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Summary 

Inhibitory neurotransmission plays a substantial role in encoding 

of auditory cues relevant for sound localization in vertebrates. 

While the anatomical organization of the respective afferent 

auditory brainstem circuits shows remarkable similarities between 

mammals and birds, the properties of inhibitory 

neurotransmission in these neural circuits are strikingly different. 

In mammals, inhibition is predominantly glycinergic and endowed 

with fast kinetics. In birds, inhibition is mediated by γ-

Aminobutiric acid (GABA) and too slow to convey temporal 

information. A further prominent difference lies in the mechanism 

of inhibition in the respective systems. In auditory brainstem 

neurons of mammals, [Cl-]i undergoes a developmental shift 

causing the actions of GABA and glycine to gradually change 

from depolarization to the ‘classic’ hyperpolarizing-inhibition 

before hearing onset. Contrary to this, in the mature avian 

auditory brainstem Cl- homeostasis mechanisms accurately adjust 

the Cl- gradient to enable depolarizing, but still very efficient, 

shunting inhibition. The present review considers the 

mechanisms underlying development of the Cl- homeostasis in 

the auditory system of mammals and birds and discusses some 

open issues that require closer attention in future studies. 
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Introduction 
 
 The central auditory system of mammals and 
birds encodes information about the location of a sound 
source by comparing – in a frequency-specific manner – 
the level of sound, the time of its arrival, and spectral 
disparities at the two ears. The interaural level and time 
differences (ILD and ITD) are first computed in brainstem 
nuclei where the inputs from both ears converge (Grothe et 
al. 2010, Konishi 2003). In the respective neuronal circuits, 
excitation is mediated by synaptically released glutamate 
while the inhibitory neurotransmission which strongly 
contributes to the processing of the sound source 
localization, is mediated by γ-Aminobutiric acid (GABA) 
and glycine (Grothe 2003). Despite the long separated 
evolution of the two vertebrate lines leading to the 
homeothermic birds and mammals, there are striking 
similarities in the organization of the auditory brainstem 
nuclei with respect to monaural and binaural signal 
processing in second- and third-order neurons of the 
ascending auditory system (Oertel 1999). This is mostly 
true if one considers excitatory aspects of the afferent 
processing system, but there are substantial differences in 
the properties of inhibitory neurotransmission in each 
system. The inhibitory neurotransmission in the avian 
auditory brainstem is mainly mediated by GABA and has 
slow kinetics (Howard et al. 2007, Howard and Rubel 
2010, Lu and Trussell 2000, Monsivais et al. 2000); 
glycinergic synaptic inputs have been only recently 
described (Kuo et al. 2009) and their functional role is still 
unclear. In mammals, on the other hand, fast and 
predominantly glycinergic transmission is the 
characteristic feature of many brainstem nuclei 
(Awatramani et al. 2004, Grothe and Sanes 1994, Kandler 
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and Friauf 1995, Lim et al. 2003, Magnusson et al. 2005, 
Smith et al. 2000). Even more surprising is how the 
inhibitory effect is accomplished in the respective systems. 
In the mammalian brain, GABA and glycine are the main 
inhibitory transmitters evoking hyperpolarization in most 
mature neurons, due to Cl- influx through GABAA and 
glycine receptors (Bormann et al. 1987, Kaila 1994, 
Sivilotti and Nistri 1991). The influx of Cl- is maintained 
through an inward-directed electrochemical gradient at the 
resting membrane potential, effective due to a relatively 
low intracellular Cl- concentration ([Cl-]i). The same 
applies for the adult auditory brainstem neurons, where the 
inhibitory action of GABA and glycine is achieved by both 
(i) shunting, i.e. reduction of the amplitude of excitatory 
postsynaptic potentials due to a local reduction of the input 
resistance in the vicinity of excitatory synapses and (ii) by 
membrane hyperpolarization, i.e. moving the membrane 
potential away from the action potential threshold. In 
prehearing mammals, on the other hand, the same auditory 
brainstem neurons show depolarizing inhibitory 
postsynaptic potentials (IPSPs) mostly evoked by GABA. 
Yet, in the avian auditory brainstem neurons, depolarizing 
GABAergic IPSPs are maintained also in the mature 
system (Hyson et al. 1995, Lu and Trussell 2001). The 
inhibitory effect is achieved, despite their depolarizing 
action, due to the shunting effect of the outward directed 
Cl- conductance and subsequent activation of the low-
voltage activated K+ conductance (Howard et al. 2007, 
Monsivais and Rubel 2001). Thus, when comparing the 
avian and the mammalian brainstem circuits, the difference 
in the [Cl-]i underlies the respective mechanism of 
inhibition (depolarizing vs. hyperpolarizing). In fact, the 
nature of the synaptic response evoked by GABA/glycine 
is determined by the sign of the difference between the 
reversal potential EGABA/Gly and the resting potential of the 
cell (Vrest). While substantial literature is available on the 
regulation of the Cl- homeostasis in developing auditory 
brainstem of rats, mice, and gerbils, the mechanisms 
maintaining high [Cl-]i in the homologue chick neurons 
receiving GABA/glycinergic synaptic inputs remain 
inconclusive. 
 
