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ITERATED GAUSS-SEIDEL GMRES

STEPHEN THOMAS∗, ERIN CARSON† , MIROSLAV ROZLOŽNı́K‡ , ARIELLE CARR§ , AND KASIA

ŚWIRYDOWICZ¶

Abstract. The GMRES algorithm of Saad and Schultz (1986) is an iterative method for approximately solving linear
systems Ax = b, with initial guess x0 and residual r0 = b−Ax0. The algorithm employs the Arnoldi process to generate
the Krylov basis vectors (the columns of Vk). It is well known that this process can be viewed as a QR factorization
of the matrix Bk = [ r0, AVk ] at each iteration. Despite an O(ε)κ(Bk) loss of orthogonality, for unit roundoff ε and
condition number κ, the modified Gram-Schmidt formulation was shown to be backward stable in the seminal paper by
Paige et al. (2006). We present an iterated Gauss-Seidel formulation of the GMRES algorithm (IGS-GMRES) based on

the ideas of Ruhe (1983) and Świrydowicz et al. (2020). IGS-GMRES maintains orthogonality to the level O(ε)κ(Bk) or
O(ε), depending on the choice of one or two iterations; for two Gauss-Seidel iterations, the computed Krylov basis vectors
remain orthogonal to working precision and the smallest singular value of Vk remains close to one. The resulting GMRES
method is thus backward stable. We show that IGS-GMRES can be implemented with only a single synchronization point
per iteration, making it relevant to large-scale parallel computing environments. We also demonstrate that, unlike MGS-
GMRES, in IGS-GMRES the relative Arnoldi residual corresponding to the computed approximate solution no longer
stagnates above machine precision even for highly non-normal systems.

1. Introduction. We consider linear systems of the form Ax = b, where A is an n×n real-valued
matrix, solved via the generalized minimal residual method (GMRES) [1]. Let r0 = b−Ax0 denote the
initial residual for the approximate solution x0. Inside GMRES, the Arnoldi-QR algorithm is applied to
orthogonalize the basis vectors for the Krylov subspace Kk(A, r0) spanned by the columns of the n× k
matrix Vk, where k � n. After k iterations, this produces the (k + 1) × k upper Hessenberg matrix
Hk+1,k in the Arnoldi expansion such that

(1.1) v1 = r0/ρ, ρ := ‖r0‖2, AVk = Vk+1Hk+1,k.

The expansion (1.1) is equivalent to a QR factorization of Bk = [ r0, AVk ] = Vk+1 [ ρ e1, Hk+1,k ] and
the columns of Vk form an orthonormal basis for the Krylov subspace Kk(A, r0 ) [2]. The approximate
solution in step k is given by xk = x0 + Vkyk, where the vector yk minimizes the Arnoldi residual

(1.2) ‖ ρ e1 −Hk+1,kyk ‖2 = min
y
‖ ρ e1 −Hk+1,ky ‖2.

When the Krylov vectors are orthogonalized via the modified Gram-Schmidt (MGS) algorithm in
finite-precision arithmetic, their loss of orthogonality is related in a straightforward way to the conver-
gence of GMRES. Orthogonality among the Krylov vectors is effectively maintained until the norm-wise
relative backward error approaches the machine precision as discussed in the work of Paige and Strakoš [3]
and Paige et al. [2]. The growth of the condition number κ(Bk) = σmax(Bk)/σmin(Bk), where σmax(Bk)
and σmin(Bk) are the maximum and minimum singular values of the matrix Bk, respectively, is related
to the norm-wise backward error

(1.3) β(xk) :=
‖b−Axk‖2

‖b‖2 + ‖A‖2‖xk‖2
, k = 1, 2, . . .

and it is observed that, in exact arithmetic, β(xk) κ(Bk) = O(1). Also in exact arithmetic, the orthog-
onality of the columns implies the linear independence of the Krylov basis vectors.

However, in finite-precision arithmetic, the columns of the computed V̄k are no longer orthogonal,
as measured by ‖I − V̄ T

k V̄k‖F , and may deviate substantially from the level of machine precision, O(ε).
When linear independence is completely lost, the Arnoldi relative residual, corresponding to the com-
puted approximate solution x̄k, stagnates at a certain level above O(ε). This occurs when ‖Sk‖2 = 1,
where

Sk = (I + LT
k )−1LT

k ,
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and Lk is the k×k strictly lower triangular part of V̄ T
k V̄k = I+Lk+LT

k . Note also that I−Sk = (I+LT
k )−1.

However, Paige et al. [2] demonstrated that despite O(ε)κ(Bk) loss of orthogonality, MGS-GMRES is
backward stable for the solution of linear systems.

Both modified and classical Gram-Schmidt versions with delayed re-orthogonalization (DCGS-2)
were derived in Świrydowicz et al. [4], and these have been empirically observed to result in a backward
stable GMRES method. The development of low-synchronization Gram-Schmidt and generalized mini-
mal residual algorithms by Świrydowicz et al. [4] and Bielich et al. [5] was largely driven by applications
that need stable, yet scalable, solvers. An inverse compact WY MGS algorithm is presented in [4] and
is based upon the application of the approximate projector

P
(1)
k = I − V̄k T (1)

k V̄ T
k , T

(1)
k ≈ (V̄ T

k V̄k)−1,

where V̄k is again n × k, I is the identity matrix of dimension n, and T
(1)
k is a k × k lower triangular

correction matrix. To obtain a low-synchronization algorithm requiring only a single global reduction

per iteration, the normalization is delayed to the next iteration. The matrix T
(1)
k = ( I + Lk )−1 is

obtained from the strictly lower triangular part of V̄ T
k V̄k, again denoted Lk. Note that because V̄k has

almost orthonormal columns, the norm of Lk is small, and T
(1)
k is nearly the identity matrix of dimension

k. The last row of Lk is constructed from the matrix-vector product Lk,1:k−1 = v̄T
k V̄k−1.

