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Lq-SOLUTION OF THE ROBIN PROBLEM FOR THE STOKES
SYSTEM WITH CORIOLIS FORCE

DAGMAR MEDKOVÁ†

Abstract. We define single layer potential and double layer potential for

the stationary Stokes system with Coriolis term and study properties of these
potentials. Then using the integral equation method we study the Dirich-

let problem, the Neumann problem and the Robin problem for the Stokes

system with Coriolis term. We look for solutions of the problems such that
the maximal functions of the velocity u, of the pressure p and of ∇u are q-

integrable on the boundary, and the boundary conditions are fulfilled in the

sense of a non-tangential limit. As a consequence we study solutions of the
Dirichlet problem for an exterior domain in the homogeneous Sobolev spaces

Dk,q(Ω, R3)×Dk−1,q(Ω) and in weighted Besov spaces.

1. Introduction

Problems with rotation in hydrodynamics lead to the Stokes system with Coriolis
term −∆u−[ω×x]·∇u+ω×u+∇p = f , ∇·u = 0; to the Oseen system with Coriolis
term −∆u+ψ ·∇u−[ω×x]·∇u+ω×u+∇p = f , ∇·u = 0; and to the Navier-Stokes
system with Coriolis term −ν∆u+u ·∇u+ψ ·∇u− [ω×x] ·∇u+ω×u+∇p = f ,
∇ · u = 0. Solutions of these systems in the whole R3 are studied in [18], [20], [23],
[24], [25], [26], [29], [30], [31], [32], [33], [64]. Solutions of the Dirichlet problem
for these systems in exterior domains are studied in [19], [20], [23], [28], [29], [30],
[33], [36], [62], [63], [100]. J. Bemelmans, G. P. Galdi and M. Kyed studied in [2]
the mixed problem for the Navier-Stokes system with Coriolis term. They divided
the boundary to two parts Γ1 and Γ2. The Dirichlet condition is given on Γ1. The
normal part of the Dirichlet condition and the tangential part of the Neumann
condition are given on Γ2.

One of the method used in hydrostatics is an integral equation method. This
method enables to obtain another regularity results than the other methods. The
boundary value problems for the stationary Stokes system are studied by this
method in [3], [4], [5], [6], [7], [8], [9], [11], [15], [16], [40], [42], [43], [58], [61],
[67], [66], [69], [70], [71], [72], [75], [76], [73], [87], [88], [89], [90], [92], [95], [98]
[108], [110]. The boundary value problems for the stationary Brinkman system are
studied by this method in [44], [45], [46], [47], [48], [49], [50], [51], [52], [53], [54],
[55], [56], [57], [83], [85], [99], [108], [109]. The boundary value problems for the
stationary Oseen system are studied by this method in [59], [84], [96], [97]. It would
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2 DAGMAR MEDKOVÁ

be interesting to get similar results also for systems with Coriolis term. This paper
represents the first step to this goal.

Let Ω ⊂ R3 be a domain with compact Lipschitz boundary. Denote by nΩ(x)
(or shortly n) the outward unit normal of Ω at x ∈ ∂Ω. If u = (u1, u2, u3) is a
velocity, and p is a pressure, we define by

T (u, p) = 2∇̂u− pI

the corresponding stress tensor, where I denotes the identity matrix and

∇̂u =
1
2
[∇u + (∇u)T ]

is the deformation tensor, with (∇u)T as the matrix transposed to ∇u. Let a ∈ R1,
ω = (0, 0, a), h ∈ L∞(∂Ω), h ≥ 0. We study the Stokes system with Coriolis term

(1.1) −∆u− [ω × x] · ∇u + ω × u +∇p = 0, ∇ · u = 0

with the Dirichlet condition

(1.2) u = g on ∂Ω

and with the Robin condition

(1.3) T (u, p)n +
1
2
[(ω × x) · n]u + hu = f on ∂Ω.

(If h ≡ 0 we say about the Neumann problem.) We study such solutions of the
problems that the non-tangential maximal functions of u, ∇u and p are in Lq(∂Ω)
and the boundary conditions are fulfilled in the sense of a non-tangential limit.

Let us gather what is known about the Dirichlet problem for the Stokes system
with Coriolis term. It was shown the existence of a solution inD2,q(Ω; R3)×D1,q(Ω)
for an exterior domain with boundary of class C2 and 1 < q < 3/2 (see [29]). (Here
Dk,q(Ω) denotes the homogeneous Sobolev space of order k.) G. P. Galdi and A. L.
Silvestre proved in [33] this result for q = 2. G. P. Galdi studied in [28] the Dirichlet
problem on a Lipschitz exterior domain inD1,2(Ω,R3)×L2

loc(Ω). T. Hishida studied
in [36] the Dirichlet problem in D1,q(Ω,R3) × Lq(Ω), 3/2 < q < 3, for an exterior
domain with smooth boundary. R. Farwig and T. Hishida studied in [20] the
Dirichlet problem for the Stokes system with Coriolis term in Ẇ 1

q,r(Ω; R3)×Lq,r(Ω)
in an exterior domain with smooth boundary. Here Lq,r(Ω) is a Lorentz space and
Ẇ q,r

1 (Ω) is defined by the real interpolation of homogeneous Sobolev spaces of the
order 1.

To study boundary value problems by the integral equation method we need
the existence of a fundamental solution of the system and its properties. The
fundamental solution of the Stokes system with Coriolis term was given by E. A.
Thomann and R. B. Guenther in [103]. Unfortunately, this fundamental solution
has a very complicated formula, it is not of convolution type or symmetric. It is a
bit problem because the simple formula of the fundamental solution for the Stokes
system, symmetry and a convolution type of the fundamental solution play impor-
tant role in the theory of the integral equtions for the Stokes system. Properties of
the fundamental solution of the Stokes system with Coriolis term were studied by
R. Farwig and T. Hishida in [21] and [22]. We need further properties, so we prove
them. For this reason we first study regularity of solutions of the Dirichlet problem
on bounded domains. These routine results enable us to compare the fundamental
solution of the Stokes system with Coriolis term and the fundamental solution of
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the Stokes system in a neighbourhood of the diagonal. Then we define a single
layer potential and a double layer potential, and prove some properties of these
potentials similar to properties of the Stokes potentials. Especially useful is the
representation of a solution of the homogeneous Stokes system with Coriolis term
as the sum of the double layer potential corresponding to the trace of the velocity
and the single layer potential corresponding to the Neumann condition. (This for-
mula was proved both for a bounded and an unbounded domain.) Then we study so
called regular Lq-solutions of the Dirichlet problem for a bounded and an exterior
domain with Lipschitz boundary. The boundary condition is from W 1,q(∂Ω,R3)
with 1 < q ≤ 2. We find necessary and sufficient condition for the solvability of the
problem and characterize all solutions. If Ω is bounded then a solution is in the
Besov space Bq,2

1+1/q(Ω,R
3)×Bq,2

1/q(Ω). If Ω is unbounded and u(x) → 0, p(x) → 0
at infinity, then the solution (u, p) is in a similar Besov space but with a weight.
As a consequence we prove the existence of a unique solution vanishing at infinity
of the exterior Dirichlet problem (1.1), (1.2) in the homogeneous Sobolev space
Dk+1,q(Ω,R3) × Dk,q(Ω) and also in weighted Besov spaces. Then we study the
Neumann problem and the Robin problem on bounded and exterior domains with
boundary conditions from Lq(∂Ω,R3). Here ∂Ω is Lipschitz and 1 < q ≤ 2, or
∂Ω is of class C1 and 1 < q < ∞. We prove the solvability of the problem and
characterize all solutions. If Ω is bounded then a solution is in the Besov space
B

q,max(q,2)
1+1/q (Ω,R3)× B

q,max(q,2)
1/q (Ω). If Ω is unbounded and u(x) → 0, p(x) → 0 at

infinity, then the solution (u, p) is in a similar Besov space but with a weight.

2. Formulation of problems

Let Ω ⊂ R3 be an open set with compact Lipschitz boundary. If x ∈ ∂Ω, β > 0
denote the nontangential approach region of opening β at the point x by

Γβ(x) = {y ∈ Ω; |x− y| < (1 + β) dist(y, ∂Ω)}.

If now v is a vector function defined in Ω, we denote the non-tangential maximal
function of v on ∂Ω by

Mβ(v)(x) = MΩ
β (v)(x) := sup{|v(y)|;y ∈ Γβ(x)}.

It is well known that there exists c > 0 such that for β, b > c and 1 ≤ q <∞ there
exist C1, C2 > 0 such that

‖Mβv‖Lq(∂Ω) ≤ C1‖Mbv‖Lq(∂Ω) ≤ C2‖Mβv‖Lq(∂Ω)

for any measurable function v in Ω. (See, e.g. [39] and [101, p. 62].) We suppose
that β > c and write Γ(x) instead of Γβ(x). Next, define the non-tangential limit
of v at x ∈ ∂Ω

v(x) = lim
Γ(x)3y→x

v(y)

whenever the limit exists.
Let a ∈ R1, ω = (0, 0, a), h ∈ L∞(∂Ω), 1 < q < ∞, f ∈ Lq(∂Ω,R3). We

say that (u, p) is an Lq-solution of the Robin problem for the Stokes system with
Coriolis term (1.1), (1.3) if u ∈ C2(Ω,R3), p ∈ C1(Ω), (u, p) is a solution of (1.1),
Mβ(u) + Mβ(∇u) + Mβ(p) ∈ Lq(∂Ω), there exist non-tangential limits of u, ∇u
and p at almost all points of ∂Ω, and the boundary condition (1.3) is fulfilled in the
sense of a non-tangential limit a.e. on ∂Ω.
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Let g ∈W 1,q(∂Ω,R3). We say that (u, p) is a regular Lq-solution of the Dirichlet
problem for the Stokes system with Coriolis term (1.1), (1.2) if u ∈ C2(Ω,R3),
p ∈ C1(Ω), (u, p) is a solution of (1.1), Mβ(u)+Mβ(∇u)+Mβ(p) ∈ Lq(∂Ω), there
exist nontangential limits of u, ∇u and p at almost all points of ∂Ω, and (1.2) is
fulfilled in the sense of a non-tangential limit a.e. on ∂Ω.

Remark that if (u, p) is a regular Lq-solution of the Dirichlet problem (1.1), (1.2)
then (u, p) ∈ W 1,q

loc (Ω,R3) × Lq
loc(Ω) is a solution of this problem in the sense of

traces. (See [79, Lemma 2].)

3. Spaces of functions

Let Ω ⊂ R3 be an open set, k ∈ N0, 1 < p < ∞. We denote the Sobolev space
W k,p(Ω) = {u ∈ Lp(Ω); ∂βu ∈ Lp(Ω) for |β| ≤ k}. If s = k + λ with 0 < λ < 1
denote by W s,p(Ω) the space of all u ∈W k,p(Ω) such that∑

|β|=k

∫
Ω

∫
Ω

|∂βu(x)− ∂βu(y)|p

|x− y|3+pλ
dx dy <∞.

If s ≥ 0 denote by W̊ s,p(Ω) the closure of C∞c (Ω) (the space of infinitely differen-
tiable functions with compact support in Ω) in W s,p(Ω) and by W−s,p(Ω) the dual
space of W̊ s,p/(p−1)(Ω). If t > τ then W t,p(Ω) ⊂W τ,p(Ω).

If s ∈ R1 and 1 < p, q < ∞, denote by Bp,q
s (R3) the Besov space. (For the

definition see for example [107].) If k ∈ N0, s = k + λ with 0 < λ < 1 then
u ∈ Bp,q

s (R3) if u ∈W k,p(R3) and

∑
|β|=k

∫ ∞

0

(∫
R3

∫
{y∈R3;|x−y|<t}

|∂βu(x)− ∂βu(y)|p

t3
dy dx

)q/p
dt

tλq+1
<∞.

By Bp,q
s (Ω) we denote the space of restrictions of functions from Bp,q

s (R3) onto Ω.
The norm on Bp,q

s (Ω) is defined by

‖u‖Bp,q
s (Ω) = inf{‖f‖Bp,q

s (R3); f = u on Ω}.

If s > t then Bp,q
s (Ω) ⊂ Bp,q

t (Ω). If Ω has compact Lipschitz boundary and s is not
integer then Bp,p

s (Ω) = W s,p(Ω).
For γ ∈ R1 define

ργ(x) = (1 + |x|2)γ/2.

We define the weighted Besov space Bp,q
s (Ω; ργ) as the set of tempered distributions

w such that ργw ∈ Bp,q
s (Ω). The space Bp,q

s (Ω; ργ) equipped with the norm

‖w‖Bp,q
s (Ω;ργ) := ‖ργw‖Bp,q

s (Ω)

is a Banach space (see [14, §4.2.2, pp. 156–160]). If Ω is bounded then Bp,q
s (Ω; ργ) =

Bp,q
s (Ω) and both norms are equivalent.
We denote the homogeneous Sobolev space Dk,p(Ω) = {u ∈ L1

loc(Ω); ∂βu ∈
Lp(Ω) for |β| = k}. Then Dk,p(Ω) ⊂W k.p

loc (Ω). Let Ω be a domain. Fix a bounded
open set G such that G ⊂ Ω. Then Dk,p(Ω) is a Banach space with the norm

‖u‖Dk,p(Ω) = ‖u‖Lp(G) + ‖ |∇ku| ‖Lp(Ω).