Shift from depolarizing to hyperpolarizing 
inhibitory neurotransmission in the auditory 
brainstem of mammals 
 
 In forebrain areas of the mammalian CNS, 
depolarizing GABA/glycinergic responses were 
described as a transient feature of immature neurons of 

the hippocampus (Ben-Ari et al. 1989, Cherubini et al. 
1990), hypothalamus (Chen et al. 1996), neocortex 
(Owens et al. 1996, Yuste and Katz 1991), cerebellum 
(Eilers et al. 2001), retina (Huang and Redburn 1996), 
spinal cord (Reichling et al. 1994, Wu et al. 1992) and of 
cultured midbrain neurons (Jarolimek et al. 1999, Titz et 
al. 2003). The respective excitatory responses are due to 
the elevated intracellular Cl- concentration in the 
immature neurons which is attributable to the prolonged 
postnatal development of the chloride homeostasis 
system (Ben-Ari 2002, Ben-Ari et al. 2007, Owens and 
Kriegstein 2002). Depolarizations mediated by 
GABA/glycine can cause an increase in intracellular Ca2+ 
concentration, generally thought to promote synapse 
stabilization during the critical period of synaptic 
reorganization in developing neuronal circuits (Ben-Ari 
et al. 2007). A similar time course of the [Cl-]i regulation 
was also described in auditory brainstem nuclei of rats, 
mice, and gerbils, where GABA/glycinergic responses 
shift from depolarizing to hyperpolarizing (D/H shift) 
during the early postnatal development (cochlear nucleus: 
Milenkovic et al. 2007, Vale et al. 2005; superior olivary 
complex: Balakrishnan et al. 2003, Ehrlich et al. 1999, 
Kakazu et al. 1999, Kandler and Friauf 1995, Löhrke et 
al. 2005). In the lateral superior olive (LSO), depolarizing 
GABA/glycinergic synaptic inputs can even trigger 
action potentials and activate voltage gated Ca2+ channels 
which might change the strength of GABA or glycinergic 
synapses in a synapse-specific manner (Kullmann et al. 
2002, Kullmann and Kandler 2008). In this regard, 
noteworthy is also the higher potency of synaptic GABA 
to evoke intracellular Ca2+ signals with respect to glycine. 
This seems to be a general feature of mixed 
GABA/glycinergic synapses and probably due to longer 
GABAergic currents being more effective in triggering 
Ca2+ signals (Chery and De Koninck 1999, Jonas et al. 
1998, Yoshimura and Nishi 1995). Referring to 
developmentally-regulated synaptic reorganization, it is 
interesting that synaptic depression evoked by 
depolarizing GABA, but not by glycine (Chang et al. 
2003, Kotak and Sanes 2000), possibly precedes synapse 
elimination in the LSO and thereby contributes to the 
functional tonotopic refinement of developing auditory 
brainstem circuits (Kandler et al. 2009).  
 Following the depolarizing phase of the early 
postnatal development, [Cl-]i is regulated to enable 
hyperpolarizing responses to GABA/glycine. As in 