The purpose of the present work is to derive an iterated Gauss-Seidel formulation of the GMRES
algorithm based on the approximate solution of the normal equations in the Gram-Schmidt projector, as

described by Ruhe [6], and the low-synchronization algorithms introduced by Świrydowicz et al. [4]. T
(1)
k

represents the inverse compact WY form of the MGS projector P
(1)
k and corresponds to one Gauss-Seidel

iteration for the approximate solution of the normal equations

(1.4) V̄ T
k−1V̄k−1r1:k−1,k = V̄ T

k−1 A v̄k.

Ruhe [6, pg. 597] suggested applying LSQR, whereas Björck [7, pg. 312] recommended conjugate
gradients to solve the normal equations. Instead, we apply two Gauss-Seidel iterations and demonstrate
that the loss of orthogonality is at the level of O(ε) without any need for explicit reorthogonalization in the
Arnoldi-QR algorithm. Resembling the Householder transformation-based implementation, the GMRES
method with two Gauss-Seidel iterations is backward stable, where the stability result of Drkošová et
al. [8] applies. Even for extremely ill-conditioned and non-normal matrices, the two iteration Gauss-
Seidel GMRES formulation matches the Householder (HH)-GMRES of Walker [9], where the Arnoldi
residual of the least square problem (1.2) continues to decrease monotonically without any stagnation.

Contributions. In this paper, we present an iterated Gauss Seidel formulation of the GMRES
algorithm [1], and establish the backward stability of this approach. The computed Krylov basis vectors
maintain orthogonality to the level of machine precision by projection onto their orthogonal complement
and applying the low-synchronization Gram-Schmidt algorithms of Świrydowicz et al. [4]. The triangular

matrix T
(1)
k is an approximation of the matrix (QT

kQk)−1 and two iterations result in a T
(2)
k that is

almost symmetric. Note that here, the matrix Qk refers to the A = QR factorization via Gram-Schmidt,
whereas Vk refers to the orthogonal matrix produced in the Arnoldi-QR expansion. Giraud et al. [10]
demonstrated how a rank-k correction could be applied in a post-processing step to recover orthogonality
by computing the polar decomposition of Qk−1, the matrix exhibited by Björck and Paige [11].

Our paper is organized as follows. Low-synchronization Gram-Schmidt algorithms for the QR factor-
ization are reviewed in Section 2 and multiplicative iterations are applied to solve the normal equations.
A rounding error analysis of the iterated Gauss-Seidel Gram-Schmidt algorithm is presented in Section
3, leading to bounds on the error and the orthogonality of the columns of Vk−1. In Section 4, we present
the iterated Gauss Seidel GMRES algorithm and prove its backward stability and also derive a variant
that requires only a single synchronization. Further, the relationship with Henrici’s departure from
normality is explored. Finally, numerical experiments on challenging problems studied over the past
thirty-five years are presented in Section 5.

Notation. Lowercase bold letters denote column vectors and uppercase letters are matrices (e.g.,
v and A, respectively). We use Aij to represent the (i, j) scalar entry of a matrix A, and ak denotes
the k–th column of A. Ak is a block partition up to the k–th column of a matrix. Subscripts indicate
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the approximate solution and corresponding residual (e.g., xk and rk) of an iterative method at step k.
Throughout this article, the notation Uk (or Lk) and Us (or Ls) will explicitly refer to strictly upper/lower
triangular matrices.1 Vector notation indicates a subset of the rows and/or columns of a matrix; e.g.
V1:m+1,1:k denotes the first m+ 1 rows and k columns of the matrix V and the notation V:,1:k represents
the first k columns of V . Hk+1,k represents an (k + 1)× k upper Hessenberg matrix, and hk+1,k refers
to a matrix element. Bars denote computed quantities (e.g., Q̄k−1 or R̄k−1). In cases where standard
notation in the literature is respected that may otherwise conflict with the aforementioned notation, this
will be explicitly indicated. Note that the residual vector at iteration k is denoted rk, whereas r:,k is the
k–th column of the matrix R.

2. Low-synchronization Gram-Schmidt Algorithms. Krylov subspace methods for solving
linear systems are often required for extreme-scale applications on parallel machines with many-core
accelerators. Their strong-scaling is limited by the number and frequency of global reductions in the form
of MPI Allreduce operations and these communication patterns are expensive [12]. Low-synchronization
algorithms are based on the ideas in Ruhe [6], and are designed such that they require only one reduction
per iteration to normalize each vector and apply projections. The Gram-Schmidt projector applied to
ak, the k-th column of the n×m matrix A in the factorization A = QR, can be written as

Pk−1ak = ak −Qk−1r1:k−1,k = ak −Qk−1 (QT
k−1Qk−1)−1 QT

k−1ak,

where the vector r1:k−1,k is the solution of the normal equations

(2.1) QT
k−1Qk−1r1:k−1,k = QT

k−1ak.

Ruhe [6] established that the MGS algorithm employs a multiplicative Gauss-Seidel relaxation scheme
with matrix splitting QT

k−1Qk−1 = Mk−1 − Nk−1, where Mk−1 = I + Lk−1 and Nk−1 = −LT
k−1. The

iterated CGS-2 is an additive Jacobi relaxation.
The inverse compact WY form was derived in Świrydowicz et al. [4], with strictly lower triangular

matrix Lk−1. Specifically, these inverse compact WY algorithms batch the inner-products together and
compute the last row of Lk−1 as

(2.2) Lk−1,1:k−2 = qT
k−1 Qk−2.

