⟩ = 0
}
→ Lr(Dε)

such that

⟨Bε div f ,∇φ⟩ = ⟨f ,∇φ⟩ for any φ ∈ W 1,r′(Dε), ∥Bε div f∥Lr(Dε) ≲ ∥f∥Lr(Dε).

We are now in the position to prove Lemma 3.2.
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Proof of Lemma 3.2. We remark that this Lemma was proven for γ > 6 in [LS18]. However,
we need to deal with our value γ > 3, so we recall the proof, and also give an easier argument
how to deal with the term containing the time-derivative of the Bogovskĭı operator. The idea
is to test the momentum equation by

φ(t, x) = ψ(t)Bε

(
ϱθε −

1

|Dε|

∫
Dε

ϱθε dx
)
, θ =

2

3
γ − 1,

for some ψ ∈ C∞
c ([0, T )). The proof then follows the same lines as [Osc22b, pp. 77-82], once

observed that γ > 3 is enough to repeat the steps done there. For the sake of completeness,
we will present the main steps of the proof here. Taking θ = 2

3
γ − 1, γ > 3, and ψ(t) = 1 for

0 ≤ t ≤ T − δ for some small δ > 0, ψ(t) ≥ 0 in [0, T ], we have∫ T

0

∫
Dε

ψϱγ+θ
ε dx dt =

∫ T

0

ψ

(∫
Dε

ϱγε dx

)(
1

|Dε|

∫
Dε

ϱθε dx

)
dt−

∫
Dε

m0 · B∗
ε dx

−
∫ T

0

∫
Dε

ψϱεf · B∗
ε dx dt−

∫ T

0

∫
Dε

ψ′ϱεuε · B∗
ε dx dt+

∫ T

0

∫
Dε

ψS(∇uε) : ∇B∗
ε dx dt

−
∫ T

0

∫
Dε

ψϱεuε ⊗ uε : ∇B∗
ε dx dt−

∫ T

0

∫
Dε

ψϱεuε · ∂tB∗
ε dx dt =

7∑
i=1

Ii.

eq1eq1 (11)

Above,

B∗
ε = Bε

(
ϱθε −

1

|Dε|

∫
Dε

ϱθε

)
.

Clearly, the most restrictive terms are the three last ones and we will only concentrate on
estimates of them. First, note that due to (9) we always have α > 3. It is easy to see that

|I5| ≲ ∥∇uε∥L2((0,T )×Dε)∥
√
ψ∇B∗

ε∥L2((0,T )×Dε)

≲ (1 + εα−3)
1
2

(∫ T

0

∫
Dε

ψϱ2θε dx dt
) 1

2 ≤ C +
1

4

∫ T

0

∫
Dε

ψϱγ+θ
ε dx dt

and the last term can be transferred to the left-hand side of (11). Next,

|I6| ≲ ∥ϱε∥L∞(0,T ;Lγ(Dε))∥uε∥2L2(0,T ;L6(Dε))
∥∇B∗

ε∥
L∞(0,T ;L

3γ
2γ−3 (Dε))

≲
(
1 + ε(3−

3γ
2γ−3

)α−3
) 2γ−3

3γ ∥ϱε∥θL∞(0,T ;Lγ(Dε))∥uε∥2L2(0,T ;L6(Dε))
≲

(
1 + ε3α

γ−3
2γ−3

−3
) 2γ−3

3γ ≲ 1

due to 3γ
2γ−3

∈ (3
2
, 3) and (9). The last term is more complex. Using the renormalized continuity

equation (5) with b(s) = sθ, i.e.,

∂tϱ
θ
ε + div(ϱθεuε) + (θ − 1)ϱθε divuε = 0 in D′((0, T )×Dε),

we get that

I7 =

∫ T

0

∫
Dε

ψϱεuε · Bε(div(ϱ
θ
εuε)) dx dt

+ (θ − 1)

∫ T

0

∫
Dε

ψϱεuε · Bε

(
ϱθε divuε −

1

|Dε|

∫
Dε

ϱθε divuε dx
)
dx dt = I7,1 + I7,2.

In order to estimate the the term I7,1, we choose the space and time exponent in the estimate of
the Bogovskĭı operator in such a way that the density coming from the Bogovskĭı operator will
be estimated precisely in the Lγ+θ-norm over the space-time so that this term will be finally
absorbed into the left-hand side of (11). Recalling the estimate of the linear momentum

∥ϱεuε∥
L∞(0,T ;L

2γ
γ+1 (Dε))

≲ 1,
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and, in view of the bound

∥ϱε∥L∞(0,T ;Lγ(Dε)) + ∥uε∥L2(0,T ;L6(Dε)) ≲ 1,

we also have

∥ϱεuε∥
L2(0,T ;L

6γ
γ+6 (Dε))

≲ 1.

We use interpolation between Lebesgue spaces to obtain

∥ϱεuε∥
L

2(5γ−3)
γ+3 (0,T ;L

6(5γ−3)
13γ+3 (Dε))

≤ ∥ϱεuε∥1−ϖ

L∞(0,T ;L
2γ
γ+1 (Dε))

∥ϱεuε∥ϖ
L2(0,T ;L

6γ
γ+6 (Dε))

≲ 1,

where ϖ = γ+3
5γ−3

∈ (1
5
, 1
2
). Hence, by 6(5γ−3)

17γ−21
> 3

2
for any γ > 21

17
, we get

|I7,1| ≲ ∥ϱεuε∥
L

2(5γ−3)
γ+3 (0,T ;L

6(5γ−3)
13γ+3 (Dε))

∥ψ
θ

γ+θBε(div(ϱ
θ
εuε))∥

L
2(5γ−3)
9(γ−1) (0,T ;L

6(5γ−3)
17γ−21 (Dε))

≲ ∥ψ
θ

γ+θ ϱθεuε∥
L

2(5γ−3)
9(γ−1) (0,T ;L

6(5γ−3)
17γ−21 (Dε))

.