forebrain structures, the activity of the K+-Cl--extruding 
cotransporter KCC2 mediates the D/H shift in the 
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auditory brainstem neurons (Balakrishnan et al. 2003, 
Ehrlich et al. 1999, Milenkovic et al. 2007). KCC2 is a 
neuron-specific, secondary-active cotransporter which 
uses energy stored in the K+-chemical gradient to move 
Cl- against its chemical gradient out of the neuron via an 
electroneutral K-Cl transport (Payne et al. 2003). The 
increased KCC2 activity in developing neurons gradually 
renders ECl more negative than Vm and converts 
depolarizing and excitatory GABA responses to the well-
established hyperpolarizing inhibition seen in the adult 
(Hübner et al. 2001, Rivera et al. 2005). In order to 
understand the functional significance of the dynamic Cl- 
homeostasis regulation in auditory brainstem nuclei, it is 
important to refer it to the onset of acoustically evoked 
signal processing which in rats, mice, and gerbils occurs 
after postnatal day twelve (>P12) (Blatchley et al. 1987, 
Sonntag et al. 2009, Woolf and Ryan 1984).  
 Auditory nerve fibers convey excitatory input 
from the cochlear hair cells to different types of second-
order neurons in all three partitions of the cochlear 
nucleus (CN). The spherical bushy cells (SBC) in the 
anteroventral CN are the starting point of the brainstem 
circuit that computes acoustic localization based on ITD 
in low-frequency sounds. These neurons integrate 
excitatory inputs from just a few auditory nerve terminals 
(endbulbs of Held) (Brawer and Morest 1975, Ryugo and 
Sento 1991) and likewise acoustically driven GABA- and 
glycine-mediated inhibitory inputs (Backoff et al. 1999, 
Caspary et al. 1994, Dehmel et al. 2010, Gai and Carney 
2008, Kopp-Scheinpflug et al. 2002). In the SBC, the 
D/H shift is completed by the end of the first postnatal 
week (<P8) (Fig. 1A). The activity of the KCC2 
gradually changes the reversal potential for GABAA-
mediated responses (EGABA) from –42 mV (at P3-5) to  
–79 mV (at P10-12). Based on these data, the [Cl-]i 
calculated according to the Goldman equation 
[considering the EHCO3 of –12 mV and permeability 
HCO3

-/Cl- of 0.2 (Bormann et al. 1987, Staley and 
Proctor 1999)] changes from ~ 23 mM to ~ 8 mM. The 
globular bushy cells (GBC) represent another type of 
second-order neurons in the ventral CN showing a higher 
degree of convergence of excitatory auditory nerve fiber 
inputs. These neurons are the starting point of the 
brainstem circuitry that processes sound source 
localization based on ILD of high-frequency sounds. In 
GBC, hyperpolarizing responses to glycine were recorded 
at P9-11 (EGly ~ –94 mV and estimated [Cl-]i ~ 4 mM), 
which is consistent with the changes shown in SBC. 
However, the synaptic terminals of GBC that provide 