The approximate projector P
(1)
k−1 and correction matrix are given by

(2.3) P
(1)
k−1 = I −Qk−1 T

(1)
k−1 Q

T
k−1, T

(1)
k−1 = (I + Lk−1)−1 = M−1k−1,

respectively, and correspond to one iteration for the normal equations (2.1) with the zero vector as the
initial guess. Iteration k of the Gram-Schmidt algorithm with two Gauss-Seidel iterations is given as
Algorithm 2.1 . The compact and inverse compact WY forms of the correction matrix appearing in
(2.3) can be derived as follows. The projector can be expressed as

P
(1)
k−1 = ( I − qk−1q

T
k−1 ) ( I −Qk−2 T

(1)
k−2 Q

T
k−2 )

= I − qk−1q
T
k−1 −Qk−2 T

(1)
k−2 Q

T
k−2 + qk−1q

T
k−1 Qk−2 T

(1)
k−2 Q

T
k−2

where T
(1)
k−1 is the lower triangular matrix of basis vector inner products. The WY representation is

then given by the matrix form

(2.4) P
(1)
k−1 = I −

[
Qk−2 qk−1

] [ T
(1)
k−2 0

−qT
k−1 Qk−2 T

(1)
k−2 1

] [
QT

k−2
qT
k−1

]
For the inverse compact WY MGS, given the correction matrix T

(1)
k−1 generated by the recursion

(2.5) (T
(1)
k−1)−1 = I + Lk−1 =

[
(T

(1)
k−2)−1 0

qT
k−1Qk−2 1

]
,

1We note that the distinction between these two notations is crucial. For Uk, the size of the strictly upper triangular
matrix changes with k, whereas the size of Us remains fixed.
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it is possible to prove that

(2.6)

[
(T (1))−1k−2 0
qT
k−1Qk−2 1

][
T

(1)
k−2 0

−qT
k−1Qk−2T

(1)
k−2 1

]
=

[
Ik−2 0

0 1

]
.

Therefore, the lower triangular correction matrix T
(1)
k−1 = (I + Lk−1)−1 from Świrydowicz et al. [4] is

equivalent to the compact WY matrix L1 from Björck [7, page 313].

To prove that the correction matrix T
(2)
k−1 is close to a symmetric matrix, consider the matrix

T
(2)
k−1 = (I + Lk−1)−1 − (I + Lk−1)−1LT

k−1(I + Lk−1)−1 = M−1k−1
[
I +Nk−1M

−1
k−1
]
.

From this, we have T
(2)
k−1 = T

(1)
k−1 − T

(1)
k−1L

T
k−1T

(1)
k−1. From the block inverse (2.6),

T
(1)
k−1 =

[
T

(1)
k−2 0

−qT
k−1Qk−2T

(1)
k−2 1

]
, LT

k−1 =

[
LT
k−2 QT

k−2qk−1
0 0

]
.

By subtracting the matrices above, and dropping O(ε2) terms, the block symmetric matrix

(2.7) T
(2)
k−1 ≈

[
T

(2)
k−2 −QT

k−2 qk−1
−qT

k−1 Qk−2 1

]
is obtained and its singular values and eigenvalues remain close to one. However, as k increases

σmax(T
(1)
k−1) > 1 and σmin(T

(1)
k−1) < 1, and additionally T

(1)
k−1 is non-normal. We provide definitions

of the departure from normality in Section 4.
Algorithm 2.1 corresponds to MGS-2 (two passes of MGS) and is equivalent to two Gauss-Seidel

iterations in exact arithmetic; see Ruhe [6]. Following the MATLAB notation, the algorithm at the k-th
step generates QR factorization A:,1:k = Q:,1:k R1:k,1:k, for k = 1, . . . , where A:,1:k = [ A:,k−1, ak ]. The
matrices thus have dimensions A:,1:k: n× k, Q:,1:k: n× k, and R1:k,1:k: k × k. Two initial steps prime
a depth-two pipeline.

Algorithm 2.1 Inverse Compact WY Two-Reduce Gauss-Seidel Gram-Schmidt

1: w1 := a1, R1,1 = ‖w1‖2, q1 := w1/R1,1, Q1 = q1

2: R1,2 = qT
1 a2, w2 := a2 −R1,2 q1, Q2 = [Q1, w2 ]

3: for k = 3, . . . ,m do

4: [ LT
1:k−2,k−1, r

(0)
1:k−1,k] = [QT

k−2 wk−1 , QT
k−1 ak ] . Global Synchronization

5: γk−1 = ‖wk−1‖2

6: qk−1 = wk−1 / γk−1 . Lagged Normalization

7: r
(0)
1:k−1,k = r

(0)
1:k−1,k / γk−1

8: Lk−1,1:k−2 = Lk−1,1:k−2 / γk−1

9: r
(1)
1:k−1,k = ( I + Lk−1 )−1 r

(0)
1:k−1,k

10: uk = ak −Qk−1 r
(1)
1:k−1,k . First Gauss-Seidel

11: r
(2)
1:k−1,k = QT

k−1 uk . Global Synchronization

12: r
(3)
1:k−1,k = ( I + Lk−1 )−1 r

(2)
1:k−1,k

13: wk = uk −Qk−1 r
(3)
1:k−1,k . Second Gauss-Seidel

14: R1:k−1,k = r
(1)
1:k−1,k + r

(3)
1:k−1,k

15: Qk = [Qk−1, wk ]

16: end for

4
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The projection is computed after one iteration, where r
(1)
1:k−1,k is an approximate solution to the

normal equations, and can be expressed as

(2.8) uk = ak −Qk−1 r
(1)
1:k−1,k = ak −Qk−1 M

−1
k−1 r

(0)
1:k−1,k.