Further, note that by θ = 2
3
γ − 1,

9(γ − 1)

2(5γ − 3)
=

θ

γ + θ
+

1

2
,

17γ − 21

6(5γ − 3)
=

θ

γ + θ
+

1

6
,

so we finally arrive at

|I7,1| ≲ ∥ψ
θ

γ+θ ϱθεuε∥
L

2(5γ−3)
9(γ−1) (0,T ;L

6(5γ−3)
17γ−21 (Dε))

≲ ∥ψ
θ

γ+θ ϱθε∥
L

γ+θ
θ ((0,T )×Dε)

∥uε∥L2(0,T ;L6(Dε))

= ∥ψ
1

γ+θ ϱε∥θLγ+θ((0,T )×Dε)
∥uε∥L2(0,T ;L6(Dε)) ≲ 1 +

1

4

∫ T

0

∫
Dε

ψϱγ+θ
ε dx dt.

The second term on the right-hand side can be absorbed by the left-hand side of equation (11).
Similarly we proceed in the estimate of I7,2. Abbreviating ⟨ϱθε divuε⟩ = 1

|Dε|

∫
Dε
ϱθ divuε dx, by

the Sobolev embedding W
1,

2(5γ−3)
9(γ−1)

0 ⊂ L
6(5γ−3)
17γ−21 , we have

|I7,2| ≲ ∥ϱεuε∥
L

2(5γ−3)
γ+3 (0,T ;L

6(5γ−3)
13γ+3 (Dε))

∥ψ
θ

γ+θBε(ϱ
θ
ε divuε − ⟨ϱθε divuε⟩)∥

L
2(5γ−3)
9(γ−1) (0,T ;L

6(5γ−3)
17γ−21 (Dε))

≲ ∥ψ
θ

γ+θ∇Bε(ϱ
θ
ε divuε − ⟨ϱθε divuε⟩)∥

L
2(5γ−3)
9(γ−1) (0,T ;L

2(5γ−3)
9(γ−1) (Dε))

≲
(
1 + ε(3−

2(5γ−3)
9(γ−1)

)α−3) 9(γ−1)
2(5γ−3)∥ψ

θ
γ+θ ϱθε divuε∥

L
2(5γ−3)
9(γ−1) ((0,T )×Dε)

≲ ∥ψ
θ

γ+θ ϱθε∥
L

γ+θ
θ ((0,T )×Dε)

∥ divuε∥L2((0,T )×Dε) ≲ 1 +
1

4

∫ T

0

∫
Dε

ψϱγ+θ
ε dx dt.

Note that the exponent of ε is non-negative due to 3 − 2(5γ−3)
9(γ−1)

= 17γ−21
9(γ−1)

> 1 for any γ > 3
2
.

Again, the last term on the right-hand side can be absorbed into the left-hand side of (11).
The lemma is proved. □

sec32
3.3. Refined pressure estimates. A key tool in our analysis is a suitable extension of the
pressure and corresponding bounds. To this end, we recall the following theorem from [Lu21,
Theorem 2.1].

thm:Restr Theorem 3.5. For any 1 < q <∞, there exists a bounded linear operator

Rε : W
1,q
0 (D) → W 1,q

0 (Dε)

such that

Rεũ = u for any u ∈ W 1,q
0 (Dε),

divu = 0 ⇒ divRεu = 0.
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Moreover, for any 3
2
< q < 3,

∥Rεu∥qW 1,q
0 (Dε)

≲
(
1 + ε(3−q)α−3

)
∥∇u∥qLq(D).

Remark 3.6. As a matter of fact, the operator Bε from Theorem 3.3 also relies on the con-

struction of a similar, but different restriction operator R̂ε in the sense that Bε(f) = R̂ε(BD(f̃))
for any f ∈ Lq

0(Dε), where BD is the Bogovskĭı operator on D satisfying

BD : Lq
0(D) → W 1,q

0 (D), divBD(f) = f, ∥BD(f)∥W 1,q
0 (D) ≲ ∥f∥Lq(D),

see [Bog80, Gal11]. The important point is that the operator R̂ε does not satisfy R̂εũ = u for
any u ∈ W 1,q

0 (Dε), which will be a crucial property in our analysis below.

We now use the operator Rε from Theorem 3.5 to define similarly to [All90a] and [Mas02] a
pressure extension Pε as∫ T

0

⟨∇Pε, φ⟩D′,D(D) dt =

∫ T

0

⟨∇p(ϱε), Rεφ⟩D′,D(Dε) dt for any φ ∈ C∞
c ([0, T )×D).

It follows from [All90a, Proposition 1.1.4] that Pε = p(ϱε) on Dε, up to an additive constant.
Then, using the second equation of (3), we deduce∫ T

0

⟨∇p(ϱε), Rεφ⟩D′,D(Dε) dt =

∫ T

0

∫
Dε

ϱεuε · ∂tRεφ dx dt+

∫ T

0

∫
Dε

ϱεuε ⊗ uε : ∇Rεφ dx dt

−
∫ T

0

∫
Dε

S(∇uε) : ∇Rεφ dx dt+

∫ T

0

∫
Dε

ϱεf ·Rεφ dx dt

+

∫
Dε

mε,0 ·Rεφ(0, ·) dx

=
5∑

j=1

Ij.