calyceal excitatory input to the contralateral medial 
nucleus of the trapezoid body (MNTB), maintain 
depolarized EGly with respect to Vm (–51 mV vs. –77 mV, 
respectively) (Price and Trussell 2006). These terminals 
apparently lack the KCC2 ([Cl-]i ~ 21 mM) even after 
hearing onset. Hence, the activation of presynaptic 
GABA and glycine receptors depolarizes the terminal and 
facilitates glutamate release (Turecek and Trussell 2001). 
So, in cochlear nucleus bushy cells, the KCC2 within the 
somata changes the initially high [Cl-]i to approximately 
4-8 mM before hearing onset, while in the calyceal 
terminals of GBC the [Cl-]i remains elevated due to the 
lack of this transporter. The axon terminals from SBC, on 
the other hand, provide binaural excitatory synaptic 
inputs to the neurons in the medial superior olive (MSO) 
which are capable of encoding ITD in the sub-
millisecond range. In the MSO neurons, measurements 
using voltage-sensitive dye- and perforated-patch 
recordings revealed a D/H shift between P5-9 (Löhrke et 
al. 2005) (Fig. 2). Thus, the Cl- regulation in the MSO 
neurons and CN bushy cells follows a similar time 
course.  
 The neurons considered so far convey excitatory 
information, but inhibitory projection neurons also 
contribute to the brainstem sound localization circuitry. 
Most notably these are the principal neurons (PN) from 
the MNTB which provide the major glycinergic input to a 
number of nuclei such as MSO, LSO and superior 
paraolivary nucleus (SPN). The PN receive a strong 
glutamatergic input from GBC, but they are also the 
target of inhibitory projections releasing glycine and/or 
GABA. While the sources of the latter inputs still remain 
inconclusive, it has been shown by means of perforated-
patch recordings that the action of inhibitory inputs 
changes from depolarizing (EGABA ~ –50 mV at P5-7) to 
hyperpolarizing (EGly ~ –80 mV at P13-15) (Awatramani 
et al. 2005). These data and data from Löhrke et al. 
(2005) suggest that the D/H shift in the MNTB occurs 
later in development than in the aforementioned 
excitatory neurons, i.e. just prior to hearing onset.  
 Principal neurons of the LSO are involved in the 
binaural processing of ILD, based on the integration of 
the excitatory input from the ipsilateral cochlear nucleus 
and inhibitory input from the MNTB, which is driven by 
sound from the contralateral ear. The LSO contains both 
excitatory and inhibitory principal neurons which 
establish ascending projections to the inferior colliculus 
in the midbrain. Concerning the inhibitory input to the 
LSO, the terminals from the MNTB not only undergo 
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Fig. 1. Developmental shift of EGABA/Gly in SBC of 
the anteroventral cochlear nucleus (AVCN) and in 
LSO neurons. (A, B) Estimated Vrest and EGABA/Gly 
are plotted for each neuron recorded in 
gramicidin-perforated patch configuration and 
the cells were sorted by age of the animal. Vrest is 
indicated by the base of each arrow and EGABA/Gly 
by the corresponding arrow tip; arrows pointing 
upwards indicate the cells in which measured 
EGABA/Gly was depolarizied with respect to the Vrest, 
downward pointing arrows indicate 
hyperpolarized EGABA/Gly. The presence of KCC2 
and NKCC1 transcripts in individual LSO neurons 
was investigated by single-cell RT-PCR, depicted 
in the bottom part of the figure in B. Every 
neuron analyzed was positive for KCC2 mRNA, 
regardless of age. In contrast, no NKCC1 
transcript was detected in the P3 group, whereas 
it was present in every neuron at P12. (C) The 
D/H shift in SBC is mediated by the KCC2 activity. 
The effects of KCC2 inhibitors, DIOA (50 µM) or 
furosemide (100 µM) on ECl. Arrows indicate the 
shift of ECl caused by DIOA (black circles) or by 
furosemide (black squares) for each cell recorded 
with its maturity given. Note that at P3 DIOA 
caused only minor changes of ECl. Gray and white 
backgrounds simply separate the cells from 
different postnatal days. (A and C from 
Milenkovic et al. 2007, B with kind permission by 
the authors from Balakrishnan et al. 2003). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
a developmental change in neurotransmitter phenotype, 
from being primarily GABAergic to being glycinergic 
(Nabekura et al. 2004), but they also transiently release 
glutamate (Gillespie et al. 2005). Co-transmission with 