Moreover, different choices of G give equivalent norms. (See [74], §1.5.3, Corol-
lary 2.) If Ω is a bounded domain with Lipschitz boundary thenDk,p(Ω) = W k,p(Ω)
and the corresponding norms are equivalent. (See [74, §1.5.2–§1.5.4].)
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4. Green’s formula

Lemma 4.1. Let Ω ⊂ R3 be a bounded open set with Lipschitz boundary, Φ,u ∈
W 2,2(Ω,R3), p ∈ W 1,2(Ω), h ∈ L∞(∂Ω), f ∈ L2(∂Ω,R3). If (u, p) is a solution of
the Robin problem (1.1), (1.3) (in the sense of traces) then∫

∂Ω

f ·Φ dσ −
∫

∂Ω

hu ·Φ dσ

=
∫

Ω

{Φ · [ω × u− 1
2
(ω × x) · ∇u] + 2∇̂u · ∇̂Φ− p∇ ·Φ + u · 1

2
[(ω × x) · ∇Φ]} dx,

(4.1)
∫

∂Ω

f · u dσ = 2
∫

Ω

|∇̂u|2 dx +
∫

∂Ω

h|u|2 dσ.

Proof. If h ≡ 0 then the Green formula and (1.1) give∫
∂Ω

f ·Φ dσ =
∫

Ω

{Φ·[∆u−∇p+1
2
(ω×x)·∇u]+2∇̂u·∇̂Φ−p∇·Φ+u·1

2
[(ω×x)·∇Φ]} dx

=
∫

Ω

{Φ · [ω × u− 1
2
(ω × x) · ∇u] + 2∇̂u · ∇̂Φ− p∇ ·Φ + u · 1

2
[(ω × x) · ∇Φ]} dx.

Since u · (ω × u) = 0, ∇ · u = 0, we obtain (4.1). �

Corollary 4.2. Let Ω ⊂ R3 be a bounded open set with Lipschitz boundary, 1 <
q < ∞, q′ = q/(q − 1). Let h ∈ L∞(∂Ω), f ∈ Lq(∂Ω,R3), (u, p) be an Lq-solution
of the Robin problem (1.1), (1.3). If Mβ(u) ∈ Lq′(∂Ω) then the equality (4.1) holds.

Proof. Let Ωj be the sequence of sets from Lemma 14.1. According to Lemma 4.1∫
∂Ωj

u ·
{
T (u, p)n +

1
2
[(ω × x) · n]u

}
dσ = 2

∫
Ωj

|∇̂u|2 dx.

Letting j →∞ we obtain (4.1) by the Lebesgue lemma. �

5. Liouville’s theorem

Lemma 5.1. Let ω ∈ R3 and u = (u1, u2, u3), p be tempered distributions in R3

satisfying the equations (1.1) in R3. Then uj, p are polynomials.

(See [1, p. 614].)

6. Solutions in the whole space

Lemma 6.1. Let 3/2 < q <∞, ω = (0, 0, a) ∈ R3 \ {0} and let f ∈ Lq(R3,R3). If
g ∈ C∞(R3) has compact support then there exists a solution (u, p) ∈ D2,q(R3,R3)×
D1,q(R3) of

(6.1) ∆u− (ω × x) · ∇u + ω × u +∇p = f , ∇ · u = g in R3.

Proof. Denote h∆(x) = [4π|x|]−1 the fundamental solution of the Laplace equation,
i.e. −∆h∆ = δ0 in the sense of distributions. Put v = ∇(h∆ ∗ g), where ∗ denotes
the convolution. Then v ∈ C∞(R3,R3) and ∇ · v = ∆(h∆ ∗ g) = −g. If β is a
multiindex then ∂βv(x) = O(|x|−2−|β|) as |x| → ∞. So, ∂βv ∈ Lq(R3,R3). Put
f̃ = f + ∆v − (ω × x) · ∇v + ω × v. According to [17, Theorem 4] there exists a
solution (w, p) ∈ D2,q(R3,R3)×D1,q(R3) of

∆w − (ω × x) · ∇w + ω ×w +∇p = f̃ , ∇ ·w = 0 in R3.

Put u = w − v. Then u, p satisfy the proposition of the Lemma. �



6 DAGMAR MEDKOVÁ

7. Solution of the Dirichlet problem in Sobolev spaces

Lemma 7.1. Let Ω ⊂ R3 be open, ω ∈ R3 and u = (u1, u2, u3), p solve (1.1) in Ω
in the sense of distributions. Then uj , p ∈ C∞(Ω) and ∆p = 0 in Ω.

.

Proof. Since ∇ · u = 0 we obtain

∆p = ∇ · ∇p = ∇ · {∆u + [ω × x] · ∇u− ω × u} = 0

in the sense of distributions. So, p ∈ C∞(Ω) by [27, Appendix B,Theorem B.6]. Fix
bounded domains Ω1, Ω2 such that Ω1 ⊂ Ω2, Ω2 ⊂ Ω. According to [12, Satz 9.11]
and [13, Chapter VI, §6, Theorem 2] there exist a nonnegative integer k and finite
real measures µjβ with compact support in Ω such that

uj =
∑
|β|≤k

∂βµjβ in Ω2.

Since W k+2,2(Ω2) ↪→ Ck(Ω2) by the Sobolev imbedding theorem, we see that u ∈
W−k−2,2(Ω2,R3). Since ∆u− (ω × x) · ∇u + ω × u ∈ W t,2(Ω2,R3) for all t ∈ R1,
[77, Theorem 6.4] gives that u ∈W t+2,2(Ω1,R3) for all t ∈ R1. So, u ∈ C∞(Ω1,R3)
by the Sobolev imbedding theorem. �

Proposition 7.2. Let Ω ⊂ R3 be a bounded domain with Lipschitz boundary,
a ∈ R1, ω = (0, 0, a).

• If f ∈ W−1,2(Ω,R3), g ∈ W 1/2,2(∂Ω,R3), h ∈ L2(Ω), g and h satisfy the
compatibility condition

(7.1)
∫

Ω

h dx +
∫

∂Ω

g · nΩ dσ = 0,

then there exists (u, p) ∈W 1,2(Ω,R3)× L2(Ω) such that

(7.2) −∆u− [ω×x] · ∇u+ω×u+∇p = f , ∇ ·u = h in Ω, u = g on ∂Ω.

p is unique up to an additive constant, u is unique. Moreover,

‖u‖W 1,2(Ω) ≤ C
(
‖f‖W−1,2(Ω) + ‖h‖L2(Ω) + ‖g‖W 1/2,2(∂Ω)

)
where C depends only on Ω.

• If k ∈ N0, ∂Ω is of class Ck+1, 1 < q < ∞, f ∈ W k−1,q(Ω,R3), g ∈
W k+1−1/q,q(∂Ω,R3), h ∈ W k,q(Ω) satisfy the compatibility condition(7.1),
then there exists a solution (u, p) ∈ W k+1,q(Ω,R3) × W k,q(Ω) of (7.2).
Here p is unique up to an additive constant, u is unique and

‖u‖W k+1,q(Ω) ≤ C
(
‖f‖W k−1,q(Ω) + ‖h‖W k,q(Ω) + ‖g‖W k+1−1/q,q(∂Ω)

)
where C depends only on Ω, k and q.

Proof. The Divergence theorem gives that (7.1) is a necessary condition for the
solvability of the problem (7.2).

Let now [u, p] ∈ W 1,2(Ω,R3) × L2(Ω) be a solution of the problem (7.2) with
f ≡ 0, h ≡ 0, g ≡ 0. Since u ∈ W̊ 1,2(Ω,R3), there exists a sequence of functions
Φj ∈ C∞(Ω,R3) with compact support in Ω such that Φj → u in W 1,2(Ω,R3).
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Choose open sets Ω(j) with smooth boundary such that Φj is supported in Ω(j)
and Ω(j) ⊂ Ω. According to Lemma 7.1 and Lemma 4.1

0 = lim
j→∞

∫
∂Ω(j)

Φj{T (u, p)n +
1
2
[(ω × x) · n]u} dσ = lim

j→∞

∫
Ω(j)

{Φj · [ω × u

−1
2
(ω×x) · ∇u] + 2∇̂u · ∇̂Φj − p∇ ·Φj +u · 1

2
[(ω×x) · ∇Φj ]} dx =

∫
Ω

2|∇̂u|2 dx.

Since ∇̂u ≡ 0, the function u is linear by [80, Lemma 3.1]. Since u = 0 on ∂Ω, the
maximum principle for the Laplace equation gives that u ≡ 0. Therefore ∇p ≡ 0
and p is constant.

Denote the space of [f , h,g] ∈ W l−1,q(Ω,R3) ×W l,q(Ω) ×W l+1−1/q,q(∂Ω,R3)
satisfying (7.1) by Yl,q,

Xl,q = {[u, p] ∈W l+1,q(Ω,R3)×W l,q(Ω);
∫

Ω

p dx = 0},

Ua(u, p) = [−∆u− (ω × x) · ∇u + ω × u +∇p,∇ · u,u|∂Ω].

Then U0 : X0,2 → Y0,2 is an isomorphism by [35, Theorem 2.1]. Since Ua − U0 :
Xl,q → Yl,q is a compact operator by [102, Lemma 18.4], the operator Ua : X0,2 →
Y0,2 is Fredholm with index 0. If [u, p] ∈ X0,2, Ua[u, p] = 0 then u ≡ 0, p is
constant.

∫
Ω
p dx = 0 gives that p ≡ 0. So, Ua : X0,2 → Y0,2 is an isomorphism.

Suppose that ∂Ω is of class Ck+1. Then U0 : Xk,q → Yk,q is an isomorphism by
[34, Theorem 2.1] and [35, Theorem 2.1]. Since Ua−U0 is compact, Ua : Xk,q → Yk,q

is a Fredholm operator with index 0. Since Ua : X0,2 → Y0,2 is an isomorphism,
[92, Lemma 11.9.21] gives that Ua : Xk,q → Yk,q is an isomorphism.

Since Ua : Xk,q → Yk,q is an isomorphism, Ua : W k+1,q(Ω,R3) ×W k,q(Ω) →
W k−1,q(Ω,R3)×W k,q(Ω)×W k+1−1/q,q(∂Ω,R3) is a Fredholm operator with index
0. Since Ua : W 1,2(Ω,R3)×L2(Ω) →W−1,2(Ω,R3)×L2(Ω)×W 1/2,2(∂Ω,R3) is also
a Fredholm operator with index 0, [92, Lemma 11.9.21] gives that the kernel of Ua on
W k+1,q(Ω,R3)×W k,q(Ω) is the same like the kernel of Ua on W 1,2(Ω,R3)×L2(Ω).
So, if (u, p) and (w, π) are two solutions of (7.2) in W k+1,q(Ω,R3)×W k,q(Ω) then
u = w and p− π is constant. �

Corollary 7.3. Let Ω ⊂ R3 be a bounded domain with boundary of class Ck+1,
k ∈ N. Let a ∈ R1, ω ∈ (0, 0, a), 1 < q, r <∞.

• If 1 ≤ s ≤ k + 1 then there exists a solution (u, p) ∈ W s,q(Ω,R3) ×
W s−1,q(Ω) of the Dirichlet problem (7.2) if and only if f ∈W s−2,q(Ω,R3),
h ∈W s−1,q(Ω), g ∈W s−1/q,q(∂Ω,R3) and (7.1) holds.

• If 1 < s < k+1 then there exists a solution (u, p) ∈ Bq,r
s (Ω,R3)×Bq,r

s−1(Ω)
of the Dirichlet problem (7.2) if and only if f ∈ Bq,r

s−2(Ω,R3), h ∈ Bq,r
s−1(Ω),

g ∈ Bq,r
s−1/q(∂Ω,R3) and (7.1) holds.

Proof. Define

U(u, p) = [−∆u− (ω × x) · ∇u + ω × u +∇p,∇ · u,u|∂Ω].

If s > 1, (u, p) ∈ Bq,r
s (Ω,R3) × Bq,r

s−1(Ω) and U(u, p) = 0, then u ≡ 0 and p is
constant by Proposition 7.2, because Bq,r

s (Ω,R3)×Bq,r
s−1(Ω) ⊂W 1,q(Ω,R3)×Lq(Ω).
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Denote the space of [f , h,g] ∈W t−2,q(Ω,R3)×W t−1,q(Ω)×W t−1/q,q(∂Ω,R3) sat-
isfying (7.1) by Y q

t , the space of [f , h,g] ∈ Bq,r
t−2(Ω,R3)×Bq,r

t−1(Ω)×Bq,r
t−1/q(∂Ω,R3)

satisfying (7.1) by Y q,r
t ,

Xq
t = {[u, p] ∈W t,q(Ω,R3)×W t−1,q(Ω);

∫
Ω

p dx = 0},

Xq,r
t = {[u, p] ∈ Bq,r

t (Ω,R3)×Bq,r
t−1(Ω);

∫
Ω

p dx = 0}.