We estimate each term separately and start with I2, which is the most restrictive one.
Recalling the Sobolev embedding W 1,2

0 ⊂ L6 and the uniform bounds (10), we get

I2 ≲ ∥ϱε|uε|2∥
L1(0,T ;L

3γ
γ+3 (Dε))

∥∇Rεφ∥
L∞(0,T ;L

3γ
2γ−3 (Dε))

≲ ∥ϱε∥L∞(0,T ;Lγ(Dε))∥uε∥2L2(0,T ;L6(Dε))

(
1 + ε(3−

3γ
2γ−3

)α−3
) 2γ−3

3γ ∥∇φ∥
L∞(0,T ;L

3γ
2γ−3 (D))

.

Note that the bound for I2 is uniform since

3− 3γ

2γ − 3
=

3(γ − 3)

2γ − 3
,jednajedna (12)

which is governed precisely by condition (9).

For I1, we apply the Sobolev embedding W
1, 6γ

5γ−3

0 ⊂ L
2γ
γ−1 as well as 6γ

5γ−3
< 2 for any γ > 3

2
to get

I1 ≲ ∥ϱεuε∥
L2(0,T ;L

2γ
γ+1 (Dε))

∥∂tRεφ∥
L2(0,T ;L

2γ
γ−1 (Dε))

≲ ∥∂tRεφ∥
L2(0,T ;W

1,
6γ

5γ−3
0 (Dε))

≲ ∥∂tRεφ∥L2(0,T ;W 1,2
0 (Dε))

≲
(
1 + εα−3

) 1
2∥∂t∇φ∥L2(0,T ;L2(D))

≲ ∥∂t∇φ∥L2((0,T )×D),

where we used that α > 3 by (9). For I5, we use the fact that φ(T ) = 0 to write

φ(τ) = −
∫ T

τ

∂tφ dt⇒ ∥φ∥L∞(0,T ) ≤
∫ T

0

|∂tφ| dt ≲ ∥∂tφ∥L2(0,T )
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and estimate similar to I1

I5 ≲ ∥mε,0∥
L

2γ
γ+1 (Dε)

∥Rεφ(0)∥
L

2γ
γ−1 (Dε)

≲ ∥Rεφ(0)∥
W

1,
6γ

5γ−3
0 (Dε)

≲
(
1 + εα−3

) 1
2∥Rεφ(0)∥W 1,2

0 (Dε)
≲ ∥∇φ(0)∥L2(D)

≲ ∥∇φ∥L∞(0,T ;L2(D)) ≲ ∥∂t∇φ∥L2((0,T )×D),

where we also used that due to the initial conditions (8), we have

∥mε,0∥
L

2γ
γ+1 (Dε)

≤

∥∥∥∥∥ m̃ε,0√
ϱ̃ε,0

∥∥∥∥∥
L2(D)

∥∥∥√ϱ̃ε,0

∥∥∥
L2γ(D)

≲ 1.

For I3 and I4, we use the assumption α > 3 to estimate

I3 + I4 ≲
(
∥S(∇uε)∥L2(0,T ;L2(Dε)) + ∥ϱε∥L2(0,T ;L2(Dε))

)
∥Rεφ∥L2(0,T ;W 1,2

0 (Dε))

≲
(
1 + εα−3

) 1
2∥∇φ∥L2(0,T ;L2(D)) ≲ ∥∇φ∥L2(0,T ;L2(D)).

Altogether, we have

∇Pε uniformly bounded in L1(0, T ;W−1, 3γ
γ+3 (D)) + Ŵ−1,2(0, T ;W−1,2(D))

+ L2(0, T ;W−1,2(D)),

where Ŵ−1,2(0, T ) is the dual space to (W 1,2(0, T ) ∩ {φ(T ) = 0}, ∥∂t · ∥L2(0,T )). This implies

Pε uniformly bounded in L1(0, T ;L
3γ
γ+3 (D)) + Ŵ−1,2(0, T ;L2(D))

+ L2(0, T ;L2(D)),

which we can simplify to

Pε uniformly bounded in L1(0, T ;Lmin{2, 3γ
γ+3

}(D)) + Ŵ−1,2(0, T ;L2(D)).pressDecpressDec (13)

rem1 Remark 3.7. We remark that 3γ
γ+3

> 3
2
for any γ > 3, which coincides with the observation

made in [LS18, Section 1.2.2] that the pressure should be at least in L
3
2 in space, leading to

γ > 6 for the pure bound p(ϱε) ∈ L
5
3
− 1

γ ((0, T )×Dε) obtained in Lemma 3.2.

rem2 Remark 3.8. Following the proof of [All90a, Propositions 1.1.4 and 2.1.2] and defining Cε
i =

Bε(xi(ε)) \Bεα(xi(ε)), we find that Pε has the explicit representation

Pε =

{
p(ϱε) in (0, T )×Dε,
1

|Cε
i |

∫
Cε

i
p(ϱε) dx in (0, T )×Bεα(xi(ε)), i = 1, ..., N(ε).

From this and Lemma 3.2, we infer that

Pε uniformly bounded in L∞(0, T ;L1(D)) ∩ L
5
3
− 1

γ ((0, T )×D).

4. Convergences
sec:Conv

4.1. Limiting functions. As a consequence of the uniform bounds given in Section 3, we
obtain, at least for a subsequence,

ũε ⇀ u weakly in L2(0, T ;W 1,2
0 (D)),

ϱ̃ε ⇀
∗ ϱ weakly-∗ in L∞(0, T ;Lγ(D)) and weakly in L

5
3
γ−1((0, T )×D),

p(ϱ̃ε)⇀ p(ϱ) weakly in L
5
3
− 1

γ ((0, T )×D).
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4.2. Limit in the continuity equation. Repeating the arguments given in [LS18, PS21], we
recover

∂tϱ̃ε + div(ϱ̃εũε) = 0 in D′((0, T )× R3)approx_contapprox_cont (14)

as well as, after the limit passage,

∂tϱ̃+ div(ϱ̃ũ) = 0 in D′((0, T )× R3).