glutamate is most prevalent during the first postnatal 
week, the period when GABA and glycine are still 
depolarizing. This provides a favourable condition for the 
induction of NMDA-dependent developmental plasticity, 
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Fig. 2. Shift from depolarizing to hyperpolarizing actions of GABA and glycine in the auditory brainstem of mammals. The image 
summarizes currently available experimental evidence, assessed with gramicidin perforated-patch recordings or with voltage-sensitive 
dye measurements (see text for references). With an exception of the giant presynaptic terminal, the calyx of Held (pre-dep), where 
the depolarizing Cl- gradient is maintained due to apparent absence of KCC2, the Cl- gradient undergoes a developmental shift with 
different time courses in distinct nuclei, but it is completed before hearing onset (<P12). The inhibitory neurons release glycine (MNTB) 
or GABA (SPN), while all other neurons shown here use glutamate as neurotransmitter. SBC – spherical bushy cell and GBC – globular 
bushy cell in the cochlear nucleus; LSO – lateral superior olive; MSO – medial superior olive; SPN – superior paraolivary nucleus; MNTB 
– medial nucleus of the trapezoid body. 
 
 
thereby contributing to synaptic refinement of inhibitory 
projections (Noh et al. 2010). Several studies in rats have 
shown that the D/H shift in LSO neurons occurs between 
P5 and P8 (Ehrlich et al. 1999, Kakazu et al. 1999, 
Löhrke et al. 2005). The experimentally determined value 
of the [Cl-]i at P12 is 8±5 mM (Balakrishnan et al. 2003), 
consistent with estimated [Cl-]i in SBC of the same age. 
Based on voltage-sensitive dye recordings, Löhrke et al. 
(2005) proposed that the D/H shift in the lateral, low-
frequency limb of the LSO lags behind the changes in the 
medial, high-frequency limb by approximately two days. 
This observation raises the question of a frequency-
specific gradient regarding the regulation of the Cl- 
homeostasis. Previous studies using c-fos 
immunocytochemistry, tracer technique, and whole cell 
recordings in the auditory brainstem suggested that 
developmental processes reflecting the maturation of 
synaptic contacts, occur earlier in high-frequency regions 
than in corresponding low-frequency regions (Ford et al. 
2009, Friauf 1992). However, the currently available data 
on development of the Cl- homeostasis does not suggest a 