After two iterations, the projection is given by

(2.9) wk = ak −Qk−1r
(1)
1:k−1,k −Qk−1M

−1
k−1Nk−1r

(1)
1:k−1,k,

where Rk,k = ‖wk‖2 and qk = wk/Rk,k. The corresponding projector and correction matrix for two
iterations are then found to be

P
(2)
k−1 = I −Qk−1T

(2)
k−1Q

T
k−1, T

(2)
k−1 = (I + Lk−1)−1[I − LT

k−1(I + Lk−1)−1] = M−1k−1[I +Nk−1M
−1
k−1],

and the correction matrix is close to a symmetric matrix. The projection is applied across Steps 9
through 13 in Algorithm 2.1, and employs the following recurrence:

r
(0)
1:k−1,k = QT

k−1ak,

r
(1)
1:k−1,k = M−1k−1 r

(0)
1:k−1,k,(2.10)

r
(1)
1:k−1,k + r

(3)
1:k−1,k =

[
I +M−1k−1Nk−1

]
r
(1)
1:k−1,k.

It follows from (2.8) and (2.9) that the vectors uk and wk are related as

(2.11) wk = uk −Qk−1M
−1
k−1 Nk−1 r

(1)
1:k−1,k.

The orthogonality of the vectors uk and wk with respect to columns of Qk−1 is given as

QT
k−1uk = QT

k−1 ak −QT
k−1Qk−1M

−1
k−1Q

T
k−1ak = Nk−1M

−1
k−1Q

T
k−1ak,(2.12)

QT
k−1wk = QT

k−1uk −QT
k−1Qk−1M

−1
k−1Nk−1M

−1
k−1Q

T
k−1ak = (Nk−1M

−1
k−1)2QT

k−1ak.(2.13)

3. Rounding error analysis. We now present a rounding error analysis of the low-synchronization
Gram-Schmidt algorithm with two Gauss-Seidel iterations. Björck [13] and Björck and Paige [7] analyzed
the traditional MGS algorithm. Our approach is more akin to the analysis of the CGS-2 algorithm
presented by Giraud et al. [14]. We begin with the derivation of the formulas for the computed quantities
in the QR factorization by invoking an induction argument. In particular, the triangular solves with
Mk−1 = I + Lk−1 implied by Step 9 and Step 12 of Algorithm 2.1 are backward stable as shown by
Higham [15], where

(Mk−1 + Ek−1) x = b, ‖Ek−1‖2 ≤ O(ε) ‖Mk−1‖2.

The associated error terms and bounds for the recurrence relations in Algorithm 2.1 are then given as

r̄
(0)
1:k−1,k = Q̄T

k−1ak + e
(0)
k , ‖e(0)

k ‖2 ≤ O(ε)‖Q̄k−1‖2 ‖ak‖2,

(Mk−1 + E
(1)
k−1 ) r̄

(1)
1:k−1,k = r̄

(0)
1:k−1,k, ‖E(1)

k−1‖2 ≤ O(ε)‖Mk−1‖2,

r̄
(2)
1:k−1,k = Q̄T

k−1ūk + e
(2)
k , ‖e(2)

k ‖2 ≤ O(ε)‖Q̄k−1‖2 ‖ūk‖2,

(Mk−1 + E
(2)
k−1 ) r̄

(3)
1:k−1,k = r̄

(2)
1:k−1,k, ‖E(2)

k−1‖2 ≤ O(ε)‖Mk−1‖2.

Throughout the entire paper, we employ theO(ε) notation, as in Paige and Strakoš [3], which denotes
a small multiple of machine precision where the proportionality constant is a low degree polynomial in
the matrix dimension n, and the iteration k � n. Our analysis is based on standard assumptions on
the computer arithmetic and these parameters as used in Higham [16]. The computed coefficient vector

r̄
(1)
1:k−1,k satisfies

r̄
(1)
1:k−1,k = (Mk−1 + E

(1)
k−1)−1 r̄

(0)
1:k−1,k

5
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and its 2-norm satisfies the inequality

‖r̄(1)1:k−1,k‖2 ≤ ‖(Mk−1 + E
(1)
k−1)−1 ‖ Q̄T

k−1ak + e
(0)
k ‖2

≤ 1 +O(ε)

σk−1(Mk−1)− ‖E(1)
k−1‖2

‖Q̄k−1‖2 ‖ak‖2

≤
( 1 +O(ε) ) ‖M−1k−1‖2

1−O(ε)κ(Mk−1)
‖Q̄k−1‖2 ‖ak‖2

assuming that O(ε)κ(Mk−1) < 1. The computed intermediate coefficient vector r̄
(3)
1:k−1,k satisfies the

formula

r̄
(3)
1:k−1,k = (Mk−1 + E

(2)
k−1)−1 r̄

(2)
1:k−1,k,

and an upper bound is given by

‖r̄(3)1:k−1,k‖2 ≤ ‖(Mk−1 + E
(2)
k−1)−1‖2 ‖ Q̄T

k−1ūk + e
(2)
k ‖2‖2

≤
(1 +O(ε)) ‖M−1k−1‖2
1−O(ε)κ(Mk−1)

‖Q̄k−1‖2 ‖ūk‖2.