Indeed, from the uniform bounds on ϱ̃ε and ũε derived in Section 3, we have

∥ϱ̃εũε∥
L∞(0,T ;L

2γ
γ+1 (D))

≤ ∥
√
ϱ̃ε∥L∞(0,T ;L2γ(D))∥

√
ϱ̃εũε∥L∞(0,T ;L2(D)) ≤ C.

Moreover, by (14), we have

∂tϱ̃ε bounded in L2(0, T ;W−1,p(D)) for some p > 1.

Applying [Lio98, Lemma 5.1] now shows

ϱ̃εũε → ϱu in D′((0, T )×D).

Furthermore, an Aubin-Lions type argument yields

ϱ̃ε → ϱ in C(0, T ;Lγ
weak(D)), ϱ̃εũε → ϱu in C(0, T ;L

2γ
γ+1

weak(D)).ALAL (15)

A similar argument applies to ϱ̃εũε⊗ ũε, which is needed in the limit passage in the momentum
equation below. As a consequence of [NS04, Lemma 6.9], the couples (ϱ̃ε, ũε) as well as (ϱ̃, ũ)
also fulfil the renormalized continuity equation in D′((0, T )×R3), that is, the equations given
in (5).

4.3. Limit in the momentum equation. Before passing with ε → 0 in the momentum
equation, we state the following lemma, which is an immediate consequence of (2).

lem:Cutoff Lemma 4.1. There exist functions gε ∈ C∞(D) such that

gε = 0 on

N(ε)⋃
i=1

Bεα(xi(ε)), gε = 1 on

N(ε)⋃
i=1

B2εα(xi(ε)),

and satisfying

∥1− gε∥qLq(D) ≲ ε3(α−1), ∥∇gε∥qLq(D) ≲ ε(3−q)α−3.

For φ ∈ C∞
c ([0, T )×D), we test the second equation of (3) by φ = gεφ + (1− gε)φ, where

gε are as in Lemma 4.1. Using Pε = p(ϱε) on Dε and seeing that gεφ is a proper test function,
we obtain

∫ T

0

∫
D

ϱ̃εũε · ∂tφ dx dt+

∫ T

0

∫
D

ϱ̃εũε ⊗ ũε : ∇φ dx dt+

∫ T

0

∫
D

Pε divφ dx dt

−
∫ T

0

∫
D

S(∇ũε) : ∇φ dx dt+

∫ T

0

∫
D

ϱ̃εf · φ dx dt+

∫
D

m̃ε,0 · φ(0, ·) dx

=

∫ T

0

∫
Dε

ϱεuε · ∂t(gεφ) dx dt+
∫ T

0

∫
Dε

ϱεuε ⊗ uε : ∇(gεφ) dx dt+

∫ T

0

∫
Dε

p(ϱε) div(gεφ) dx dt

−
∫ T

0

∫
Dε

S(∇uε) : ∇(gεφ) dx dt+

∫ T

0

∫
Dε

ϱεf · (gεφ) dx dt+
∫
Dε

mε,0 · (gεφ(0, ·)) dx+ Fε

= Fε

approx_momapprox_mom (16)

with the remainder

Fε =

∫ T

0

∫
D

ϱ̃εũε · ∂t((1− gε)φ) dx dt+

∫ T

0

∫
D

ϱ̃εũε ⊗ ũε : ∇((1− gε)φ) dx dt
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+

∫ T

0

∫
D

Pε div((1− gε)φ) dx dt−
∫ T

0

∫
D

S(∇ũε) : ∇((1− gε)φ) dx dt

+

∫ T

0

∫
D

ϱ̃εf · (1− gε)φ dx dt+

∫
D

m̃ε,0 · (1− gε)φ(0, ·) dx.

In order to prove Theorem 2.4, we have to show first that Fε → 0 as ε → 0. Let us start
with the most crucial terms. For the pressure Pε, according to (13) we split Pε = Pε,1 + Pε,2

with

Pε,1 uniformly bounded in L1(0, T ;Lmin{2, 3γ
γ+3

}(D)),

Pε,2 uniformly bounded in Ŵ−1,2(0, T ;L2(D)).

Then, we estimate for Pε,1∣∣∣ ∫ T

0

∫
D

Pε,1 div((1− gε)φ) dx dt
∣∣∣ ≤ ∣∣∣ ∫ T

0

∫
D

Pε,1(1− gε) divφ dx dt
∣∣∣

+
∣∣∣ ∫ T

0

∫
D

Pε,1∇gε · φ dx dt
∣∣∣

≲ ∥Pε,1∥
L1(0,T ;L

min{2, 3γ
γ+3 }

(D))

(
∥1− gε∥

L
max{2, 3γ

2γ−3 }
(D)

+ ∥∇gε∥
L
max{2, 3γ

2γ−3 }
(D)

)
∥φ∥W 1,∞((0,T )×D)

≲ ε3(α−1)min{ 1
2
, 2γ−3

3γ
} + ε

(
(3−max{2, 3γ

2γ−3
})α−3

)
min{ 1

2
, 2γ−3

3γ
} → 0

by (12) and assumption (9).
Similarly,∣∣∣ ∫ T

0

∫
D

Pε,2 div((1− gε)φ) dx dt
∣∣∣ ≤ ∣∣∣ ∫ T

0

∫
D

Pε,2(1− gε) divφ dx dt
∣∣∣

+
∣∣∣ ∫ T

0

∫
D

Pε,2∇gε · φ dx dt
∣∣∣

≲ ∥Pε,2∥Ŵ−1,2(0,T ;L2(D))

(
∥1− gε∥L2(D) + ∥∇gε∥L2(D)

)
∥∂tφ∥L2(0,T ;W 1,∞(D))

≲ ε
3(α−1)

2 + ε
α−3
2 → 0.