clear segregation in the maturation time course between 
the high-frequency ILD and the low-frequency ITD 
circuit. The earliest time point of the D/H shift is at E18-
P1 in the SPN of the rat (Löhrke et al. 2005), but in the 
following two weeks the shift occurs in a staggered 
manner beginning in the cochlear nucleus bushy cells 
(P5-8) and the LSO (P5-8), followed by the MSO (P5-9), 
and shortly before the onset of hearing by the MNTB 
(P10-12) (Fig. 2). Therefore, the maturation pattern 
regarding the Cl- homeostasis is not consistent with a 
notion of an earlier development in the high-frequency 
nuclei (ILD circuit), yet it does not rule out the possibility 
of gradual maturation along the frequency axes within 
one nucleus, as described for the LSO. Moreover, the Cl- 
homeostasis first matures in the GABAergic SPN 
neurons, followed by the excitatory projection neurons 
(CN, LSO, MSO), and then by the glycinergic projection 
neurons from the MNTB. The signals that precisely 
control the Cl- regulation system in each brainstem 
nucleus remain to be determined. Friauf and coworkers 
observed impaired efficiency of KCC2-mediated Cl--
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extrusion in hypothyroid rats and suggested that the 
functional status of KCC2 may be regulated by the 
thyroid hormone (Friauf et al. 2008). In all brainstem 
nuclei investigated so far, KCC2 seems to be the key 
molecule to render low [Cl-]i to the “adult-like” level 
before hearing onset (Balakrishnan et al. 2003, Ehrlich et 
al. 1999, Kakazu et al. 1999, Milenkovic et al. 2007, 
Vale et al. 2005). The experimental evidence, based on 
immunohistochemistry, immunoblotting, electron 
miscroscopy, or mRNA analysis, strongly suggests the 
KCC2 expression in the brainstem neurons at, or shortly 
after birth. Yet, the mere early expression of KCC2 is not 
sufficient to trigger the D/H shift which emerges at 
different time points in some nuclei (Balakrishnan et al. 
2003, Blaesse et al. 2006, Löhrke et al. 2005, Milenkovic 
et al. 2007, Vale et al. 2005) (Fig. 2). Besides KCC2, a 
weak expression of KCC1 and KCC4, though with a 
different time course, was observed in the superior 
olivary complex (SOC). While the amount of mRNA for 
KCC1 decreases, that of KCC4 increases from P3 to P12 
(Becker et al. 2003). During the same developmental 
period, the amount of KCC2 mRNA and protein does not 
increase in auditory brainstem neurons (Fig. 1B), but 
what changes is the respective subcellular localization. 
During the period of the D/H shift, the KCC2 is gradually 
incorporated into the plasma membrane in perisomatic 
and peridendritic cellular regions. However, the 
expression and localization of KCC2 in the plasma 
membrane of auditory brainstem neurons does not reflect 
its functional state per se. This can be inferred from the 
major difference between the time course of the KCC2 
protein expression in brainstem and in forebrain neurons. 
In the neocortex, hippocampus, and in retinal neurons, 
KCC2 expression increases up to the end of the second 
postnatal week, a period when EGABA becomes 
hyperpolarizing with respect to Vm (Gulyas et al. 2001, 
Lu et al. 1999, Shimizu-Okabe et al. 2002, Vu et al. 
2000). In the forebrain areas, the increase in the KCC2 
gene expression is an immediate indicator of its 
functional activity (Khirug et al. 2005, Rivera et al. 2005, 
Stein et al. 2004). Nevertheless, there is also 
experimental evidence that developmental 
oligomerization of KCC2 is the rate-limiting step for the 
functionality of the transporter, both in the brainstem and 
also in forebrain structures (Blaesse et al. 2006). Also, 
posttranslational modifications in terms of (de-) or 
phosphorylation are conceivable as developmentally 
regulated steps towards achievement of the full transport 
activity (Kelsch et al. 2001, Stein et al. 2004, Strange et 

al. 2000, Vale et al. 2005). The onset of KCC2 activity in 
different auditory brainstem nuclei seems to be staggered 
in time, but in all nuclei the D/H shift is completed by the 
onset of hearing (P12), consistent with the prominent role 
of inhibition in processing of auditory information.  
 The time course of the D/H shift in the brainstem 
does not support the notion of chronologic maturation of 
the chloride homeostasis along the caudo-rostral axis i.e. 
early maturation in the spinal cord (Baccei and Fitzgerald 
2004, Hübner et al. 2001, Wu et al. 1992), followed by 
the brainstem (Ritter and Zhang 2000, Singer et al. 1998), 
cerebellum (Brickley et al. 1996, Eilers et al. 2001), 
hippocampus (Fiszman et al. 1990, Khazipov et al. 2004, 
Rivera et al. 1999, Swann et al. 1989, Tyzio et al. 2006) 
and finally by the cerebral cortex (<P12) (Owens et al. 
1996, Yamada et al. 2004). Thus, the chloride regulation 
in the auditory brainstem is perhaps tightly coupled to 
maturational processes of the auditory circuits, but it 
remains to be investigated what exactly determines the 
rather distinct time courses between some nuclei. 
 