The computed vector ūk in Step 10 of Algorithm 2.1 satisfies

ūk = ak − Q̄k−1 r̄
(1)
1:k−1,k + e

(1)
k ,(3.1)

‖e(1)
k ‖2 ≤ O(ε)

[
‖ak‖2 + ‖Q̄k−1‖2 ‖r̄(1)1:k−1,k‖2

]
.(3.2)

Similarly, the computed form of the projection in Step 13 of Algorithm 2.1 satisfies

w̄k = ūk − Q̄k−1 r̄
(3)
1:k−1,k + e

(3)
k ,(3.3)

‖e(3)
k ‖2 ≤ O(ε)

[
‖ūk‖2 + ‖Q̄k−1‖2 ‖r̄(3)1:k−1,k‖2

]
.(3.4)

Summarizing (3.1) and (3.3), the lower bound for the norm of ūk is now determined from the recurrences
for the computed quantities

Ak−1 = Q̄k−1

(
R̄

(1)
k−1 + R̄

(3)
k−1

)
− Fk−1, Fk−1 =

[
e
(1)
1 + e

(3)
1 . . . , e

(1)
k−1 + e

(3)
k−1

]
,(3.5)

ak = Q̄k−1 r̄
(1)
1:k−1,k + ūk − e

(1)
k ,(3.6)

where Ak−1 is given as Ak−1 = [a1, . . . ,ak−1]. Combining these into an augmented matrix form, we
obtain

(3.7) Ak =
[
Ak−1, ak

]
= Q̄k−1

[
R̄

(1)
k−1 + R̄

(3)
k−1, r̄

(1)
1:k−1,k

]
−
[
Fk−1, e

(1)
k − ūk

]
,

which results in the bound

(3.8)
∥∥∥[ Fk−1, e

(1)
k

]∥∥∥
2

+ ‖ūk‖2 ≥
∥∥∥[ Fk−1, e

(1)
k − ūk

]∥∥∥
2
≥ σmin(Ak).

Thus, the 2-norm of the projected vector ūk appearing in (3.3) is bounded below as

(3.9) ‖ūk‖2 ≥ σmin(Ak)−
∥∥∥[ Fk−1, e

(1)
k

]∥∥∥
2
.

Invoking the inequalities (3.1), (3.3) and the upper bounds on ‖r̄(1)1:k−1,k‖2 and ‖r̄(3)1:k−1,k‖2, together with
the bounds ‖ūk‖2 ≈ ‖ak‖2 ≤ ‖Ak‖2, it follows that

(3.10)
∥∥∥[ Fk−1, e

(1)
k

]∥∥∥
2
≤ O(ε)

( 1 +O(ε) ) ‖M−1k−1‖2
(1−O(ε)κ(Mk−1))2

‖Q̄k−1‖22 ‖Ak‖2.

6
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In order to derive an upper bound for ‖Q̄T
k−1w̄k‖2/‖w̄k‖2, assume inductively that ‖Nk−1‖2 ≤ O(ε).

Note that the term O(ε) depends on the iteration number k. Then it is evident that ‖Q̄k−1‖2 ≤ 1+O(ε)
and ‖Mk−1‖2 ≤ 1 +O(ε), with σmin(Mk−1) ≥ 1−O(ε). Consequently, it follows that

κ(Mk−1) ≤ 1 +O(ε)

1−O(ε)
.

The term Q̄T
k−1 ūk can be written in the form

Q̄T
k−1ūk = Q̄T

k−1ak − Q̄T
k−1Q̄k−1r̄

(1)
1:k−1,k − Q̄

T
k−1 e

(1)
k

= Q̄T
k−1ak − (Mk−1 −Nk−1)(Mk−1 + E

(1)
k−1)−1 r̄

(0)
1:k−1,k − Q̄

T
k−1 e

(1)
k

= (Nk−1 + E
(1)
k−1)(Mk−1 + E

(1)
k−1)−1 r̄

(0)
1:k−1,k − Q̄

T
k−1 e

(1)
k − e

(0)
k .

Thus, the quotient ‖ Q̄T
k−1 ūk ‖2 / ‖ ūk ‖2 can be bounded as

(3.11)
‖Q̄T

k−1ūk ‖2
‖ūk ‖2

≤ ‖Nk−1 + E
(1)
k−1‖2‖(Mk−1 + E

(1)
k−1)−1‖2

‖r̄(0)1:k−1,k‖2
‖ūk ‖2

+
‖Q̄T

k−1e
(1)
k ‖2

‖ūk ‖2
+
‖e(0)

k ‖2
‖ūk ‖2

,

and therefore

(3.12)
‖Q̄T

k−1ūk ‖2
‖ūk ‖2

≤

[
(1 +O(ε))‖M−1k−1‖2
1−O(ε)κ(Mk−1)

]
‖Nk−1‖2

‖r̄(0)1:k−1,k‖2
‖ūk ‖2

+
‖Q̄T

k−1e
(1)
k ‖2

‖ūk ‖2
+
‖e(0)

k ‖2
‖ūk ‖2

.

The vector 2-norm ‖r̄(0)1:k−1,k‖2 can be bounded according to

(3.13) ‖r̄(0)1:k−1,k‖2 ≤ (1 +O(ε)) ‖Q̄k−1‖2 ‖ak‖2,
and together with (3.9) and (3.10)

‖r̄(0)1:k−1,k‖2
‖ūk ‖2

.
κ(Ak)

1−O(ε)κ(Ak)

under the assumption that O(ε)κ(Ak) < 1. After one Gauss-Seidel iteration, the bound for the loss of
orthogonality is proportional to

(3.14)
‖Q̄T

k−1 ūk ‖2
‖ūk ‖2

.
O(ε)κ(Ak)

1−O(ε)κ(Ak)
.

This corresponds to the upper bound on the loss of orthogonality originally derived by Björck [13] and
further refined by Björck and Paige [11] for the MGS algorithm.