Seeing that the estimates for the remaining terms of Fε are the same as the ones obtained in
Section 3.3, where every Rεφ has to be replaced by (1−gε)φ, and any 1+ε(3−q)α−3 by ε(3−q)α−3,
we indeed see that Fε → 0. It remains to show that Pε → ϱγ at least in L1

loc((0, T ) ×D). In
order to show this we may apply the standard procedure based on effective viscous flux identity
combined with the renormalized continuity equation. The first step is connected with the use
of the test function

φ(t, x) = ψ(t)ϕ(x)∇∆−1ϱ̃βε

in (16) and

φ(t, x) = ψ(t)ϕ(x)∇∆−1ϱβ

in the limit form of the momentum equation (the limit passage in the time derivative and the
convective term is well known, see, e.g., [NS04])∫ T

0

∫
D

ϱu · ∂tφ dx dt+

∫ T

0

∫
D

ϱu⊗ u : ∇φ dx dt+

∫ T

0

∫
D

ϱγ divφ dx dt

−
∫ T

0

∫
D

S(∇u) : ∇φ dx dt+

∫ T

0

∫
D

ϱf · φ dx dt = 0.

limit_momlimit_mom (17)

In both situations, ψ ∈ C∞
c (0, T ), ϕ ∈ C∞

c (Dε), and β > 0 sufficiently small so that all
integrals are finite. The only slight technical point is connected with the question whether
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we may replace in the momentum equation the term Pε by p(ϱ̃ε) which leads to the question
whether ∫ T

0

∫
D

(Pε − ϱ̃γε ) divφ dx dt→ 0 for φ ∈ C∞
c ((0, T )×D)

as well as ∫ T

0

∫
D

(Pε − ϱ̃γε ) div(ψ(t)ϕ(x)∇∆−1ϱ̃βε ) dx dt→ 0

with ψ(t) and ϕ(x) as above. Indeed, since Pε = ϱγε in (0, T ) ×Dε and ϱ̃ε = 0 in D \Dε, for
the first term we have∫ T

0

∫
D

(Pε − ϱ̃γε ) divφ dx dt =

∫ T

0

∫
D\Dε

Pε divφ dx dt ≲ ∥Pε∥
L

5
3− 1

γ ((0,T )×D)
|D \Dε|

2γ−3
5γ−3 → 0.

The second question is more difficult. However, again by Pε = ϱγε in (0, T )×Dε, we have∫ T

0

∫
D

(Pε − ϱ̃γε ) div(ψ(t)ϕ(x)∇∆−1ϱ̃βε ) dx dt

=

∫ T

0

∫
D\Dε

Pεψ(t)ϕ(x)ϱ̃
β
ε dx dt+

∫ T

0

∫
D\Dε

Pεψ(t)∇ϕ(x) · ∇∆−1ϱ̃βε dx dt = J1 + J2

for β positive, sufficiently small. Since ϱ̃ε = 0 in D \Dε, the first term is zero. In the second
term we take β so small that ∥∇∆−1ϱ̃βε∥L∞((0,T )×D) ≲ 1 and then

|J2| ≲ ∥Pε∥
L

5
3− 1

γ ((0,T )×D)
|D \Dε|

2γ−3
5γ−3 → 0

for ε → 0+. Realizing this fact, we may proceed as in the standard existence proof and send
ε→ 0+ to achieve the effective viscous flux identity

ϱγ+β −
(4
3
µ+ η

)
ϱβ divu = ϱγ ϱβ −

(4
3
µ+ η

)
ϱβ divu a.e. in (0, T )×D.

This identity, combined with the renormalized form of the continuity equation, yields by stan-
dard technique the strong convergence of the density which concludes the proof of Theorem 2.4.

5. Heat conducting fluids
sec:NSF

In this section, we briefly investigate the homogenization for the case of the full Navier-
Stokes-Fourier system, given by

∂tϱε + div(ϱεuε) = 0 in (0, T )×Dε,

∂t(ϱεuε) + div(ϱεuε ⊗ uε) +∇p(ϱε, ϑε) = div S(ϑε,∇uε) + ϱεf in (0, T )×Dε,

∂t(ϱεs(ϱε, ϑε)) + div(ϱεs(ϱε, ϑε)uε) + div qε

ϑε
= σε in (0, T )×Dε,

uε = 0, qε · n = 0 on (0, T )× ∂Dε,

ϱε(0, ·) = ϱε,0, (ϱεuε)(0, ·) = mε,0, ϑε(0, ·) = ϑε,0 in Dε.

NSFNSF (18)

Here, ϱε, ϑε, and uε denote the fluid’s density, temperature, and velocity, respectively, p(ϱ, ϑ) =
ϱγ + ϱϑ+ ϑ4 for some γ > 3

2
, S(ϑ,∇u) is the Newtonian viscous stress tensor of the form

S(ϑ,∇u) = µ(ϑ)
(
∇u+∇uT − 2

3
div(u)I

)
+ η(ϑ) div(u)I,SS (19)

and f ∈ L∞((0, T )×D) is given. The entropy corresponding to the given form of the pressure
is

s(ϱ, ϑ) = lnϑ− ln ϱ+
4ϑ3

ϱ
.