Maintenance of high intracellular chloride 
in auditory brainstem neurons 
 
 While in the auditory brainstem of mammals, 
KCC2 seems to be the key transporter to mediate the D/H 
shift and hence render GABA and glycine 
hyperpolarizing during development, the mechanisms 
generating the initially depolarizing transmembrane 
gradient for Cl- remain elusive. In mammals, elevated 
intracellular Cl- is a transient feature of developing 
nervous system, but in the auditory brainstem nuclei of 
birds high [Cl-]i is maintained up to adulthood. In both 
cases, depolarizing actions of GABA and glycine are 
mainly caused by Cl- efflux, consistent with active Cl- 
uptake mechanisms rendering [Cl-]i above the predicted 
electrochemical equilibrium. Estimated values of 
neuronal [Cl-]i in different forebrain areas of postnatal 
rodents are in the range of 20-40 mM, depending on the 
respective structure and the developmental stage (Ikeda et 
al. 2003, Kilb et al. 2002, Owens et al. 1996, Rohrbough 
and Spitzer 1996, Shimizu-Okabe et al. 2002, Sipila et al. 
2006, Yamada et al. 2004). In auditory brainstem 
neurons, the approximate [Cl-]i lies in the same range 
prior to the D/H shift (Balakrishnan et al. 2003, Kakazu 
et al. 1999, Milenkovic et al. 2007). The accumulation of 
intracellular Cl- in various neuron types is thought to be 
mediated by an inward-directed Cl- pump, the Na+-driven 
K+-Cl--cotransporter NKCC1 (Achilles et al. 2007, 
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Delpire et al. 1999, Plotkin et al. 1997, Sung et al. 2000). 
The continuous down-regulation of NKCC1 during 
development, alongside with an up-regulation of KCC2, 
is believed to mediate the observed D/H shift (Plotkin et 
al. 1997, Yamada et al. 2004). In the auditory system, 
early Cl- accumulation in the cochlear nucleus SBC is 
most likely dominated by NKCC1, the expression of 
which appears to be down-regulated later in development 
(personal unpublished observations). Nonetheless, 
NKCC1 is probably not the only contributing factor to Cl- 
accumulation (Delpy et al. 2008, Rocha-Gonzalez et al. 
2008, Zhang et al. 2007). In the LSO, the NKCC1 
expression pattern does not match the developmental 
profile of depolarizing effects of inhibitory 
neurotransmitters. Although the mRNA for NKCC1 is 
barely expressed in neonatal LSO, its expression is 
augmented when glycine is already hyperpolarizing 
(Fig. 1B). So, NKCC1 seems not to be the prime 
contributor to Cl- accumulation in early LSO neurons (but 
see also Kakazu et al. 1999), which suggests that, besides 
or instead of NKCC1, other Cl--accumulating transporters 
might act in a nuclear-specific pattern in the superior 
olivary complex (SOC). Becker et al. (2003) have 
pointed to the HCO3

-/Cl- exchanger AE3 as a possible 
candidate to render high [Cl-]i in the SOC. According to 
their study performed in rats, AE3 was the only 
secondary active Cl--accumulating transporter abundantly 
present during the first two postnatal weeks. However, 
we still lack experimental evidence of the physiological 
activity of AE3 in the LSO. The respective role of AE3 
has been documented in the pyramidal neurons of the 
mouse hippocampus and in the embryonic spinal 
motoneurons of the chick, where the AE3 appears to 
support the Cl- intrusion predominantly driven by 
NKCC1 (Gonzalez-Islas et al. 2009, Pfeffer et al. 2009). 
Similar to the development in mammals, neurons in the 
chick spinal cord also undergo the D/H shift which is 
thought to be mediated by reduction in NKCC1 function 
and concurrent up-regulation of KCC2 (Chub et al. 2006, 
Delpy et al. 2008, Jean-Xavier et al. 2006, Obata et al. 
1978, Xu et al. 2005). This is in contrast to the 
development in the auditory brainstem of the chick, 
where neurons in the nucleus magnocellularis (NM, 
homologue to mammalian cochlear nucleus), nucleus 
laminaris (NL, homologue to mammalian MSO) and 
nucleus angularis (NA, processing of sound level 
information) maintain the outward-directed 
electrochemical gradient for Cl- at resting membrane 
potential throughout the animal's life span (Howard et al. 