If t > 1 then U(Bq,r
t (Ω,R3) × Bq,r

t−1(Ω)) ⊂ Y q,r
t by the Divergence theorem. If we

denote by ( , )θ,r the real interpolation, then

(Xq
1 , X

q
k+1)θ,r = Xq,r

t+1, (Y q
1 , Y

q
k+1)θ,r = Y q,r

t+1

for 0 < θ < 1, t = θk by [106, Theorem 2.13], [105, §3.3.6, Proposition] and [104,
§1.17.1, Theorem 1]. Proposition 7.2 gives that U : Xq

1 → Y q
1 and U : Xq

k+1 → Y q
k+1

are isomorphisms. So, U : Xq,r
s → Y q,r

s is an isomorphism for 1 < s < k + 1. (See
[102, Lemma 22.3].) The rest is a consequence of the fact that W t,q(Ω) = Bp,p

t (Ω),
W t,q(∂Ω) = Bp,p

t (∂Ω) for non-integer t. (See [10, Theorem 6.7].) �

8. Fundamental solution

Let a ∈ R1, ω = (0, 0, a). Let Za(x,y) = {Za
ij(x,y)}i≤3,j≤4 and Qa(x,y) =

(Qa
1(x,y), . . . , Qa

4(x,y)) be matrix functions. Denote Za
j = (Za

1j , Z
a
2j , Z

a
3j). We say

that (Za, Qa) is a fundamental solution of the Stokes system with Coriolis term
(1.1) in R3 if for each y ∈ R3

(8.1a) −∆Za
j (x,y)− [ω × x] · ∇Za

j (x,y) + ω ×Za
j (x,y) +∇Qa

j (x,y) = ejδy(x),

(8.1b)
3∑

k=1

∇ · Za
j (x,y) = δj4δy(x).

Here δy is the unit mass concentrated at the point y, ej = (δ1j , δ2j , δ3j), and δij = 1
for i = j, δij = 0 otherwise. It is known that there exists a fundamental solution
of (1.1) such that for each y ∈ R3 one has

Za
ij(x,y) → 0, Qa

j (x,y) → 0 as |x| → ∞.

(See [22].) This fundamental solution is unique by Lemma 5.1. For a = 0, i.e. for
the Stokes system

Z0
ij(x,y) = δij

1
8π|x− y|

+
(xi − yi)(xj − yj)

8π|x− y|3
, i, j ≤ 3,

Z0
i4(x,y) = Q0

i (x,y) =
(xi − yi)

4π|x− y|3
, i ≤ 3,

Q0
4(x,y) = δy(x).

(See for example [108].) For i ≤ 3 clearly Q0
i (x,y) = −∂ih∆(x−y), where h∆(x) =

[4π|x|]−1 is the fundamental solution of the Laplace equation, i.e. −∆h∆ = δ0 in
the sense of distributions.

If a 6= 0 then Qa
i (x,y) = Q0

i (x,y) for i ≤ 3 by [22, Proposition 2.1]. Denote
Z̃a(x,y) = {Za

ij(x,y)}i,j≤3. According to [22, Proposition 2.1]

Z̃a(x,y) = Γ0(x,y) + Γ1(x,y),
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where

Γ0(x,y) =

∞∫
0

O(at)T (4πt)−3/2 exp(−|O(at)x− y|2/(4t)) dt,

Γ1(x,y) =

∞∫
0

(4πs)−3/2

s∫
0

{exp[−|O(at)x− y|2/(4s)]}

·
{

[x−O(at)T y]× [O(at)x− y]
4s2

− 1
2s
O(at)T

}
dt ds,

O(t) =

 cos t, − sin t, 0
sin t, cos t, 0

0, 0, 1

 .

Easy calculation yields

Za
i4(x,y) = Q0

i (x,y) =
(xi − yi)

4π|x− y|3
, i ≤ 3,

Qa
4(x,y) = δy(x)− [ω × x] · ∇h∆(x− y).

It was shown in [22] that there exists a positive constant C such that

(8.2) |Z̃a(x,y)| ≤ C

|x|
, |∇xZ̃

a(x,y)| ≤ C

|x|2
for |x| ≥ 2|y|.

Moreover,

(8.3) [Z̃a(x,y)]T = Z̃−a(y,x).

Lemma 8.1. Let a ∈ R1, and α, β be multiindices. Then there exists a constant
C such that

|∂α
x∂

β
y Z̃

a(x,y)| ≤ C|x|−1−|α|−|β| for |x| ≥ 2|y|.

Proof. The proof is the same like the proof of (8.2) in [22]. If |x| ≥ 2|y| then
exp[−|O(at)x−y|2/(4s)] ≤ exp[−|x|2/(16s)]. From this together with the equality∫ ∞

0

s−m/2 exp[−t|x|2/s] ds =
c−m/2+1γ(m/2− 1)

|x|m−2
, m > 2, c > 0

(where γ(·) denotes the gamma function), it follows

|∂α
x∂

β
y Γ̃1(x,y)| ≤ C|x|−1−|α|−|β|.

Similarly for Γ0. �

Proposition 8.2. Let a ∈ R1, R ∈ (0,∞). Then Za
ij(·,y) ∈ C∞(R3 \ {y}) and

there exists a positive constant C such that

|Z̃a(x,y)− Z̃0(x,y)| ≤ C, |∇xZ̃
a(x,y)−∇xZ̃

0(x,y)| ≤ C|x− y|−1,

for x,y ∈ B(0;R) where B(z; r) = {x ∈ R3; |x− z| < r}.

Proof. Lemma 7.1 gives that Za
ij(·,y) ∈ C∞(R3 \ {y}).

If z ∈ R3 then there exists a matrix function Ez(x) of the type 3× 3 such that
Ez

ij ∈ C∞(R3 \ {0}) and

−∆Ez
ij(x)− z · ∇Ez

ij(x) + ∂iQ
0
j (x, 0) = δijδ0(x),



10 DAGMAR MEDKOVÁ

3∑
k=1

∂kE
z
kj(x) = 0,

Ez
kj(x) → 0 as |x| → ∞.

(For the explicit prescription of Ez see [29] or [94].) According to [29] there exists
a constant C1 such that

(8.4) |Ez(x)− Z̃0(x, 0)| ≤ C1, |∇Ez(x)−∇Z̃0(x, 0)| ≤ C1|x|−1

for all x, z ∈ B(0; 10R).
Fix y ∈ B(0;R). Denote Ez

j = (Ez
1j , E

z
2j , E

z
3j). Clearly

(8.5) ∇x · [Za
j (x,y)− Eω×y

j (x− y)] = 0.

Since

0 = −∆xZ
a
j (x,y)− [ω × x] · ∇xZ

a
j (x,y) + ω × Za

j (x,y) +∇xQ
0
j (x,y)

−[−∆xE
ω×y
j (x− y)− [ω × y] · ∇xE

ω×y
j (x− y) +∇xQ

0
j (x,y)]

we have

−∆x[Za
j (x,y)− Eω×y

j (x− y)]− [ω × x] · ∇x[Za
j (x,y)(8.6)

−Eω×y
j (x− y)] + ω × [Za

j (x,y)− Eω×y
j (x− y)]

= [ω × (y − x)] · ∇xE
ω×y
j (x− y)− ω × Eω×y

j (x− y).

Choose ψ ∈ C∞(R3) supported in B(0; 4R) such that ψ = 1 in B(0; 3R). Fix
j ∈ {1, 2, 3} and define

v(x) = ψ(x)[Za
j (x,y)− Eω×y

j (x− y)],

f = −∆v − [ω × x] · ∇v + ω × v, g = ∇ · v.
Then v, f and g are supported in B(0; 4R) and g ∈ C∞(R3). According to (8.5),
(8.6), (8.2) and (8.4)

(8.7) |g|+ |∇g| ≤ C2, |f(x)|+ |∇2g(x)| ≤ C2|x−y|−1, |∇f(x)| ≤ C2|x−y|−2

where C2 does not depend on y. According to Lemma 6.1 there exists a solution
(u, p) ∈W 2,2

loc (R3,R3)×W 1,2
loc (R3) of (6.1) such that |∇p| ∈ L2(R3), |∇2u| ∈ L2(R3).

Since p, vj and uj are tempered distributions and (u − v, p) is a solution of the
homogeneous Stokes system with Coriolis term, Lemma 5.1 yields that vj − uj are
polynomials. Therefore v ∈W 2,2(R3,R3).

Define p ≡ 0. Then (v, p) ∈ W 2,2(B(0; 4R); R3) ×W 1,2(B(0; 4R)) is a solution
of

−∆v − [ω × x] · ∇v + ω × v +∇p = f , ∇ · v = g in B(0; 4R),
v = 0 on ∂B(0; 4R).

Proposition 7.2 and (8.7) give

(8.8) ‖v‖W 2,2(B(0;4R)) ≤ C3,

where C3 depends only on R. Sobolev’s imbedding theorem forces |v| ≤ C4 on
B(0; 4R) where C4 depends only on R. This and (8.4) gives |Z̃a(x,y)− Z̃0(x,y)| ≤
C5 for x ∈ B(0;R), where C5 does not depend on y.

Fix i, k ∈ {1, 2, 3} and define ṽ(x) = (xk − yk)∂iv(x). Then (ṽ, p) is a solution
of

−∆ṽ − [ω × x] · ∇ṽ + ω × ṽ +∇p = f̃ , ∇ · ṽ = g̃ in B(0; 4R)
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ṽ = 0 on ∂B(0; 4R)

in W 1,2(B(0; 4R); R3)× L2(B(0; 4R)). We now estimate g̃ and f̃ . Since

g̃ = (xk − yk)∂ig + ∂ivk ∈W 1,2(B(0; 4R)),

(8.8) and (8.7) give

(8.9) ‖g̃‖W 1,2(B(0;4R)) ≤ C6,

where C6 does not depend on y. Since

f̃ = (xk − yk){∂if + [∂i(ω × x)] · ∇v} − (ω × x) · (δ1k, δ2k, δ3k)∂iv − 2∂k∂iv,

(8.8) and (8.7) give

(8.10) ‖f̃‖L2(B(0;4R);R3) ≤ C7,

where C7 does not depend on y. Proposition 7.2, (8.10) and (8.9) give that ṽ ∈
W 2,2(B(0; 4R),R3) and

‖ṽ‖W 2,2(B(0;4R)) ≤ C8,

where C8 depends only on R. Sobolev’s imbedding theorem forces |ṽ| ≤ C9 on
B(0; 4R) where C9 depends only onR. This and (8.4) give that |x−y||∇x(Z̃a(x,y)−
Z̃0(x,y))| ≤ C10, where C10 depends only on R. �

Corollary 8.3. Let a ∈ R1. Denote G = {[x,y] ∈ R3 × R3;x 6= y}. Then
Za

ij ∈ C∞(G).

Proof. We can suppose that i, j ≤ 3. We prove by the induction that Za
ij ∈

W
k,4/3
loc (G) for each k ∈ N. For k = 1 this is a consequence of Proposition 8.2

and the explicit formula for Z0.
Let now k ∈ N and Za

rs ∈W
k,4/3
loc (G) for all r, s. According to (8.1a)

(8.11) ∆xZ̃
a
ij(x,y) + b(x) · ∇xZ̃

a
ij(x,y) +AZ̃a(x,y) = φ(x,y),

where A is a matrix of the type 3 × 3, b ∈ C∞(R3,R3) and φ ∈ C∞(G). Since
Z̃a(x,y) = Z̃−a(y,x)T by (8.3), we have

(8.12) ∆yZ̃
a
ij(x,y) + b̃(y) · ∇yZ̃

a
ij(x,y) + ÃZ̃a(x,y) = φ̃(x,y),

where Ã is a matrix of the type 3 × 3, b̃ ∈ C∞(R3,R3) and φ̃ ∈ C∞(G). Adding
(8.11) and (8.12) we obtain

(8.13) ∆Z̃a
ij(x,y) = B(x,y) · ∇Z̃a

ij(x,y)− (A+ Ã)Z̃a(x,y) + Φ(x,y),

where B ∈ C∞(R3,R6) and Φ ∈ C∞(G). Since the right side of (8.13) is in
W

k−1,4/3
loc (G), [68, Chapter 2, Théorème 3.2] gives that Za

ij = Z̃a
ij ∈W

k+1,4/3
loc (G).

Since Za
ij ∈ W

k,4/3
loc (G) for each k ∈ N, the Sobolev imbedding theorem gives

that Za
ij ∈ C∞(G). �



12 DAGMAR MEDKOVÁ

9. Single layer potential

Let Ω ⊂ R3 be an open set with compact Lipschitz boundary. Let 1 < q < ∞,
Φ ∈ Lq(∂Ω,R3). We define the velocity part of the single layer potential with
density Φ by

Za
ΩΦ(x) =

∫
∂Ω

Z̃a(x,y)Φ(y) dσ(y),

the pressure part of the single layer potential with density Φ by

QΩΦ(x) =
∫

∂Ω

Q̃(x,y)Φ(y) dσ(y),

where Q̃ = (Q1, Q2, Q3).
If x ∈ ∂Ω and there exists the outward unit normal nΩ(x) of Ω at x then we

define

K̃a
Ω(x,y) = Tx(Z̃a(x,y), Q̃(x,y))nΩ(x) +

1
2
[(ω × x) · nΩ(x)]Z̃a(x,y)

for y ∈ R3 \ {x}. Define the following integral whenever it makes sense

K̃a
ΩΦ(x) = lim

ε↓0

∫
∂Ω\B(x;r)

K̃a
Ω(x,y)Φ(y) dσ(y).