Moreover, the heat flux vector is given by Fourier’s law

qε = −κ(ϑε)∇ϑε,



HOMOGENIZATION OF NSE FOR LOWER ADIABATIC EXPONENT 13

and we assume the transport coefficients µ, η, κ to be continuously differentiable functions on
[0,∞) with

1 + ϑ ≲ µ(ϑ), |µ′| ≲ 1,

0 ≤ η(ϑ) ≲ 1 + ϑ,

1 + ϑm ≲ κ(ϑ) ≲ 1 + ϑm for some m > 2.

trkoefftrkoeff (20)

The measure σε is called entropy production rate and is assumed to satisfy

σε ≥
1

ϑε

(
S(ϑε,∇uε)−

qε · ∇ϑε

ϑε

)
in the sense of measures.

For existence of weak solutions and further details about the homogenization of system (18),
we refer to [PS21]. To shorten the computations, we will just focus on how one gets their
assumption on the adiabatic exponent from γ > 6 to γ > 3.

Since most of the estimates to do are similar to the ones obtained for the Navier-Stokes
system (3), we will just state the weak form of the momentum equation, which essentially
stays as in the case of constant temperature:∫ T

0

∫
Dε

ϱu · ∂tφ dx dt+

∫ T

0

∫
Dε

ϱu⊗ u : ∇φ dx dt+

∫ T

0

∫
Dε

p(ϱ, ϑ) divφ dx dt

−
∫ T

0

∫
Dε

S(ϑ,∇u) : ∇φ dx dt+

∫ T

0

∫
Dε

ϱf · φ dx dt = −
∫
Dε

m0 · φ(0, ·) dx.
wkMomTempwkMomTemp (21)

To get a similar pressure decomposition as in Section 3.3, we define again a pressure extension
Pε by∫ T

0

⟨∇Pε, φ⟩D′,D(D) dt =

∫ T

0

⟨∇p(ϱε, ϑε), Rεφ⟩D′,D(Dε) dt for any φ ∈ D((0, T )×D),

use equation (21), and focus on the only new term involving S(ϑ,∇u). From [PS21, Remark
after Proposition 2.4], we have the uniform temperature estimate

∥ϑε∥Lm(0,T ;L3m(Dε)) ≲ 1.

Recalling Rε as the restriction operator from Theorem 3.5, the form of the stress tensor S in
(19), and the assumptions on the transport coefficients (20), we get∣∣∣ ∫ T

0

∫
Dε

S(ϑε,∇uε) : ∇Rεφ dx dt
∣∣∣

≲ ∥ϑε∥Lm(0,T ;L3m(Dε))∥∇uε∥L2(0,T ;L2(Dε))∥∇Rεφ∥
L

2m
m−2 (0,T ;L

6m
3m−2 (Dε))

≲
(
1 + ε(3−

6m
3m−2

)α−3
) 3m−2

6m ∥∇φ∥
L

2m
m−2 (0,T ;L

6m
3m−2 (D))

,

which is uniform as long as

m > 2 and α >
3

3− 6m
3m−2

=
3m− 2

m− 2
.

Note that this is the same restriction as in [LP21, PS21]. The remaining estimates are the
same as in Section 3.3, leading to a pressure decomposition of the form

Pε uniformly bounded in L1(0, T ;Lmin{2, 3γ
γ+3

}(D))+Ŵ−1,2(0, T ;L2(D))+L
2m
m+2 (0, T ;L

6m
3m+2 (D)).

Note especially that m > 2 leads to 6m
3m+2

> 3
2
, in accordance with Remark 3.7.

Repeating now the steps done in [PS21, Sections 2 and 3], we have shown:

thm2 Theorem 5.1. Let D ⊂ R3 be a bounded domain with smooth boundary, Kε ⊂ D comply with
(2), and Dε be defined as in (1). Let (ϱε, ϑε,uε) be a sequence of renormalized finite energy
weak solutions to system (18) emanating from the initial data (ϱε,0, ϑε,0,mε,0) satisfying the
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assumptions given in [PS21, Theorem 1.2]. Then, there exists a subsequence (not relabelled)
such that

ϱ̃ε ⇀
∗ ϱ weakly-∗ in L∞(0, T ;Lγ(D)) and weakly in L

5
3
γ−1((0, T )×D),

ũε ⇀ u weakly in L2(0, T ;W 1,2
0 (D)),

ϑ̃ε ⇀ ϑ weakly in Lm(0, T ;L3m(D)) ∩ L2(0, T ;W 1,2(D)) and weakly-∗ in L∞(0, T ;L4(D)),

where (ϱ, ϑ,u) is a renormalized weak solution to system (18) in the domain (0, T ) × D with
initial conditions ϱ(0, ·) = ϱ0, ϑ(0, ·) = ϑ0, and (ϱu)(0, ·) = m0, provided

γ > 3, m > 2, and α > max
{2γ − 3

γ − 3
,
3m− 2

m− 2

}
.

Remark 5.2. Often, due to physics, the value of m is taken to be equal to 3 which is connected
with the term ϑ4 in the pressure (the power is connected with so-called Stefan–Boltzmann law
of radiation, see [FN09, Section 2.2.3]; the growth in the molecular part of the heat conductivity
is usually assumed to be slower). Then, the restriction on α reduces to

α > max
{2γ − 3

γ − 3
, 7
}
,

i.e., for γ > 18
5
the bound on α is independent of γ.