2007, Hyson et al. 1995, Kuo et al. 2009, Lu and Trussell 
2001, Monsivais and Rubel 2001, Tang et al. 2009). 
Here, GABA is effective through depolarizing inhibition 
which is achieved by an activation of the Cl-- and 
subsequently K+-conductance, and the inactivation of Na+ 
channels, jointly contributing to shunting and action 
potential threshold accommodation (Howard and Rubel 
2010). With the exception of NA neurons, which are 
subject to co-transmission of GABA and glycine (Kuo et 
al. 2009), the inhibitory neurotransmission in the chick 
auditory brainstem is solely GABAergic (Funabiki et al. 
1998, Lu and Trussell 2001, Lu et al. 2005, Monsivais et 
al. 2000, Yang et al. 1999). The primary source of 
GABAergic inhibitory inputs to NM, NL, and NA 
neurons resides in the superior olivary nucleus (SON) 
(Burger et al. 2005, Nishino et al. 2008). Performing 
gramicidin perforated-patch recordings in the same slice 
preparation, Monsivais and Rubel (2001) revealed 
depolarizing EGABA in the NM neurons, EGABA around 
Vrest in the SON neurons and EGABA hyperpolarized with 
respect to Vrest in the reticular formation. Hence in the 
chick brainstem, the Cl- homeostasis in neurons involved 
in sound localization, seems to be under specific control 
that renders inhibition depolarizing, but very potent in 
eliminating spikes to asynchronous inputs, and thus in 
sharpening the temporal response properties (Howard and 
Rubel 2010). To our best knowledge, the mechanisms 
underlying Cl- regulation in the avian auditory brainstem 
neurons are still inconclusive. Given the different [Cl-]i in 
NM, NL, and NA neurons on one side, and SON and 
reticular formation neurons on the other, the chicken 
brainstem slice preparation may be a very attractive 
model to study the underlying mechanisms of the Cl- 
homeostasis. Still, it should be adduced that cell-type-
specific regulation of the Cl- homeostasis is not unique to 
avian brainstem nuclei; excitatory and inhibitory effects 
of GABA were also described in distinct mature neuronal 
networks of mammals (Marty and Llano 2005). In the 
cortex and amygdala, interneurons have more depolarized 
EGABA than pyramidal cells due to the prominent activity 
of NKCC1 or KCC2, respectively (Martina et al. 2001). 
Also in the thalamus, retina, and the suprachiasmatic 
nucleus (which largely drives day-night cycle in 
mammals), depolarizing Cl- gradient is restricted to 
specific cell types or even to restricted cell compartments 
and it appears to be finely tuned by the cation-chloride 
cotransporters (Albus et al. 2005, Belenky et al. 2008, 
Ulrich and Huguenard 1997, Vardi et al. 2000).  
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Conclusions 
 
 It has been understood for many years that in 
mammalian auditory brainstem the action of inhibitory 
neurotransmitters GABA and glycine undergoes the D/H 
shift as a result of the cellular mechanisms regulating Cl- 
homeostasis during development. However, the nature of 
the respective control mechanisms is still not completely 
resolved. While the Cl--extruding cotransporter KCC2 
seems to play a pivotal role in rendering the 
hyperpolarizing gradient for Cl-, it remains intriguing 
why the respective D/H shift occurs at different time 
points in distinct but closely adjacent nuclei. The 
significance of NKCC1 in intracellular chloride 
accumulation is still unclear, but at least in the LSO, its 
expression pattern does not correlate with depolarizing 
Cl- gradient. Moreover, despite the strong evidence for 
abundant expression of the Cl- accumulating anion-
exchanger AE3 in the SOC, the confirmation of its 
physiological activity is lacking. Thus, the Cl- 

accumulation remains an issue in early postnatal neurons 
of mammals, but also in the mature auditory brainstem of 
the chick. In the latter, yet unknown homeostasis 
mechanisms accurately adjust the Cl- gradient to enable a 
depolarizing, but still very efficient shunting inhibition. 
As we learn more about these mechanisms, it becomes 
clear that the precise regulation of the Cl- content may 
endow neurons or even discrete compartments of such 
neurons with distinct physiological responses to a limited 
number of transmitters. 
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