Given (3.3), the projected vector is expanded as

Q̄T
k−1w̄k = Q̄T

k−1ūk − Q̄T
k−1Q̄k−1 r̄

(3)
1:k−1,k − Q̄

T
k−1 e

(3)
k

= Q̄T
k−1 ūk − (Mk−1 −Nk−1)(Mk−1 + E

(2)
k−1)−1 r̄

(2)
1:k−1,k − Q̄

T
k−1 e

(3)
k

= (Nk−1 + E
(2)
k−1)(Mk−1 + E

(2)
k−1)−1 r̄

(2)
1:k−1,k − Q̄

T
k−1 e

(3)
k − e

(2)
k .

Therefore, the quotient ‖Q̄T
k−1 w̄k ‖2 / ‖w̄k ‖2 is bounded as

‖Q̄T
k−1w̄k ‖2
‖w̄k ‖2

≤ ‖Nk−1 + E
(2)
k−1‖2‖(Mk−1 + E

(2)
k−1)−1‖2

‖r̄(2)1:k−1,k‖2
‖w̄k ‖2

+
‖Q̄T

k−1 e
(3)
k ‖2

‖w̄k ‖2
+
‖e(2)

k ‖2
‖w̄k ‖2

≤

[
‖Nk−1 + E

(2)
k−1‖2‖(Mk−1 + E

(2)
k−1)−1‖2

‖r̄(2)1:k−1,k‖2
‖ūk ‖2

+
‖Q̄T

k−1 e
(3)
k ‖2

‖ūk ‖2
+
‖e(2)

k ‖2
‖ūk ‖2

]
× ‖ūk‖2
‖w̄k‖2

.
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The term ‖r̄(2)1:k−1,k‖2 satisfies the bound

(3.15) ‖e(2)
k ‖ = ‖r̄(2)1:k−1,k − Q̄

T
k−1 ūk‖2 ≤ O(ε)‖Q̄k−1‖2‖ūk‖2.

After two Gauss-Seidel iterations, the essential orthogonality relation is obtained as

‖Q̄T
k−1w̄k ‖2
‖w̄k ‖2

≤

[
(1 +O(ε))‖M−1k−1‖2
1−O(ε)κ(Mk−1)

‖Nk−1‖2
‖Q̄T

k−1 ūk‖2 + ‖e(2)
k ‖2

‖ūk ‖2

+
‖Q̄T

k−1e
(3)
k ‖2

‖ūk ‖2
+
‖e(2)

k ‖2
‖ūk ‖2

]
× ‖ūk‖2
‖w̄k‖2

.(3.16)

By considering (3.3), an upper bound for the ratio ‖ūk‖2/‖w̄k‖2 is obtained as

(3.17)
‖w̄k‖2
‖ūk‖2

≥ ‖ūk‖2
‖ūk‖2

− ‖Q̄k−1‖2
‖r̄(3)1:k−1,k‖2
‖ūk‖2

−
‖e(3)

k ‖2
‖ūk‖2

,

and substituting the upper bound for ‖r̄(3)1:k−1,k‖2 this can be rewritten as

(3.18)
‖ūk‖2
‖w̄k‖2

≤ 1

1−O(ε)κ(Ak)
.

An analogous bound was derived in Giraud et al. [14, eq. 3.33] for the classical Gram-Schmidt algorithm
(CGS-2) with reorthogonalization. Thus, assuming O(ε)κ(Ak) < 1 and given Björck’s result (3.14), it
follows that the loss of orthogonality is maintained at the level of machine precision:

‖Q̄T
k−1 q̄k‖2 . O(ε).

4. Iterated Gauss-Seidel GMRES. The GMRES algorithm of Saad and Schultz [1] has a thirty-
five year history and various alternative formulations of the basic algorithm have been proposed over that
time frame. A comprehensive review of these is presented by Zou [17]. In particular, pipelined, s-step,
and block algorithms are better able to hide latency in parallel implementations; see, e.g., Yamazaki et
al. [18]. The low-synchronization MGS-GMRES algorithm described in Świrydowicz et al. [4] improves
parallel strong-scaling by employing one global reduction for each GMRES iteration; see Lockhart et
al. [12]. A review of compact WY Gram Schmidt algorithms and their computational costs is given
in [5]. Block generalizations of the DGCS-2 and CGS-2 algorithm are presented in Carson et al. [19,
20]. In [20] the authors generalize the Pythagorean theorem to block form and derive BCGS-PIO and
BCGS-PIP algorithms with the more favorable communication patterns described herein. An analysis of
the backward stability of the these block Gram-Schmidt algorithms is also presented. Low-synch iterated
Gauss-Seidel GMRES algorithms are now presented with one and two global reductions.

The low-synchronization DCGS-2 algorithm introduced by Świrydowicz [4] was employed to compute
the Arnoldi-QR expansion in the Krylov-Schur eigenvalue algorithm by Bielich et al. [5]. The algorithm
exhibits desirable numerical characteristics including the computation of invariant subspaces of maximum
size for the Krylov-Schur algorithm of Stewart [21]. In the case of iterated Gauss-Seidel GMRES, the
backward error analysis derived for the two-reduce Gauss-Seidel Gram-Schmidt Algorithm 2.1 can be
applied to the IGS-GMRES algorithms. In the case of the DCGS-2 algorithm, the symmetric correction
matrix Tk−1 was derived in Appendix 1 of [4] and is given by Tk−1 = I − Lk−1 − LT

k−1. This correction
matrix was employed in s-step and pipelined MGS-GMRES. When the matrix Tk−1 is split into I−Lk−1
and LT

k−1 and applied across two iterations of the DCGS-2 algorithm, the resulting loss of orthogonality
is empirically observed to be O(ε). Indeed, it was noted in Bielich et al. [5] that two iterations of classical
Gram-Schmidt (CGS) are needed to achieve vectors orthogonal to the level O(ε).