Theorem 9.1. Let Ω ⊂ R3 be an open set with compact Lipschitz boundary, a ∈ R1,
ω = (0, 0, a), 1 < q < ∞. Denote by [u(x)]+ the nontangential limit of u with
respect to Ω at x, and by [u(x)]− the nontangential limit of u with respect to R3 \Ω
at x.

i) If Φ ∈ Lq(∂Ω,R3) then (Za
ΩΦ, QΩΦ) ∈ C∞(R3 \ ∂Ω,R4) is a solution of

(1.1) in R3 \ ∂Ω.
ii) There exists a constant C such that

Mβ(Za
ΩΦ) +Mβ(∇Za

ΩΦ) +Mβ(QΩΦ) ≤ C‖Φ‖Lq(∂Ω)

for all Φ ∈ Lq(∂Ω,R3).
iii) If Φ ∈ Lq(∂Ω,R3) then Za

ΩΦ(x) is finite for almost all x ∈ ∂Ω. De-
note by Za

ΩΦ the restriction of Za
ΩΦ onto ∂Ω. Then Za

Ω : Lq(∂Ω,R3) →
W 1,q(∂Ω,R3) is a bounded linear operator and Za

Ω − Z0
Ω : Lq(∂Ω,R3) →

W 1,q(∂Ω,R3) is a compact operator.
iv) If Φ ∈ Lq(∂Ω,R3) then Za

ΩΦ(x) = [Za
ΩΦ(x)]+ = [Za

ΩΦ(x)]− for almost all
x ∈ ∂Ω.

v) If Φ ∈ Lq(∂Ω,R3) then there exists a finite non-tangential limit of ∇Za
ΩΦ

at almost all x ∈ ∂Ω.
vi) If Φ ∈ Lq(∂Ω,R3) then there exists a finite non-tangential limit of QΩΦ at

almost all x ∈ ∂Ω.
vii) K̃a

Ω is a bounded linear operator on Lq(∂Ω; R3); K̃a
Ω − K̃0

Ω is a compact
operator on Lq(∂Ω; R3). If ∂Ω is of class C1 then K̃a

Ω is a compact operator
on Lq(∂Ω; R3).

viii) If Φ ∈ Lq(∂Ω,R3) then

[Tx(Za
ΩΦ, QΩΦ)nΩ(x) +

1
2
(ω × x) · nΩ(x)Za

ΩΦ]± = ±1
2
Φ(x) + K̃a

ΩΦ(x)

for almost all x ∈ ∂Ω.
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ix) If Φ ∈ Lq(∂Ω,R3) and α is a multiindex then

|∂αZa
ΩΦ(x)| = O(|x|−1−|α|), |∂αQa

ΩΦ(x)| = O(|x|−2−|α|) as |x| → ∞.

Proof. Z̃a ∈ C∞(R3 × R3 \ {[x,,x];x ∈ R3}) by Corollary 8.3. So, (Za
ΩΦ, QΩΦ) ∈

C∞(R3 \ ∂Ω,R4). The definition of a fundamental solution gives that (Za
ΩΦ, QΩΦ)

is a solution of (1.1) in R3 \ ∂Ω.
ix) is a consequence of Lemma 8.1 and the explicit formula for Qa.
If a = 0 then ii) holds true by [92, Proposition 4.2.3]; iii) is [92, Corollary

4.2.4]; iv) is in [92, Corollary 4.3.2]; v) follows from [92, Proposition 4.2.1]; viii)
is in [92, Corollary 4.3.2]. The operator K̃0

Ω is bounded on Lq(∂Ω; R3) by [92,
Corollary 4.2.4]. If ∂Ω is of class C1 then the adjoint operator [K̃0

Ω]′ is compact on
Lq/(q−1)(∂Ω; R3) by [73, p. 232], and thus K̃0

Ω is compact on Lq(∂Ω; R3).
vi) is a consequence of [81, Lemma 3.2], [37] and [38, Theorem 1].
Denote

Ra
0(x,y) = Za(x,y)−Z0(x,y), Ra

j (x,y) =
∂[Za(x,y)− Z0(x,y)]

∂xj
, j = 1, . . . ,m,

Ra
kΦ(x) =

∫
∂Ω

Ra
k(x,y)Φ(y) dσ(y) k = 0, . . . ,m.

The estimates of Ra
k in (8.3) and in Proposition 8.2, and [84, Proposition 1] give

that there exists a constant C1 such that for all Φ ∈ Lq(∂Ω,R3) and k = 0, . . . ,m

‖Mβ(Ra
kΦ)‖Lq(∂Ω) ≤ C1‖Φ‖Lq(∂Ω),

Ra
kΦ is finite almost everywhere on ∂Ω, Ra

kΦ(x) is the non-tangential limit of Ra
kΦ

at x for almost all x ∈ ∂Ω and ‖Ra
kΦ‖Lq(∂Ω) ≤ C1‖Φ‖Lq(∂Ω). So, ii), iv), v), viii)

hold. These reasoning and estimates of Ra
k in Proposition 8.2 give iii). (See [60,

Chapter II, Theorem 8.1 and Theorem 8.6].)
The estimates of Ra

k in (8.3) and in Proposition 8.2 give that there exists a
constant C2 such that

|K̃a
Ω(x,y)− K̃0

Ω(x,y)| ≤ C2|x− y|−1 ∀x,y ∈ ∂Ω.

[91, Lemma 3.4] gives that K̃a
Ω − K̃0

Ω is a compact operator on Lq(∂Ω; R3). �

Proposition 9.2. Let Ω ⊂ R3 be an open set with compact Lipschitz boundary,
a ∈ R1, 1 < q <∞, 0 < r <∞. Denote G := Ω ∩B(0; r). Then

Za
Ω : Lq(∂Ω,R3) → B

q,max(q,2)
1+1/q (G; R3), QΩ : Lq(∂Ω,R3) → B

q,max(q,2)
1/q (G)

are bounded linear operators.

Proof. We can suppose that Ω is bounded and G = Ω.
For a = 0 see [90, Proposition 3.3] or [90, Theorem 3.1].
Let Φ ∈ Lq(∂Ω,R3). Since Mβ(Za

ΩΦ) +Mβ(∇Za
ΩΦ) ∈ Lq(∂Ω) by Theorem 9.1,

[112, Lemma 3.3] gives that Za
ΩΦ ∈ W 1,q(Ω; R3). Define f = [ω × x] · ∇Za

ΩΦ −
ω × Za

ΩΦ in Ω, f = 0 elsewhere, where ω = (0, 0, a). Then f ∈ Lq(R3,R3). Let
Ω(k) be a sequence of sets from Lemma 14.1. Since (Za

ΩΦ, QΩΦ) ∈ C∞(Ω,R4) by
Theorem 9.1 and

−∆Za
ΩΦ +∇QΩΦ = f , ∇ · Za

ΩΦ = 0 in Ω,
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[65, Chapter 3, §2] gives

Za
ΩΦ(x) =

∫
Ω(k)

Z0(x,y)f(y) dy + Z0
Ω(k)T (Za

ΩΦ, QΩΦ)n+D0
Ω(k)Z

a
ΩΦ,

where D0
V g is the velocity part of the Stokes double layer potential corresponding

to a domain V and a velocity g. Letting k → ∞ we get by Theorem 9.1 and
Lebesgue’s lemma

Za
ΩΦ(x) =

∫
R3
Z0(x,y)f(y) dy + Z0

Ω[T (Za
ΩΦ, QΩΦ)n] +D0

Ω(Za
ΩΦ).

Since T (Za
ΩΦ, QΩΦ)n ∈ Lq(∂Ω,R3) by Theorem 9.1, one has Z0

Ω[T (Za
ΩΦ, QΩΦ)n] ∈

B
q,max(q,2)
1+1/q (Ω; R3).
[92, pp. 61–62] express ∂j [D0

Ωg]i for g ∈ W 1,q(∂Ω,R3) as a linear combination
of ∂l

∫
∂Ω
Z̃0

st(x,y)∂τbd
gk(y) dσ(y) and ∂l

∫
∂Ω
h∆(x− y)∂τbd

gk(y) dσ(y), where h∆

is a fundamental solution of the Laplace equation and the non-tangential deriva-
tive ∂τbd

gk = nb∂dgk − nd∂bgk. Since Za
ΩΦ ∈ W 1,q(∂Ω,R3) by Theorem 9.1, [41,

Theorem 2.2.13] and [86, Corollary 4.4] give D0
Ω(Za

ΩΦ) ∈ Bq,max(q,2)
1+1/q (Ω; R3).∫

R3 Z
0(x,y)f(y) dy ∈W 2,q(Ω,R3) by [29, §IV.2]. SinceW 2,q(Ω) ↪→ B

q,max(q,2)
1+1/q (Ω)

by [104, §4.6.1, Theorem], we infer that Za
ΩΦ ∈ B

q,max(q,2)
1+1/q (Ω; R3). Since Z̃a ∈

C∞({[x,y];x 6= y}), we infer that Za
Ω : Lq(∂Ω,R3) → B

q,max(q,2)
1+1/q (G; R3) is a

closed operator. So, the Closed graph theorem gives that Za
Ω : Lq(∂Ω,R3) →

B
q,max(q,2)
1+1/q (Ω; R3) is bounded. �

10. Double layer potential

The goal of this section is to define a double layer potential for the Stokes system
with Coriolis term such that the classical integral representation formula holds.
Then we study properties of a double layer potential.

If y ∈ ∂Ω and there exists the outward unit normal nΩ(y) of Ω at y then we
define

KΩ,a
i,j (x,y) =

1
2
(ω × y) · nΩ(y)Za

i,j(x,y)− 1
2

3∑
k=1

nΩ
k (y)

(∂Za
i,j(x,y)
∂yk

+
∂Za

i,k(x,y)
∂yj

)
− Za

i,4(x,y)nΩ
j (y),

ΠΩ,a
j (x,y) =

1
2
(ω × y) · nΩ(y)Qa

j (x,y)− 1
2

3∑
k=1

nΩ
k (y)

(∂Qa
j (x,y)
∂yk

+
∂Qa

k(x,y)
∂yj

)
−Qa

4(x,y)nΩ
j (y),

for ω = (0, 0, a), x ∈ R3 \ {y} and 1 ≤ i, j ≤ 3. Define the velocity part of the
double layer potential with density Φ ∈ Lq(∂Ω,R3) by

Da
ΩΦ(x) =

∫
∂Ω

KΩ,a(x,y)Φ(y) dσ(y), x ∈ R3 \ ∂Ω
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and the pressure part of the double layer potential with density Φ by

Πa
ΩΦ(x) =

∫
∂Ω

ΠΩ,a(x,y)Φ(y) dσ(y), x ∈ R3 \ ∂Ω.

(Remark that for a = 0 this definition agrees with the usual definition of a double
layer potential for the Stokes system - see [52], [92], [108].)

Define the following integral on ∂Ω whenever it makes sense

Ka
ΩΦ(x) = lim

ε↓0

∫
∂Ω\B(x;ε)

KΩ,a(x,y)Φ(y) dσ(y).

Theorem 10.1. Let Ω ⊂ R3 be an open set with compact Lipschitz boundary,
a ∈ R1, ω = (0, 0, a), 1 < q <∞.

i) If Φ ∈ Lq(∂Ω,R3) then (Da
ΩΦ,Πa

ΩΦ) ∈ C∞(R3 \ ∂Ω,R4) is a solution of
(1.1) in R3 \ ∂Ω.

ii) There exists a constant C such that

‖Mβ(Da
Ω)Φ)‖Lq(∂Ω) ≤ C2‖Φ‖Lq(∂Ω) ∀Φ ∈ Lq(∂Ω,R3).

iii) If Φ ∈ Lq(∂Ω,R3) then

[Da
ΩΦ(x)]± = ±1

2
Φ(x) +Ka

ΩΦ(x) for a.a. x ∈ ∂Ω.

iv) Ka
Ω is a bounded linear operator on Lq(∂Ω; R3); Ka

Ω − K0
Ω is a compact

operator on Lq(∂Ω; R3).
v) If Φ ∈ Lq(∂Ω,R3) and α is a multiindex then

|∂αDa
ΩΦ(x)| = O(|x|−1−|α|), |∂αΠa

ΩΦ(x)| = O(|x|−2−|α|) as |x| → ∞.