6. A different approach via special cut-off functions
sec:Bravin

In this section, we want to give another proof of Theorem 2.4. To this end, we will not take
advantage of the pressure decomposition in Section 3.3 but rather use special cut-off functions
that differ from those in Lemma 4.1. To define an appropriate cut-off function for multiple
holes in the whole of D, we follow an idea of Bravin in [Bra22] for a single hole in R2, a
generalization of which was already used in [NO22]. We set

ζη,R(r) =


1 if 0 ≤ r < η,
1/R−1/r
1/R−1/η

if η ≤ r < R,

0 else,

zeta3zeta3 (22)

and define

η0ε(r) = ζεα,ε1+δ(r)

for some δ > 0 such that 2εα < ε1+δ. With r = |x|, an easy calculation leads to

∥η0ε∥L∞(R3) + ∥∇η0εxi∥L∞(R3) ≲ 1,

∥∇η0ε∥
q

Lq(R3)
+ ∥∇2η0εxi∥

q

Lq(R3)
≲ ε(3−q)α

{
|ε(3−2q)(1+δ−α) − 1| if q ̸= 3

2
,

| log(ε1+δ−α)| if q = 3
2
.

est0est0 (23)

We set ηiε(x) = η0ε(|x− xi(ε)|), and define the matrix-valued cut-off function

Φε = I−
N(ε)∑
i=1

(
ηiεI+∇ηiε ∧ T [ · − xi(ε)]

)
.

Here,

T [x] =
1

2

 0 x3 −x2
−x3 0 x1
x2 −x1 0

 ,

and the cross-product has to be understood in the sense of tensors, that is,

(a ∧ T ) · b = a ∧ (T · b) ∀a, b ∈ R3
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with

a ∧ b = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b3)

for a, b ∈ R3 and (T · b)i =
∑3

j=1 Tijbj. We remark that the matrix T is chosen such that
∇∧ T = I. Note especially that

div Φε = −
N(ε)∑
i=1

div
(
∇∧

[
ηiεT [x− xi(ε)]

])
= 0.

We summarize the properties of Φε in the following

lemPhi Lemma 6.1. The function Φε fulfils

Φε ∈ W 1,q(D) ∩ L∞(D) for any q ≥ 1,

Φε = 0 on D \Dε,

Φε = I on D \
N(ε)⋃
i=1

Bε1+δ(xi(ε)).

Moreover, ∥Φε∥L∞(D) ≲ 1, and for any 1 ≤ q <∞,

∥Φε − I∥Lq(D) ≲ ε
3δ
q , ∥∇Φε∥qLq(D) ≲ ε(3−q)α−3

{
|ε(3−2q)(1+δ−α) − 1| if q ̸= 3

2
,

| log(ε1+δ−α)| if q = 3
2
.

In turn, for any ψ ∈ C∞
c (D;R3) and any q > 2,

∥∇(Φεψ)− Φε∇ψ∥qLq(D) ≲ ε(3−q)α−3∥ψ∥qL∞(D).

Proof. Once noticing that the holes are disjoint and their number in D grows like ε−3, we
immediately get the desired estimates from (23). The estimate on ∇(Φεψ)−Φε∇ψ is a direct
consequence of Hölder’s inequality

∥∇(Φεψ)− Φε∇ψ∥qLq(D) = ∥(∇(Φεe1)ψ,∇(Φεe2)ψ,∇(Φεe3)ψ)∥qLq(D)

≤ ∥∇Φε∥qLq(D)∥ψ∥
q
L∞(D) ≲ ε(3−q)α−3∥ψ∥qL∞(D).

□

6.1. Uniform bounds. The uniform bounds are exactly the same as in Section 3 since only
the Bogovskĭı operator is involved, no cut-off.

6.2. Convergence proof. As mentioned in Section 4, we have that the extended functions ϱ̃ε
and ũε fulfil

∂tϱ̃ε + div(ϱ̃εũε) = 0 in D′((0, T )× R3),

as well as, after the limit passage,

∂tϱ+ div(ϱu) = 0 in D′((0, T )× R3),

together with the corresponding renormalized forms. Moreover, by the arguments from Sec-
tion 4 and the strong convergence of Φε from Lemma 6.1,

ΦT
ε ϱ̃εũε → ϱu in C(0, T ;Lr

weak(D)), r <
2γ

γ + 1
,

ΦT
ε ϱ̃εũε ⊗ ũε → ϱu⊗ u in D′((0, T )×D).

eq:CVeq:CV (24)

For φ ∈ C∞
c ([0, T ) × D), we use Φεφ ∈ C∞

c ([0, T ) × Dε) as a proper test function. Since
Φε = 0 on the holes, we can prolong all functions by zero to the whole of D and obtain

0 =

∫
D

m̃ε0 · Φεφ(0, ·) dx+
∫ T

0

∫
D

ϱ̃εũε · Φε∂tφ dx dt+

∫ T

0

∫
D

ϱ̃εũε ⊗ ũε : ∇(Φεφ) dx dt
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+

∫ T

0

∫
D

ϱ̃γε div(Φεφ) dx dt−
∫ T

0

∫
D

S(∇ũε) : ∇(Φεφ) dx dt+

∫ T

0

∫
D

ϱ̃εf · Φεφ dx dt

=
6∑

j=1

Ij.

By the strong convergence of Φε → I in any Lq(D) and the convergences obtained in (24), we
can easily pass to the limit in I1, I2, and I6. Furthermore, div Φε = 0, so the pressure integral
reads ∫ T

0

∫
D

ϱ̃γε div(Φεφ) dx dt =

∫ T

0

∫
D

ϱ̃γεΦε : ∇φ dx dt,

and by the same argument, this converges to
∫ T

0

∫
D
ϱγ divφ dx dt.

For the diffusive part I5, we have∫ T

0

∫
D

S(∇ũε) : ∇(Φεφ) dx dt =

∫ T

0

∫
D

S(∇ũε) : (Φε∇φ) dx dt

+

∫ T

0

∫
D

S(∇ũε) : (∇(Φεφ)− Φε∇φ) dx dt.