Two-Reduce IGS-GMRES. The iterated Gauss-Seidel GMRES algorithm (IGS-GMRES) pre-
sented in Algorithm 4.1 requires computing vk in Step 4 and a norm in Step 6, followed by vector scaling
in Step 7. Two Gauss-Seidel iterations are applied in Step 13 and 16. The normalization for the Krylov
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vector vk at iteration k represents the delayed scaling of the vector wk−1 in the matrix-vector product
vk = Awk−1. Therefore, an additional Step 8 is required, together with Step 9. The subdiagonal element
γk−1 in the Arnoldi-QR expansion (1.1) is computed in Step 6 and the remaining entries H1:k−1,k−1
are computed after the second Gauss-Seidel iteration in Step 16 of Algorithm 4.1. In order to lag the
normalization to the next iteration, the norm ‖wk−1‖2 is included in the global reduction in Steps 5 and
6.

Using MATLAB notation, the algorithm denoted as IGS-GMRES at the k-th iteration step computes
the Arnoldi expansion AV:,1:k−1 = V:,1:k H1:k,1:k−1. A lagged normalization leads to a pipeline of depth
two. Thus, two initial iteration steps prime the pipeline.

Algorithm 4.1 Low-Synchronization Two-Reduce Iterated Gauss-Seidel GMRES

1: r0 = b−A x0, ρ = ‖r0‖2, w1 = r0, v1 = w1/ρ
2: w2 = Av1, H1,1 = vT

1 w2, w2 = w2 −H1,1 v1, V2 = [ V1, w2 ]
3: for k = 3, . . . n do

4: vk = Awk−1

5: [ LT
1:k−2,k−1, r

(0)
1:k−1,k ] =

[
V T
k−2 wk−1, V

T
k−1 vk

]
. Global Synchronization

6: γk−1 = ‖wk−1‖2
7: vk−1 = wk−1 / γk−1

8: r
(0)
1:k−1,k = r

(0)
1:k−1,k / γk−1 . Scale for Arnoldi

9: r
(0)
k−1,k = r

(0)
k−1,k / γk−1

10: Lk−1,1:k−2 = Lk−1,1:k−2 / γk−1
11: vk = vk / γk−1

12: r
(1)
1:k−1,k = (I + Lk−1)−1 r

(0)
1:k−1,k

13: uk = vk − Vk−1 r
(1)
1:k−1,k . First Gauss-Seidel

14: r
(2)
1:k−1,k = V T

k−1 uk . Global Synchronization

15: r
(3)
1:k−1,k = (I + Lk−1)−1 r

(2)
1:k−1,k

16: wk = uk − Vk−1 r
(3)
1:k−1,k . Second Gauss-Seidel

17: H1:k−1,k−1 = r
(1)
1:k−1,k + r

(3)
1:k−1,k

18: Vk = [ Vk−1, wk ]

19: end for

For the least squares solution, we solve ym = argmin ‖ Hmym − ρ e1 ‖2 and then compute xm =
x0 + Vmym. The subdiagonal element γk−1 is computed as ‖wk−1‖2 in Algorithm 4.1. To reduce the
number of global synchronizations the recurrence

(4.1) ‖wk−1‖22 = ‖ uk−1 ‖22 − ‖ r
(2)
1:k−2,k−1 ‖

2
2

would have to be employed. Therefore, we have

‖wk−1‖2 ≥ ‖uk−1‖2 − ‖r(2)1:k−2,k−1‖2.

This means that the magnitude of the vector wk−1 is at least as large as the difference between the mag-

nitudes of the vectors uk−1 and r
(3)
1:k−2,k−1. Because ‖r(3)1:k−2,k−1‖2 is small, it follows that ‖wk−1‖2

is approximately equal to ‖uk−1‖2. Thus, if ‖r(3)1:k−2,k−1‖2 is small, then the inequality is a tight

bound, and ‖wk−1‖2 is approximately equal to ‖uk−1‖2. Therefore, we can say that ‖QT
k−1qk‖2 =

‖|QT
k−1wk‖2/‖wk‖2 is O(ε).
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Hybrid MGS-CGS GMRES. We now derive a new variant of Algorithm 4.1 that requires only
a single synchronization point. The vector wk−1 is available at Step 4 of Algorithm 4.1. Alternatively,
the vector vk = Auk−1 can be computed during the Gauss-Seidel iteration in Step 13, by replacing Step
11 in Algorithm 4.1, where vk = Awk−1 / γk−1, and wk−1 = uk−1 − Vk−2 V T

k−2 uk−1, i.e.,

(4.2) vk =
1

γk−1

[
Auk−1 − Vk−1H1:k−1,1:k−2 r

(2)
1:k−2,k−1

]
.

The recurrence for Step 11 is instead written as uk = A vk−1 − Vk−1V T
k−1A vk−1. It follows that

uk =
1

γk−1

[
A uk−1 − Vk−2 V T

k−2 A uk−1
]
− 1

γk−1
vk−1 vT

k−1 A uk−1

+
1

γk−1
Vk−1

(
I − V T

k−1 Vk−1
)
H1:k−1,1:k−2 r

(3)
1:k−2,k−1.