Proof. Za ∈ C∞(R3 × R3 \ {[x,,x];x ∈ R3}) by Corollary 8.3. So, (Da
ΩΦ,Πa

ΩΦ) ∈
C∞(R3 \ ∂Ω,R4). The definition of a fundamental solution gives that (Da

ΩΦ,Πa
ΩΦ)

is a solution of (1.1) in R3 \ ∂Ω.
K0

Ω is a bounded linear operator on Lq(∂Ω; R3) by [73, Corollary 3.3]. According
to (8.2) and Proposition 8.2 there exists a constant C1 such that

(10.1) |Ka,Ω(x,y)−K0,Ω(x,y)| ≤ C1|x− y|−1 ∀y ∈ ∂Ω,∀x ∈ R3.

So, Ka
Ω −K0

Ω is a compact operator on Lq(∂Ω; R3) by [91, Lemma 3.4].
If a = 0 then iii) follows from [73, Proposition 3.2], and ii) is in [92, Proposi-

tion 4.2.3].
(10.1) and [84, Proposition 1] give that there exists a constant C2 such that for

all Φ ∈ Lq(∂Ω,R3)

‖Mβ((Da
Ω −D0

Ω)Φ)‖Lq(∂Ω) ≤ C2‖Φ‖Lq(∂Ω),

and (Ka
Ω −K0

Ω)Φ(x) is the non-tangential limit of (Da
Ω −D0

Ω)Φ at x for almost all
x ∈ ∂Ω.

Lemma 8.1 gives |∂αDa
ΩΦ(x)| = O(|x|−1−|α|) as |x| → ∞.

Fix ρ > 0 such that ∂Ω ⊂ B(0; ρ). Easy calculation yields that there is a constant
C1 such that

|∂α{ω × x · [∇h∆(x− y)−∇h∆(x)]}| ≤ C1|x|−2−|α|, |x| ≥ ρ,y ∈ ∂Ω.

(Remember that h∆(x− y) = c|x− y|−1.) But ω × x · ∇h∆(x) = 0. This and the
explicit formula for Qa gives that there exists a constant C2 such that

|∂α
xΠΩ,a(x,y)| ≤ C2|x|−2−|α|, |x| ≥ ρ,y ∈ ∂Ω.
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So, |∂αΠa
ΩΦ(x)| = O(|x|−2−|α|) as |x| → ∞. �

11. Integral representation

Theorem 11.1. Let Ω ⊂ R3 be a bounded open set with Lipschitz boundary, a ∈ R1,
ω = (0, 0, a). Let u ∈ C∞(Ω,R3), p ∈ C∞(Ω),

−∆u− [ω × x] · ∇u + ω × u +∇p = F, ∇ · u = g in Ω,

T (u, p)n +
1
2
[(ω × x) · n]u = f on ∂Ω.

Then

(11.1) u(x) = Da
Ωu(x) + Za

Ωf(x) +
∫

Ω

Za(x,y)
(

F(y)
g(y)

)
dy,

(11.2) p(x) = Πa
Ωu(x) +QΩf(x) +

∫
Ω

Qa(x,y)
(

F(y)
g(y)

)
dy.

Proof. Suppose first that u and p have compact supports in Ω. Since Za, Qa is a
fundamental solution of (1.1) in R3, we obtain∫

Ω

Za(x,y)
(

F(y)
g(y)

)
dy = u(x),

∫
Ω

Qa(x,y)
(

F(y)
g(y)

)
dy = p(x).

Let now u = 0, p = 0 on a neighborhood of x. Denote Ža
j = (Za

j1, Z
a
j2, Z

a
j3).

Since Za
i4 = Qa

i for i ≤ 3 and Za, Qa are of class C∞ outside the diagonal by
Corollary 8.3, Green’s formula gives[

Za
Ωf(x) +

∫
Ω

Za(x,y)
(

F(y)
g(y)

)
dy
]

i

=
∫

Ω

{−u(y) · [∆yŽi(x,y)

+(ω × y) · ∇yŽ
a
i (x,y)− ω × Ža

i (x,y)−∇yQ
a
i (x,y)]− p(y)∇y · Ža

i (x,y)} dy

+
∫

∂Ω

{−1
2
[(ω × y) · nΩ(y)][Ža

i (x,y) · u(y)] + u(y) · ∇̂yŽ
a
i (x,y)nΩ(y)

+Qa
i (x,y)nΩ(y) · u(y)} dσ(y).

Since [Z̃a(x,y)]T = Z̃−a(y,x) we have ∇y · Ža
i (x,y) = 0, −∆yŽ

a
i (x,y) + [ω × y] ·

∇yŽ
a
i (x,y)− ω × Ža

i (x,y)−∇yQ
a
i (x,y) = 0 for y 6= x. Thus[

Za
Ωf(x) +

∫
Ω

Za(x,y)
(

F(y)
g(y)

)
dy
]

i

=
∫

∂Ω

{−1
2
[(ω×y) ·nΩ(y)][Ža

i (x,y) ·u(y)]

+u(y) · ∇̂yŽ
a
i (x,y)nΩ(y) +Qa

i (x,y)nΩ(y) · u(y)} dσ(y) = − [Da
Ωu(x)]i .

The relation (11.2) can be proved by the same way.
Let now u, p be general. For x ∈ Ω choose ϕ ∈ C∞(Ω) with compact support in

Ω such that ϕ = 1 on a neighborhood of x. We have proved the relations (11.1),
(11.2) for ϕu, ϕp and also for (1− ϕ)u, (1− ϕ)p. Adding we get (11.1), (11.2) for
u, p. �

Corollary 11.2. Let Ω ⊂ R3 be a bounded open set with Lipschitz boundary,
a ∈ R1, ω = (0, 0, a), 1 < q <∞, h ≡ 0. If (u, p) is an Lq-solution of the Neumann
problem (1.1), (1.3) then

(11.3) u(x) = Da
Ωu(x) + Za

Ωf(x), p(x) = Πa
Ωu(x) +QΩf(x).
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Proof. Let Ω(j) be sets from Lemma 14.1. Then Lemma 7.1 and Theorem 11.1 give

u(x) = Da
Ω(j)u(x) + Za

Ω(j)fj(x), p(x) = Πa
Ω(j)u(x) +QΩ(j)fj(x)

with fj := T (u, p)n + 1
2 [(ω × x) · n]u on ∂Ω(j). If j → ∞ then Lebesque’s lemma

gives (11.3). �

Proposition 11.3. Let Ω ⊂ R3 be an unbounded open set with compact Lipschitz
boundary, a ∈ R1, ω = (0, 0, a), 1 < q < ∞, h ≡ 0. If (u, p) is an Lq-solution of
the Neumann problem (1.1), (1.3) then there exist constants b, c such that

(11.4) u(x) = Da
Ωu(x) + Za

Ωf(x) + (0, 0, b), p(x) = Πa
Ωu(x) +QΩf(x) + c.

If α is a multiindex then

|∂α[u(x)− (0, 0, b)]| = O(|x|−1−|α|), |∂α[p(x)− c]| = O(|x|−2−|α|), |x| → ∞.

Proof. Fix r > 0 such that ∂Ω ⊂ B(0; r) and put G = Ω ∩ B(0; r). Define f(x) :=
T (u, p)n + 1

2 [(ω × x) · n]u(x) on ∂B(0; r). Then

(11.5) u(x) = Da
Gu(x) + Za

Gf(x), p(x) = Πa
Gu(x) +QGf(x) in G

by Corollary 11.2. Define

v(x) =
{
Da

Ωu(x) + Za
Ωf(x)− u(x), x ∈ Ω,

Da
B(0;r)u(x) + Za

B(0;r)f(x), x ∈ B(0; r),

ρ(x) =
{

Πa
Ωu(x) +Qa

Ωf(x)− p(x), x ∈ Ω,
Πa

B(0;r)u(x) +Qa
B(0;r)f(x), x ∈ B(0; r).

v and ρ are well defined by (11.5). Theorem 9.1 and Theorem 10.1 give that (v, ρ) is
a bounded solution of (1.1) in R3. So, (v, ρ) is constant by Lemma 5.1, i.e. ρ = −c,
v = (b1, b2,−b). Since (v, ρ) is a solution of (1.1), we obtain ω × (b1, b2,−b) = 0.
This gives b2 = 0 = b1.

If α is a multiindex then |∂α[u(x) − (0, 0, b)]| = O(|x|−1−|α|), |∂α[p(x) − c]| =
O(|x|−2−|α|) as |x| → ∞ by Theorem 9.1 and Theorem 10.1. �

Corollary 11.4. Let Ω ⊂ R3 be an open set with compact Lipschitz boundary,
a ∈ R1, 1 < q <∞. If Φ ∈ Lq(∂Ω) then Ka

ΩZa
ΩΦ = −Za

ΩK̃
a
ΩΦ.

Proof. Put u = Za
ΩΦ, p = Qa

ΩΦ in Ω. According to Theorem 9.1, Corollary 11.2
and Proposition 11.3

Za
ΩΦ = u = Da

ΩZa
ΩΦ + Za

Ω

(
1
2
I + K̃a

Ω

)
Φ.

Coming to ∂Ω we obtain by Theorem 9.1 and Theorem 10.1

Za
ΩΦ =

(
1
2
I +Ka

Ω

)
Za

ΩΦ + Za
Ω

(
1
2
I + K̃a

Ω

)
Φ.

This gives Ka
ΩZa

ΩΦ = −Za
ΩK̃

a
ΩΦ. �

Corollary 11.5. Let Ω ⊂ R3 be a bounded open set with Lipschitz boundary,
a ∈ R1. Then Za

ΩnΩ ≡ 0, and QΩnΩ = −1 in Ω, QΩnΩ = 0 in R3 \ Ω.
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Proof. QΩnΩ = −1 in Ω, QΩnΩ = 0 in R3 \ Ω by [80] and [82, Corollary 6.2].
Define u := 0, p = 1. Then T (u, p)n+ 1

2 [(ω×x) ·n]u] = −n. Corollary 11.3 gives
that Za

Ωn = 0 in Ω. Proposition 11.3 used for R3 \Ω and the fact that Za
Ωn(x) → 0

as |x| → ∞ (Theorem 9.1) give that Za
Ωn = 0 in R3 \Ω. According to Theorem 9.1

we obtain Za
Ωn = 0 on ∂Ω. �

12. Lq-regular Dirichlet problem

To study the uniqueness of a solution of the problem we need the following two
propositions:

Proposition 12.1. Let Ω ⊂ R3 be an unbounded open set with compact Lipschitz
boundary, a ∈ R1, ω = (0, 0, a), 1 < q < ∞, q′ = q/(q − 1). Let h ∈ L∞(∂Ω),
f ∈ Lp(∂Ω,R3), (u, p) be an Lq-solution of the Robin problem (1.1), (1.3) such that
u(x) → 0, p(x) → 0 as |x| → ∞. If Mβ(u) ∈ Lq′(∂Ω) then the equality (4.1) holds.

Proof. If ∂Ω ⊂ B(0; r) denote Ω(r) = Ω ∩B(0; r). Corollary 4.2 gives∫
∂Ω(r)

u ·
{
T (u, p)n +

1
2
[(ω × x) · n]u

}
dσ = 2

∫
Ω(r)

|∇̂u|2 dx.

|u(x)·T (u, p)n(x)| = O(|x|−3) as |x| → ∞ by Proposition 11.3. Since (ω×x)·n = 0
on ∂B(0; r) we obtain (4.1) letting r →∞. �

Proposition 12.2. Let Ω ⊂ R3 be an open set with compact Lipschitz boundary,
a ∈ R1, ω = (0, 0, a), 1 < q ≤ 2. Then Za

Ω : Lq(∂Ω,R3) → W 1,q(∂Ω,R3) is a
Fredholm operator with index 0.

Proof. For a = 0 see [92, Theorem 9.1.4]. Since Za
Ω−Z0

Ω : Lq(∂Ω,R3) →W 1,q(∂Ω,R3)
is a compact operator by Theorem 9.1, we obtain the proposition. �

Proposition 12.3. Let Ω ⊂ R3 be a domain with compact Lipschitz boundary,
a ∈ R1, ω = (0, 0, a), 1 < q < ∞. Let (u, p) be a regular Lq-solution of the
Dirichlet problem (1.1), (1.2) with g ≡ 0. If Ω is unbounded suppose moreover that
u(x) → 0, p(x) → 0 as |x| → ∞. Then u ≡ 0 and p is constant. If Ω is unbounded
then p ≡ 0.

Proof. If Ω is unbounded then ∇u(x) → 0 as |x| → ∞ by Proposition 11.3. Thus,
we can suppose that q ≤ 2. Define f := T (u, p)nΩ + 1

2 [(ω × x) · nΩ]u on ∂Ω.
Then f ∈ Lq(∂Ω,R3). Since u = 0 on ∂Ω, Corollary 11.2 and Proposition 11.3
give u = Za

Ωf , p = QΩf . So, Za
Ωf ≡ 0 by Theorem 9.1. Proposition 12.2 gives

that Za
Ω : Lq(∂Ω,R3) → W 1,q(∂Ω,R3) and Za

Ω : L2(∂Ω,R3) → W 1,2(∂Ω,R3) are
Fredholm operators with index 0. Thus f ∈ L2(∂Ω,R3) by [92, Lemma 11.9.21].
Theorem 9.1 gives that (u, p) is a regular L2-solution of the Dirichlet problem (1.1),
(1.2). According to Corollary 4.2 and Proposition 12.1

0 =
∫

∂Ω

fu dσ = 2
∫

Ω

|∇̂u| dx.