The latter term converges to zero due to∣∣∣∣ ∫ T

0

∫
D

S(∇ũε) : (∇(Φεφ)− Φε∇φ) dx dt
∣∣∣∣ ≲ ∥∇ũε∥L2(0,T ;L2(D))∥∇(Φεφ)− Φε∇φ∥L∞(0,T ;L2(D))

≲ ∥∇Φε∥L2(D)∥φ∥L∞((0,T )×D) ≲ ε
α−3
2 ∥φ∥L∞((0,T )×D).

Together with the strong convergence of Φε → I in L2(D) and the weak convergence of ∇ũε ⇀
∇u in L2((0, T )×D), we deduce∫ T

0

∫
D

S(∇ũε) : ∇(Φεφ) →
∫ T

0

∫
D

S(∇u) : ∇φ.

The remaining convective part I3 is handled similar as∫ T

0

∫
D

ϱ̃εũε ⊗ ũε : ∇(Φεφ) dx dt =

∫ T

0

∫
D

ϱ̃εũε ⊗ ũε : (Φε∇φ) dx dt

+

∫ T

0

∫
D

ϱ̃εũε ⊗ ũε : (∇(Φεφ)− Φε∇φ) dx dt

=

∫ T

0

∫
D

ΦT
ε ϱ̃εũε ⊗ ũε : ∇φ dx dt

+

∫ T

0

∫
D

ϱ̃εũε ⊗ ũε : (∇(Φεφ)− Φε∇φ) dx dt.

The latter term vanishes due to the embedding W 1,2
0 (D) ⊂ L6(D). Indeed, we get with γ > 3

and the uniform bounds on ϱε and uε∣∣∣∣ ∫ T

0

∫
D

ϱ̃εũε ⊗ ũε : (∇(Φεφ)− Φε∇φ)
∣∣∣∣

≤ ∥ϱ̃ε∥L∞(0,T ;Lγ(D))∥ũε∥2L2(0,T ;L6(D))∥∇(Φεφ)− Φε∇φ∥
L∞(0,T ;L

3γ
2γ−3 (D))

≲ ε

(
3− 3γ

2γ−3

)
α−3∥φ∥L∞((0,T )×D),
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where as before (3− 3γ
2γ−3

)α−3 = α 3(γ−3)
2γ−3

−3 > 0 by assumption (9). Hence, by ΦT
ε ϱ̃εũε⊗ ũε →

ϱu⊗ u in D′((0, T )×D), we obtain∫ T

0

∫
D

ϱ̃εũε ⊗ ũε : ∇(Φεφ) dx dt→
∫ T

0

∫
D

ϱu⊗ u : ∇φ dx dt.

This finishes the alternative proof of Theorem 2.4.

7. Concluding remarks: dimensional optimality
sec:Concl

In this paper, we have shown that solutions (ϱε,uε) of system (3) converge to solutions (ϱ,u)
of the same system in (0, T ) × D ⊂ (0, T ) × Rd, d = 3, as long as the holes are in a certain
sense small, and the adiabatic exponent γ > 3 = d. In [NO22], a similar result was shown for
the two-dimensional case as long as γ > 2 = d. A natural question to ask now is whether such
coincidences between the reachable exponent γ and the dimension d hold in general. Indeed,
following the proofs of Lemma 3.2, Theorem 3.3, Theorem 3.5, and Lemma 6.1, one easily
finds that all the assertions stated there are still valid for any d ≥ 3, provided the crucial
exponent ε(3−q)α−3 is changed to ε(d−q)α−d. In terms of capacity, this scaling is optimal since
any hole would contribute a capacity of ε(d−q)α to the system, and there are ε−d of them (see
also [Lu21, Remark 2.4]). Applying the same pressure decomposition as in Section 3.3 and
setting 2∗ = 2d/(d− 2), we find for the (most restrictive) convective term∫ T

0

∫
Dε

ϱεuε ⊗ uε : ∇Rεφ dx dt

≲ ∥ϱε∥L∞(0,T ;Lγ(Dε))∥uε∥2L2(0,T ;L2∗ (Dε))
∥∇Rεφ∥

L∞(0,T ;L
2∗γ

2∗(γ−1)−2γ (Dε))

≲

(
1 + ε(d−

2∗γ
2∗(γ−1)−2γ

)α−d

) 2∗(γ−1)−2γ
2∗γ

,

which is uniformly bounded as long as

α >
d

d− 2∗γ
2∗(γ−1)−2γ

=
2γ − d

γ − d
, γ > d.

Similarly, the diffusive part leads to∫ T

0

∫
Dε

S(∇uε) : ∇Rεφ dx dt ≲ ∥∇Rεφ∥L2(0,T ;L2(Dε)) ≲
(
1 + ε(d−2)α−d

) 1
2 ,

which is uniform as long as α > d
d−2

. Finally, we arrive at the conditions

α > max

{
d

d− 2
,
2γ − d

γ − d

}
, γ > d ≥ 3.

Note that the last term in the maximum wins precisely if d = 3 and γ ≤ 6, or d ≥ 4. Further,
it is remarkable that the lower bound for γ connects to the dimension of the underlying space
as γ > D− 1, where D = d+1 corresponds to the space-time dimension of (0, T )×Rd ∼ Rd+1.
In view of this, it seems that one cannot go below this bound. Moreover, similar considerations
for the stationary case, where the known values are γ > 1 if d = 2 (see [NP22]), and γ > 2 if
d = 3 (see [DFL17]), lead to

α > max

{
d

d− 2
,

2γ − d

γ − (d− 1)

}
, γ > d− 1 ≥ 2.

In both cases, the optimal lower bound for γ is then indeed γ > D−1, whereD is the space-time
dimension given by D = d in the steady case, and D = d+ 1 in the unsteady case.
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perforated domains under almost minimal assumptions on the size of the holes, Ann. Inst. H. Poincaré
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