Since ∇̂u ≡ 0, u is linear by [80, Lemma 3.1]. Since u = 0 on ∂Ω, u ≡ 0 by the
maximum principle for the Laplace equation. Thus ∇p = ∆u+[ω×x]·∇u−ω×u ≡
0. Since Ω is connected, p is constant. If Ω is unbounded then p(x) → 0 as |x| → ∞
forces p ≡ 0. �
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The following lemma states a necessary condition for the sovability of the Dirich-
let problem on bounded domains.

Lemma 12.4. Let Ω ⊂ Rm be a bounded open set with Lipschitz boundary and
1 ≤ q ≤ ∞. If u ∈ C1(Ω,Rm), Mβ(u) ∈ Lq(∂Ω and there exists a non-tangential
limit of u at almost all points of ∂Ω then

(12.1)
∫

∂Ω

nΩ · u dσ = 0.

Proof. Let Ω(k) be a sequence of sets from Lemma 14.1. The Divergence theorem
gives ∫

∂Ω(k)

n · u dσ = 0.

Letting k →∞ we obtain (12.1) by Lebesgue’s lemma. �

Corollary 12.5. Let Ω ⊂ R3 be an open set with compact Lipschitz boundary,
a ∈ R1, ω = (0, 0, a), 1 < q < ∞. If Φ ∈ Lq(∂Ω,R3) and S is a component of ∂Ω
then

(12.2)
∫

S

nΩ · Za
ΩΦ dσ = 0.

Proof. Let G be a bounded open set such that ∂G = S. The corollary is a conse-
quence of Theorem 9.1 and Lemma12.4 used for G. �

We shall look for a particular solution of the Dirichlet problem (1.1), (1.2) in
a special form. Denote by G(1), . . . , G(k) bounded components of R3 \ Ω. If Ω is
bounded denote by G(0) the unbounded component of R3 \Ω. If Ω is bounded and
R3 \ Ω = G(0) we look for a solution in the form of a single layer potential

(12.3) (u, p) = (Za
ΩΦ, QΩΦ)

with Φ ∈ Lq(∂Ω,R3). If Ω has holes then a solution of the Dirichlet problem cannot
be expressed in this form. (Compare Corollary 12.5.) So, we must modify this form.
Choose xj ∈ G(j), j = 1, . . . , k, and r ∈ (0,∞) such that B(xj , r) ⊂ Gj . Denote
B(j) = B(xj ; r). We shall look for a solution of the Dirichlet problem (1.1), (1.2)
in the form

(12.4) u = Za
ΩΦ +

k∑
j=1

[∫
∂G(j)

nΩ ·Φ dσ

]
Da

B(j)n
B(j),

(12.5) p = QΩΦ +
k∑

j=1

[∫
∂G(j)

nΩ ·Φ dσ

]
Πa

B(j)n
B(j)

with Φ ∈ Lq(∂Ω,R3). Then (u, p) given by (12.4), (12.5) is a regular Lq-solution
of the Dirichlet problem (1.1), (1.2) if and only if ZmodΦ = g, where

(12.6) ZmodΦ := Za
ΩΦ +

k∑
j=1

[∫
∂G(j)

nΩ ·Φ dσ

]
Da

B(j)n
B(j).

(If Ω is a bounded domain with connected boundary then Zmod = Za
Ω.)
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Lemma 12.6. Let Ω ⊂ R3 be a domain with compact Lipschitz boundary, a ∈ R1,
ω = (0, 0, a), 1 < q < ∞. Let Φ ∈ Lq(∂Ω,R3), ZmodΦ = 0 on ∂Ω. If Ω is
unbounded then Φ ≡ 0. If Ω is bounded then there exists a constant c such that
Φ = cnΩχ∂G(0).

Proof. First we show that ZmodΦ = Za
ΩΦ. Fix i ∈ {1, . . . , k}. If j ∈ {1, . . . , k},

j 6= i then Da
B(j)n

B(j) ∈ C∞(G(i),R3) is a solution of (1.1) in G(i) by Theorem10.1.
Lemma 12.4 gives ∫

∂G(i)

nΩ · Da
B(j)n

B(j) dσ = 0.

According to Corollary 12.5

(12.7) 0 =
∫

∂G(i)

nΩ · ZmodΦ dσ =

[∫
∂G(i)

nΩ ·Φ dσ

]∫
∂G(i)

nΩ · Da
B(i)n

B(i) dσ.

Using Lemma 12.4 onG(i)\B(i) and Da
B(i)n

B(i) we obtain by virtue of Theorem10.1

0 =
∫

∂G(i)

nΩ · Da
B(i)n

B(i) dσ +
∫

∂B(i)

nB(i) ·
[
−1

2
nB(i) +Ka

ΩnB(i)

]
dσ.

This and (12.7) gives

(12.8)

[∫
∂G(i)

nΩ ·Φ dσ

]∫
∂B(i)

nB(i) ·
[
−1

2
nB(i) +Ka

ΩnB(i)

]
dσ = 0.

Using Lemma 12.4 on B(i) and Da
B(i)n

B(i) we obtain by virtue of Theorem10.1

0 =
∫

∂B(i)

nB(i) ·
[
1
2
nB(i) +Ka

ΩnB(i)

]
dσ =

∫
∂B(i)

nB(i) ·
[
−1

2
nB(i) +Ka

ΩnB(i)

]
dσ +

∫
∂B(i)

1 dσ.

Now we get from (12.8) that

(12.9)
∫

∂G(i)

nΩ ·Φ dσ = 0.

Thus ZmodΦ = Za
ΩΦ.

(Za
ΩΦ, QΩΦ) is an Lq-regular solution of the Dirichlet problem (1.1), (1.2) with

g ≡ 0 in Ω and in R3 \ Ω. Moreover, |Za
ΩΦ(x)|+ |QΩΦ(x)| → 0 as |x| → ∞. (See

Theorem 9.1.) Proposition 12.3 gives that Za
ΩΦ ≡ 0 and there exist constants d,

d(j) such that QΩΦ = d in Ω, QΩΦ = d(j) in G(j). On ∂G(j)

Φ =
[
1
2
Φ + K̃a

ΩΦ
]
−
[
−1

2
Φ + K̃a

ΩΦ
]

= [T (Za
ΩΦ, QΩΦ)nΩ +

1
2
(ω × x) · nΩZa

ΩΦ]+

−[T (Za
ΩΦ, QΩΦ)nΩ +

1
2
(ω × x) · nΩZa

ΩΦ]− = [d(j)− d]nΩ.

by Theorem 9.1. (12.9) gives that Φ = 0 on ∂G(j) for j = 1, . . . , k. So, if Ω is
unbounded then Φ ≡ 0. If Ω is bounded then Φ = [d(0)− d]nΩχ∂G(0). �
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Theorem 12.7. Let Ω ⊂ R3 be a bounded domain with Lipschitz boundary, a ∈ R1,
ω = (0, 0, a), 1 < q ≤ 2, g ∈W 1,q(∂Ω,R3). Then there exists an Lq-regular solution
(u, p) of the Dirichlet problem (1.1), (1.2) if and only if

(12.10)
∫

∂Ω

g · nΩ dσ = 0.

A velocity u is unique, a pressure p is unique up to an additive constant. A fixed
solution (u, p) is given by the modified single layer potential corresponding to some
Φ ∈ Lq(∂Ω,R3) (the formula (12.3) for ∂Ω connected, and the formulas (12.4),
(12.5) for a domain with holes.) Moreover, u ∈ Bq,2

1+1/q(Ω,R
3), p ∈ Bq,2

1/q(Ω) and

(12.11) Mα(u) +Mα(∇u) + ‖u‖Bq,2
1+1/q

(Ω,R3) ≤ C‖g‖W 1,q(∂Ω,R3),

(12.12) ‖Mα(p)‖Lq(∂Ω) + ‖p‖Bq,2
1/q

(Ω) ≤ C

(
‖g‖W 1,q(∂Ω,R3) +

∣∣∣ ∫
Ω

p dx
∣∣∣) .

Proof. (12.10) is a necessary condition for the existence of an Lq-regular solution
of the Dirichlet problem (1.1), (1.2) by Lemma 12.4.
Za

Ω : Lq(∂Ω,R3) → W 1,q(∂Ω,R3) is a Fredholm operator with index 0 by
Proposition 12.2. Since Za

Ω − Zmod : Lq(∂Ω,R3) → W 1,q(∂Ω,R3) is compact,
Zmod : Lq(∂Ω,R3) →W 1,q(∂Ω,R3) is a Fredholm operator with index 0. The kernel
of Zmod is equal to X := {cχ∂G(0)nΩ; c ∈ R1} by Lemma 12.6 and Corollary 11.5.
Denote by Y the space of g ∈ W 1,q(∂Ω,R3) satisfying (12.10). If Φ ∈ Lq(Ω,R3)
then (u, p) given by the formula (12.3) for ∂Ω connected and by the formulas
(12.4), (12.5) for a domain with holes is a regular Lq-solution of the Dirichlet prob-
lem (1.1), (1.2) with g = ZmodΦ. Thus the range of Zmod is a subset of Y . Since
Zmod is a Fredholm operator with index 0 its range has co-dimension 1. Hence
Zmod(Lq(∂Ω,R3)) = Y .

Let now g ∈ Y . We have proved that there exists an Lq-solution (u, p) of the
Dirichlet problem (1.1), (1.2) in the form of a modified single layer potential with
a density Φ ∈ Lq(∂Ω,R3). If c is a constant then (u, p + c) is an Lq-solution of
the problem, too. Let now (v, π) is another Lq-solution of the problem. According
to Proposition12.3 there exists a constant c such that v ≡ u and π = p − c.
Corollary 11.5 gives that (v, π) is a modified single layer potential with a density
Φ + cnΩ ∈ Lq(∂Ω,R3). Proposition 9.2 and Theorem 10.1 give v ∈ Bq,2

1+1/q(Ω,R
3),

π ∈ Bq,2
1/q(Ω).

Define

WΦ =

ZmodΦ,
∫

Ω

(
QΩΦ +

k∑
j=1

Πa
B(j)n

B(j)

∫
∂G(j)

nΩ ·Φ dσ
)

dx

 .
Then W : Lq(∂Ω,R3) → Y × R1 is an isomorphism. So, the inequalities (12.11),
(12.12) are consequence of Proposition 9.2 and Corollary 8.3. �

Theorem 12.8. Let Ω ⊂ R3 be an unbounded domain with Lipschitz boundary,
a ∈ R1, ω = (0, 0, a), 1 < q ≤ 2, g ∈W 1,q(∂Ω,R3).

• Zmod : Lq(∂Ω,R3) →W 1,q(∂Ω,R3) is an isomorphism.
• Put Φ = Z−1

modg. Let u, p be given by the formulas (12.4), (12.5). Then
(u, p) is a unique regular Lq-solution of the Dirichlet problem (1.1), (1.2)
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such that u(x) → 0, p(x) → 0 as |x| → ∞. Moreover, uj ∈ Bq,2
1+1/q(Ω, ρ−3),

p ∈ Bq,2
1/q(Ω, ρ−3) and

(12.13) Mα(u) +Mα(∇u) +
3∑

j=1

‖uj‖Bq,2
1+1/q

(Ω,ρ−3)
≤ C‖g‖W 1,q(∂Ω,R3),

(12.14) ‖Mα(p)‖Lq(∂Ω) + ‖p‖Bq,2
1/q

(Ω,ρ−3)
≤ C‖g‖W 1,q(∂Ω,R3).

• If (u, p) is a regular Lq-solution of the Dirichlet problem (1.1), (1.2) then
there exist constants b and c such that u(x) → (0, 0, b), p(x) → c as |x| →
∞.

• Let constants b and c be given. Then there exists a unique regular Lq-
solution (u, p) of the Dirichlet problem (1.1), (1.2) such that u(x) → (0, 0, b),
p(x) → c as |x| → ∞. Moreover,

Mα(u) +Mα(∇u) ≤ C
(
‖g‖W 1,q(∂Ω,R3) + |b|

)
,

‖Mα(p)‖Lq(∂Ω) ≤ C
(
‖g‖W 1,q(∂Ω,R3) + |b|+ |c||

)
.

Proof. Zmod : Lq(∂Ω,R3) → W 1,q(∂Ω,R3) is an isomorphism by Proposition 12.2
and Lemma 12.6.

Put Φ = Z−1
modg. Let u, p be given by the formulas (12.4), (12.5). Then (u, p)

is a regular Lq-solution of the Dirichlet problem (1.1), (1.2) by Theorem 9.1 and
Theorem 10.1. The uniqueness follows from Proposition 12.3. According to Theo-
rem 9.1, Theorem 10.1 and Corollary 8.3 there exists a constant C1 such that

Mα(u) +Mα(∇u) + ‖Mα(p)‖Lq(∂Ω) ≤ C1‖g‖W 1,q(∂Ω,R3).

Fix r > 0 such that ∂Ω ⊂ B(0; r). Proposition 9.2 and Theorem 10.1 give uj ∈
Bq,2

1+1/q(B(0; 2r) ∩ Ω, ρ−3), p ∈ Bq,2
1/q(Ω ∩B(0; 2r); ρ−3) and

3∑
j=1

‖uj‖Bq,2
1+1/q

(Ω∩B(0;2r),ρ−3)
+ ‖p‖Bq,2

1/q
(Ω∩B(0;2r),ρ−3)

≤ C2‖g‖W 1,q(∂Ω,R3).

Theorem 9.1, Theorem 10.1 and Lemma 8.1 give ρ−3uj , ρ−3p ∈W 2,q(R3 \B(0; r))
and

‖u‖W 2,q(R3\B(0;r)) + ‖p‖W 2,q(R3\B(0;r)) ≤ C3‖g‖W 1,q(∂Ω,R3).

Since W 2,q(R3 \B(0; r)) ↪→ Bq,2
1+1/q(R

3 \B(0; r)), W 2,q(R3 \B(0; r)) ↪→ Bq,2
1/q(R

3 \
B(0; r)) by [104, §2.3.3, Remark 4], we obtain (12.13), (12.14).

Let (u, p) be a regular Lq-solution of the Dirichlet problem (1.1), (1.2). Then
(u, p) is an Lq-solution of the Neumann problem (1.1), (1.3) with h ≡ 0 and some
f ∈ Lq(∂Ω,R3). According to Proposition 11.3 there exist constants b and c such
that u(x) → (0, 0, b), p(x) → c as |x| → ∞.

Let b, c be given. We have proved the existence of a regular Lq-solution (v, π) of
the Dirichlet problem (1.1), v = g − (0, 0, b) on ∂Ω such that v(x) → 0, π(x) → 0
as |x| → ∞. Put u = v + (0, 0, b), p = π + c. Then (u, p) is a unique regular Lq-
solution of the Dirichlet problem (1.1), (1.2) such that u(x) → (0, 0, b), p(x) → c
as |x| → ∞. �

Corollary 12.9. Let Ω ⊂ R3 be an unbounded domain with compact boundary of
class Ck+1, k ∈ N. Let a ∈ R1, ω = (0, 0, a), 1 < q, r <∞.
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• If g ∈ W k+1−1/q,q(∂Ω,R3) then there exists a unique solution (u, p) ∈
Dk+1,q(Ω,R3) × Dk,q(Ω) of the Dirichlet problem (1.1), (1.2) such that
u(x) → 0, p(x) → 0 as |x| → ∞. Moreover,

‖u‖Dk+1,q(Ω) + ‖p‖Dk,q(Ω) ≤ C‖g‖W k+1−1/q,q(∂Ω)

where C does not depend on g. If q > 3/2 then p ∈W k,q(Ω) and

‖p‖W k,q(Ω) ≤ C‖g‖W k+1−1/q,q(∂Ω).

If q > 3 then u ∈W k+1,q(Ω; R3) and

‖u‖W k+1,q(Ω) ≤ C‖g‖W k+1−1/q,q(∂Ω).

• If 1 + 1/q < s < k + 1 and g ∈ Bq,r
s−1/q(∂Ω,R3), then there exists a unique

solution (u, p) of the Dirichlet problem (1.1), (1.2) such that u(x) → 0,
p(x) → 0 as |x| → ∞ and uj ∈ Bq,r

s (Ω, ρ−3), p ∈ Bq,r
s−1(Ω, ρ−3). Moreover,

‖u‖Bq,r
s (Ω,ρ−3) + ‖p‖Bq,r

s−1(Ω,ρ−3) ≤ C‖g‖Bq,r
s−1/q

(∂Ω)

where C does not depend on g. If q > 3/2 then p ∈ Bq,r
s−1(Ω) and

‖p‖Bq,r
s−1(Ω) ≤ C‖g‖Bq,r

s−1/q
(∂Ω).

If q > 3 then u ∈ Bq,r
s (Ω; R3) and

‖u‖Bq,r
s (Ω) ≤ C‖g‖Bq,r

s−1/q
(∂Ω).

Proof. Put τ = min(q, 2). According to Theorem 12.8 there exists a unique regular
Lτ -solution (u, p) of the Dirichlet problem (1.1), (1.2) such that u(x) → 0, p(x) →
0 as |x| → ∞. (Remember that uj ∈ Bτ,2

1+1/τ (Ω, ρ−3), p ∈ Bτ,2
1/τ (Ω, ρ−3).) Fix

R > 0 such that ∂Ω ⊂ B(0;R). Then u ∈ Dk+1,q(Ω \ B(0;R),R3), uj ∈ Bq,r
t (Ω \

B(0;R), ρ−3), p ∈ Dk,q(Ω\B(0;R))∩Bq,r
t−1(Ω\B(0;R), ρ−3) for all t ∈ (1+1/q, k+1)

by Lemma 7.1 and Proposition 11.3. According to [104, §4.6.1, Theorem] one has
(u, p) ∈ W 1,τ (Ω ∩ B(0; 2r),R3) × Lτ (Ω ∩ B(0; 2R)). Put g := u on ∂B(0; 2R).
Then (u, p) is a solution of the Dirichlet problem (1.1), (1.2) in Ω∩B(0; 2R). If g ∈
W k+1−1/q,q(∂Ω,R3) then (u, p) ∈W k+1,q(Ω ∩B(0; 2R),R3)×W k,q(Ω ∩B(0; 2R))
by Corollary 7.3, and thus (u, p) ∈ Dk+1,q(Ω,R3)×Dk,q(Ω). If g ∈ Bq,r

s−1/q(∂Ω,R3)
then (u, p) ∈ Bq,r

s (Ω ∩ B(0; 2R),R3) × Bq,r
s−1(Ω ∩ B(0; 2R)) by Corollary 7.3, and

therefore uj ∈ Bq,r
s (Ω, ρ−3), p ∈ Bq,r

s−1(Ω, ρ−3). If α is a multiindex that |∂αu(x)| =
O(|x|−1−|α|), |∂αp(x)| = O(|x|−2−|α|) as |x| → ∞ by Proposition 11.3. If q >
3/2 then p ∈ W k,q(Ω) for g ∈ W k+1−1/q,q(∂Ω,R3), and p ∈ Bq,r

s−1(Ω) for g ∈
Bq,r

s−1/q(∂Ω,R3). If q > 3 then u ∈W k+1,q(Ω; R3) for g ∈W k+1−1/q,q(∂Ω,R3), and
u ∈ Bq,r

s (Ω; R3) for g ∈ Bq,r
s−1/q(∂Ω,R3).

We now show the uniqueness. Let (u, p) be a solution of the Dirichlet problem
(1.1), (1.2) for g ≡ 0 such that u(x) → 0, p(x) → 0 as |x| → ∞. Proposition 11.3
gives that ∇u(x) → 0 as |x| → ∞. Fix R > 0 such that ∂Ω ⊂ B(0;R). Then
u ∈W 1,q(Ω∩B(0;R),R3), p ∈ Lq(Ω∩B(0;R)) by [104, §4.6.1, Theorem]. Put g :=
u on ∂B(0;R). Then g ∈ C∞(∂[Ω ∩ B(0;R)]; R3). Proposition 7.2 gives (12.10).
According to Theorem 12.7 there exists a regular L2-solution (w, π) of the Dirichlet
problem (1.1), (1.2) for Ω∩B(0;R). Since (w, π) ∈W 1,2(Ω∩B(0;R); R3)×L2(Ω∩
B(0;R)), Proposition 7.2 gives u = w and p− π is constant in Ω ∩ B(0;R). Thus
(u, p) is an L2-regular solution of the Dirichlet problem (1.1), (1.2). Theorem 12.8
gives that u ≡ 0, p ≡ 0.
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Denote by ug, pg the solution of the problem (1.1), (1.2) such that u(x) → 0,
p(x) → 0 as |x| → ∞. For the operator F : g 7→ [ug, pg] one has

F : W k+1−1/q,q(∂Ω,R3) → Dk+1,q(Ω,R3)×Dk,q(Ω),

F : Bq,r
s−1/q(∂Ω,R3) → Bq,r

s (Ω, ρ−3)3 ×Bq,r
s−1(Ω, ρ−3).

If q > 3/2 then

F : W k+1−1/q,q(∂Ω,R3) → Dk+1,q(Ω,R3)×W k,q(Ω),

F : Bq,r
s−1/q(∂Ω,R3) → Bq,r

s (Ω, ρ−3)3 ×Bq,r
s−1(Ω).

If q > 3 then

F : W k+1−1/q,q(∂Ω,R3) →W k+1,q(Ω,R3)×W k,q(Ω),

F : Bq,r
s−1/q(∂Ω,R3) → Bq,r

s (Ω,R3)×Bq,r
s−1(Ω).

These operators are closed by Theorem 12.8. The Closed graph theorem gives that
they are continuous. �

13. Robin problem

In this section we study the Robin problem (1.1), (1.3). To study uniqueness of
the problem we need the following auxiliary results:

Lemma 13.1. Let Ω ⊂ R3 be an open set with compact Lipschitz boundary, a ∈ R1,
1 < q ≤ 2. If Φ ∈ W 1,q(∂Ω,R3) then there exists a finite non-tangential limits of
∇Da

ΩΦ and Πa
ΩΦ at almost all points of ∂Ω and

‖Mβ(∇Da
ΩΦ)‖Lq(∂Ω) + ‖Mβ(Πa

ΩΦ)‖Lq(∂Ω) ≤ C‖Φ‖W 1,q(∂Ω,R3)

where C does not depend on Φ.

Proof. According to Corollary 8.3 we can suppose that Ω is connected. Fix z ∈ Ω
and r > 0 such that B(z; 2r) ⊂ Ω and put G = Ω \ B(z; r). Define g = Φ
on ∂Ω, g = cnG on ∂B(z; r) where c is a constant chosen in a such way that∫

∂G
g · nG dσ = 0. Clearly,

(13.1) ‖g‖W 1,q(∂G,R3) ≤ C1‖Φ‖W 1,q(∂Ω,R3).

Put ω = (0, 0, a). According to Theorem 12.7 and Theorem 12.8 there exists a
regular Lq-solution (u, p) of the Dirichlet problem (1.1), (1.2) for G such that

(13.2) ‖Mβ(u)‖Lq(∂G) + ‖Mβ(∇u)‖Lq(∂G) + ‖Mβ(p)‖Lq(∂G) ≤ C2‖g‖W 1,q(∂G,R3).

If Ω is unbounded we can suppose that |u(x)| → 0, |p(x)| → 0 as |x| → ∞. Define
f(x) := T (u, p)nG + 1

2 [(ω × x) · nG]u. Then

(13.3) ‖f‖Lq(∂G) ≤ C3

(
‖Mβ(u)‖Lq(∂G) + ‖Mβ(∇u)‖Lq(∂G) + ‖Mβ(p)‖Lq(∂G)

)
.

Corollary 11.2 and Proposition 11.3 give Da
Gg = u− Za

Gf , Πa
Ωg = p−QΩf . Theo-

rem 9.1, (13.3) and (13.2) give that there exist non-tangential limits of ∇Da
Gg and

Πa
Ωg at almost all points of ∂G and

‖Mβ(∇Da
Gg)‖Lq(∂G) + ‖Mβ(Πa

Gg)‖Lq(∂G) ≤ C4‖g‖W 1,q(∂G,R3).

The proposition of the Lemma is a consequence of the fact that Da
ΩΦ = Da

Gg +
cDa

B(z;r)n
B(z;r) and Πa

ΩΦ = Πa
Gg + cΠa

B(z;r)n
B(z;r) in G, (13.1), Theorem 10.1 and

Corollary 8.3. �



Lq-SOLUTION OF THE ROBIN PROBLEM FOR THE STOKES SYSTEM WITH CORIOLIS FORCE25

Lemma 13.2. Let Ω ⊂ R3 be an open set with compact Lipschitz boundary, a ∈ R1,
1 < q ≤ 2. Then 1

2I ± K̃a
Ω : Lq(∂Ω,R3) → Lq(∂Ω,R3), 1

2I ±Ka
Ω : W 1,q(∂Ω,R3) →

W 1,q(∂Ω,R3) are bounded Fredholm operators with index 0.

Proof. 1
2I±K̃

0
Ω is a Fredholm operator on Lq(∂Ω,R3) with index 0 by [92, Theorem

9.1.11]. Since K̃a
Ω − K̃0

Ω is a compact operator on Lq(∂Ω,R3) by Theorem 9.1, the
operator 1

2I ± K̃a
Ω is Fredholm on Lq(∂Ω,R3) with index 0.

If Φ ∈ W 1,q(∂Ω,R3) then ( 1
2I + Ka

Ω)Φ is the non-tangential limit of Da
ΩΦ by

Theorem 10.1. So, 1
2I+Ka

Ω is a bounded operator on W 1,q(∂Ω,R3) by Lemma 13.1.
Corollary 11.4 gives ( 1

2I+K
a
Ω)Za

Ω = Za
Ω( 1

2I−K̃
a
Ω). The operator Za

Ω : Lq(∂Ω,R3) →
W 1,q(∂Ω,R3) is a Fredholm operator with index 0 by Proposition 12.2. Thus (1

2I+
Ka

Ω)Za
Ω = Za

Ω( 1
2I − K̃a

Ω) : Lq(∂Ω,R3) → W 1,q(∂Ω,R3) is a Fredholm operator
with index 0. Since Za

Ω : Lq(∂Ω,R3) → W 1,q(∂Ω,R3) is a Fredholm operator with
index 0 and ( 1

2I +Ka
Ω) is a bounded linear operator on W 1,q(∂Ω,R3), the operator

( 1
2I +Ka

Ω) is Fredholm with index 0 on W 1,q(∂Ω,R3) by [93, § 16].
Put G = R3 \Ω. Then (1/2)I +Ka

G = (1/2)I −Ka
Ω is a Fredholm operator with

index 0 on W 1,q(∂Ω,R3). �

Proposition 13.3. Let Ω ⊂ R3 be a domain with compact Lipschitz boundary,
a ∈ R1, ω = (0, 0, a), 1 < q < ∞, h ∈ L∞(∂Ω), h ≥ 0. Let (u, p) be an Lq-
solution of the Robin problem (1.1), (1.3) with f ≡ 0. If Ω is bounded suppose that∫

∂Ω
h dσ > 0. If Ω is unbounded suppose that u(x) → 0, p(x) → 0 as |x| → ∞.

Then u ≡ 0, p ≡ 0.

Proof. If Ω is unbounded then ∇u(x) → 0 as |x| → ∞ by Proposition 11.3. Thus,
we can suppose that q ≤ 2. Corollary 11.2 and Proposition 11.3 give

u = Da
Ωu− Za

Ω(hu), p = Πa
Ωu−QΩ(hu) in Ω.

The limit at the boundary gives according to Theorem 9.1 and Theorem 10.1

u =
(

1
2
I + K̃a

Ω

)
u−Za

Ω(hu).

Define Sv := (− 1
2I + K̃a

Ω)v − Za
Ω(hv). Then Su = 0. The operator (− 1

2I + K̃a
Ω)

is a Fredholm operator with index 0 in W 1,q(∂Ω,R3) by Lemma 13.2. Since Za
Ω :

Lq(∂Ω,R3) →W 1,q(∂Ω,R3) is bounded by Theorem 9.1, the operator v 7→ Za
Ω(hv)

is compact on W 1,q(∂Ω,R3) by [102, Lemma 18.4]. So, S is a Fredholm operator
with index 0 in W 1,q(∂Ω,R3). Since Su = 0 and S is a Fredholm operator with
index 0 in W 1,2(∂Ω,R3), [78, Lemma 9] gives u ∈W 1,2(∂Ω,R3). So, (u, p) is an L2-
solution of the problem (1.1), (1.3) by Lemma 13.1 and Theorem 9.1. Corollary 4.2
and Proposition 12.1 give

0 =
∫

∂Ω

u · f dσ =
∫

∂Ω

h|u|2 dσ + 2
∫

Ω

|∇̂u|2 dx.

Thus hu = 0 on ∂Ω. Since ∇̂u ≡ 0, [80, Lemma 3.1] gives that there exists an
antisymmetric matrix A and a vector b such that u(x) = Ax+b. If Ω is unbounded
then the condition u(x) → 0 as |x| → ∞ gives u ≡ 0. Let now Ω be bounded.
Since hu = 0 on ∂Ω, we deduce σ({x ∈ ∂Ω;u(x) = 0}) > 0. [83, Lemma 5.1] gives
that u ≡ 0.

Since u ≡ 0 the equation (1.1) gives ∇p ≡ 0. Therefore there exists a constant
c such that p ≡ c. Since 0 = f = −cnΩ, we deduce c = 0. �
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We look for a particular solution of the Robin problem (1.1), (1.3) in the form
of the modified single layer potential with a density Φ ∈ Lq(∂Ω,R3), i.e. (u, p) is
given by (12.3) for Ω bounded with connected boundary and by (12.4), (12.5) for
Ω with holes. Then (u, p) is an Lq-solution of the problem (1.1), (1.3) if ShΦ = f ,
where

Sa
hΦ :=

1
2
Φ + K̃a

ΩΦ + hZa
ΩΦ +

k∑
j=1

Ψh
j

∫
∂G(j)

nΩ ·Φ dσ,

Ψh
j := T (Da

B(j)n
B(j),Πa

B(j)n
B(j))nΩ +

1
2
[(ω × x) · nΩ]Da

B(j)n
B(j) + hDa

B(j)n
B(j).

Proposition 13.4. Let Ω ⊂ R3 be a domain with compact Lipschitz boundary,
a ∈ R1, 1 < q < ∞. Suppose that q ≤ 2 or ∂Ω is of class C1. Let h ∈ L∞(∂Ω),
h ≥ 0. If Ω is bounded suppose moreover that

∫
∂Ω
h dσ > 0. Then Sa

h is an
isomorphism on Lq(∂Ω,R3).

Proof. 1
2I+K̃a

Ω is a Fredholm operator with index 0 in Lq(∂Ω,R3) by Lemma 13.2.
The operator Za

Ω : Lq(∂Ω,R3) → W 1,q(∂Ω,R3) is bounded by Theorem 9.1. Thus
hZa

Ω is a compact operator on Lq(∂Ω,R3) (compare [102, Lemma 18.4]). Hence Sa
h

is a Fredholm operator with index 0 in Lq(∂Ω,R3).
Let Φ ∈ Lq(∂Ω,R3), Sa

hΦ = 0. Let (u, p) be the modified single layer potential
with the density Φ. (See (12.4), (12.5).) Then (u, p) is an Lq-solution of the
problem (1.1), (1.3) with f ≡ 0. Proposition 13.3 gives that u = 0, p = 0 in Ω.
Thus ZmodΦ ≡ 0. According to Lemma 12.6 we have Φ ≡ 0 for Ω unbounded,
and Φ = cnΩχ∂G(0) for Ω bounded. (Remember that G(0) denotes the unbounded
component of R3 \ Ω.) Corollary 11.5 gives 0 = p = −c. Thus Φ ≡ 0.
Sa

h : Lq(∂Ω,R3) → Lq(∂Ω,R3) is a Fredholm operator with index 0 and trivial
kernel. Hence Sa

h is an isomorphism. �

Theorem 13.5. Let Ω ⊂ R3 be a bounded domain with Lipschitz boundary, a ∈
R1, ω = (0, 0, a), 1 < q < ∞. Suppose that q ≤ 2 or ∂Ω is of class C1. Let
h ∈ L∞(∂Ω), h ≥ 0,

∫
∂Ω
h dσ > 0. Let f ∈ Lq(∂Ω,R3). Put Φ = (Sa

h)−1f . Let
(u, p) be the modified single layer potential with the density Φ (see (12.4), (12.5)).
Then (u, p) is a unique Lq-solution of the Robin problem (1.1), (1.3). Moreover,
u ∈ Bq,max(q,2)

1+1/q (Ω,R3), p ∈ Bq,max(q,2)
1/q (Ω), and

‖Mβ(u)‖Lq(∂Ω) + ‖Mβ(∇u)‖Lq(∂Ω) + ‖u‖
B

q,max(q,2)
1+1/q

(Ω
≤ C‖f‖Lq(∂Ω),

‖Mβ(p)‖Lq(∂Ω) + ‖p‖
B

q,max(q,2)
1/q

(Ω
≤ C‖f‖Lq(∂Ω),

where C does not depend on f .

Proof. The theorem is a consequence of Proposition 13.4, Proposition 13.3, Theo-
rem 9.1, Proposition 9.2 and Corollary 8.3. �

Theorem 13.6. Let Ω ⊂ R3 be an unbounded domain with compact Lipschitz
boundary, a ∈ R1, ω = (0, 0, a), 1 < q < ∞. Suppose that q ≤ 2 or ∂Ω is of class
C1. Let h ∈ L∞(∂Ω), h ≥ 0. Let f ∈ Lq(∂Ω,R3).

• Put Φ = (Sa
h)−1f . Let (u, p) be the modified single layer potential with the

density Φ (see (12.4), (12.5)). Then (u, p) is a unique Lq-solution of the
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Robin problem (1.1), (1.3) such that u(x) → 0, p(x) → 0 as |x| → ∞.
Moreover, uj ∈ Bq,2

1+1/q(Ω, ρ−3), p ∈ Bq,2
1/q(Ω, ρ−3) and

(13.4) Mβ(u) +Mβ(∇u) +
3∑

j=1

‖uj‖Bq,2
1+1/q

(Ω,ρ−3)
≤ C‖f‖Lq(∂Ω,R3),

(13.5) ‖Mβ(p)‖Lq(∂Ω) + ‖p‖Bq,2
1/q

(Ω,ρ−3)
≤ C‖f‖Lq(∂Ω,R3)

where C does not depend on f .
• If (u, p) is an Lq-solution of the Robin problem (1.1), (1.3) then there exist

constants b and c such that u(x) → (0, 0, b), p(x) → c as |x| → ∞.
• Let constants b and c be given. Then there exists a unique Lq-solution (u, p)

of the Robin problem (1.1), (1.3) such that u(x) → (0, 0, b), p(x) → c as
|x| → ∞. Moreover,

Mβ(u) +Mβ(∇u) + ‖Mβ(p)‖Lq(∂Ω) ≤ C
(
‖f‖Lq(∂Ω,R3) + |b|+ |c||

)
.

Proof. Sa
h is an isomorphism on Lq(∂Ω,R3) by Proposition 13.4. Put Φ = (Sa

h)−1f .
Let (u, p) be the modified single layer potential with the density Φ (see (12.4),
(12.5)). Then (u, p) is an Lq-solution of the Robin problem (1.1), (1.3) such that
u(x) → 0, p(x) → 0 as |x| → ∞ by Theorem 9.1 and Theorem 10.1. The unique-
ness follows from Proposition 13.3. According to Theorem 9.1, Theorem 10.1 and
Corollary 8.3 there exists a constant C1 such that

Mβ(u) +Mβ(∇u) + ‖Mβ(p)‖Lq(∂Ω) ≤ C1‖f‖Lq(∂Ω,R3).

Fix r > 0 such that ∂Ω ⊂ B(0; r). Proposition 9.2 and Theorem 10.1 give uj ∈
B

q,max(q,2)
1+1/q (B(0; 2r) ∩ Ω, ρ−3), p ∈ Bq,max(q,2)

1/q (Ω ∩B(0; 2r); ρ−3) and

3∑
j=1

‖uj‖B
q,max(q,2)
1+1/q

(Ω∩B(0;2r),ρ−3)
+ ‖p‖

B
q,max(q,2)
1/q

(Ω∩B(0;2r),ρ−3)
≤ C2‖f‖Lq(∂Ω,R3).

Theorem 9.1, Theorem 10.1 and Lemma 8.1 give ρ−3uj , ρ−3p ∈W 2,q(R3 \B(0; r))
and

‖u‖W 2,q(R3\B(0;r)) + ‖p‖W 2,q(R3\B(0;r)) ≤ C3‖f‖Lq(∂Ω,R3).

Since

W 2,q(R3 \B(0; r)) ↪→ B
q,max(q,2)
1+1/q (R3 \B(0; r)) ↪→ B

q,max(q,2)
1/q (R3 \B(0; r))

by [104, §2.3.3, Remark 4], we obtain (13.4), (13.5).
Let (u, p) be an Lq-solution of the Robin problem (1.1), (1.3). According to

Proposition 11.3 there exist constants b and c such that u(x) → (0, 0, b), p(x) → c
as |x| → ∞.

Let b, c be given. We have proved the existence of an Lq-solution (v, π) of the
Robin problem (1.1), v = f + cnΩ − [(ω × x) · nΩ/2 + h](0, 0, b) on ∂Ω such that
v(x) → 0, π(x) → 0 as |x| → ∞. Put u = v + (0, 0, b), p = π + c. Then (u, p) is
a unique Lq-solution of the Robin problem (1.1), (1.3) such that u(x) → (0, 0, b),
p(x) → c as |x| → ∞. �
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14. Appendix

Lemma 14.1. Let Ω ⊂ R3 be a bounded open set with Lipschitz boundary. Then
there is a sequence of open sets Ωj with boundaries of class C∞ such that

• Ωj ⊂ Ω.
• There are a > 0 and homeomorphisms Λj : ∂Ω → ∂Ωj, such that Λj(y) ∈

Γa(y) for each j and each y ∈ ∂Ω and sup{|y − Λj(y)|;y ∈ ∂Ω} → 0 as
j →∞.

• There are positive functions ωj on ∂Ω bounded away from zero and infinity
uniformly in j such that ωj → 1 point-wise a.e. and in every Ls(∂Ω),
1 ≤ s <∞.

• The normal vectors to Ωj, n(Λj(y)), converge point-wise a.e. and in every
Ls(∂Ω), 1 ≤ s <∞, to n(y).

(See [111, Theorem 1.12].)
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