Noting that r
(0)
1:k−2,k = V T

k−2 A uk−1, it is possible to compute r
(1)
k−1,k as follows:

vT
k−1 A uk−1 =

1

γk−1

[
uk−1 − Vk−2 r

(2)
1:k−2,k−1

]T
A uk−1

=
1

γk−1

[
r
(0)
k−1,k − Lk−1,1:k−2 r

(0)
1:k−2,k

]
,

where Lk−1,1:k−2 = uT
k−1 Vk−2. This is “Stephen’s trick” from Świrydowicz et al. [4, eq. 4] and Bielich

et al. [5] applied to the Arnoldi-QR algorithm. The first projection step is then applied in Steps 9 and
11 using the compact WY form given in equation (2.4), i.e.,

(4.3) uk = A uk−1 / γk−1 −
[
Vk−2 vk−1

] [ I 0
−γ−1k−1 Lk−1,1:k−2 1

][
r
(0)
1:k−2,k
r
(0)
k−1,k

]
,

where the implied triangular inverse simplifies to ( I + Lk−1 )−1 = I − Lk−1, only when the last row
contains non-zero off-diagonal elements, as in Step 12 of Algorithm 4.2. The correction matrix then
takes the simplified form

T
(1)
k−1 =

[
I 0

−vT
k−1 Vk−2 1

]
,

where the spectral radius ρk−1 of the matrix M−1k−1Nk−1 is identical to that of the two-reduce algorithm.
The projection matrix is given by

P
(1)
k−1 = ( I − vk−1v

T
k−1 ) ( I − Vk−2 T (1)

k−1 V
T
k−2 )

= I − vk−1v
T
k−1 − Vk−2 V T

k−2 + vk−1v
T
k−1 Vk−2 V

T
k−2.

After substitution of this expression, it follows that

uk =
1

γk−1

[
Auk−1 − Vk−1 r

(1)
1:k−1,k

]
.

The one-synch hybrid MGS-CGS GMRES algorithm is presented in Algorithm 4.2. The algorithm can
be characterized by an MGS iteration at Step 13, combined with a lagged CGS iteration at Step 10.
The update of the Hessenberg matrix in Step 14 is the same as earlier. We note that our backward
stability analysis in the following section only applied to IGS-GMRES, Algorithm 4.1, with two global
synchronizations. A complete stability analysis of Algorithm 4.2 remains future work.

The triangular solve and matrix-vector multiply for the multiplicative iterations require (k−1)2 flops
at iteration k and thus lead to a slightly higher operation count versus the traditional MGS algorithm,
which is 2m2n for an n × m matrix. The matrix-vector multiplies in Step 4 of Algorithm 4.2 have
complexity 4nk at iteration k and the norm in Step 6 requires 2n flops, for a total of 4mn2+3/3n3+O(mn)
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Algorithm 4.2 Low-Synch One-Reduce hybrid MGS-CGS GMRES

1: r0 = b−A x0, ρ = ‖r0‖2, w1 = r0, v1 = w1/ρ
2: w2 = Av1, H1,1 = vT

1 w2, u2 = (u2 − v1 H1,1 ) / H1,1, V2 = [ V1, w2 ]
3: for k = 3, . . . n do

4:

[
r
(2)
1:k−2,k−1 r

(0)
1:k−1,k

‖uk−1 ‖22 r
(0)
k−1,k

]
= [ Vk−2, uk−1 ]T [ uk−1, Auk−1 ] . Global Synchronization

5: r
(3)
1:k−2,k−1 = ( I + Lk−2 )−1 r

(2)
1:k−2,k−1 . Normal equations

6: γk−1 =
{

( ‖uk−1 ‖22 − ‖ r
(2)
1:k−2,k−1 ‖22 )

}1/2

. Pythagorean thm

7: r
(0)
1:k−1,k = r

(0)
1:k−1,k / γk−1 . Scale for Arnoldi

8: r
(0)
k−1,k = r

(0)
k−1,k / γk−1

9: Lk−1,1:k−2 = r
(2)
1:k−2,k−1/ γk−1

10: wk−1 = uk−1 − Vk−2 r
(2)
1:k−2,k−1 . Jacobi iteration

11: vk−1 = wk−1 / γk−1

12: r
(1)
1:k−1,k =

[
I 0

−Lk−1,1:k−2 1

][
r
(0)
1:k−2,k
r
(0)
k−1,k

]
13: uk = Auk−1 / γk−1 − Vk−1 r

(1)
1:k−1,k . Gauss-Seidel iteration

14: H1:k−2,k−1 = r
(4)
1:k−2,k−1 + r

(3)
1:k−2,k−1 . Arnoldi expansion Hk−1

15: r
(4)
1:k−1,k = r

(0)
1:k−1,k − H1:k−1,1:k−2 r

(3)
1:k−2,k−1

16: end for

flops. The number of global reductions is decreased from k−1 at iteration k in MGS-GMRES to only one
when combined with the lagged normalization of the Krylov basis vectors. These costs are comparable
to the DCGS-2 algorithm requiring 4mn2 flops. Indeed, the MGS-CGS GMRES can be viewed as a
hybrid algorithm with Gauss-Seidel (MGS) and Jacobi (CGS) iterations.

The traditional MGS-GMRES algorithm computes an increasing number of inner products at each
Arnoldi iteration. These take the form of global reductions implemented as MPI Allreduce. A global
reduction requires O(logP ) time to complete, where P is the number of MPI ranks running on a
parallel machine. This can be further complicated by heterogeneous computer architectures based on
graphical processor units (GPUs). However, the single GPU performance of DCGS-2 is well over 200
GigaFlops/sec, and merges the matrix-vector products in Steps 10 and 13 above into one GPU kernel call
for increased execution speed. Recent improvements to MPI collective global communication operations,
that reduce latencies, include node-aware optimizations as described by Bienz et al. [22]. Among the
different parallel variants of the algorithms studied by Yamazaki et al. [18], the low-synch implementation
of MGS-GMRES exhibited the best strong scaling performance on the ORNL Summit supercomputer.

Backward stability. The MGS-GMRES algorithm was proven to be backward stable for the solu-
tion of linear systems Ax = b in [2] and orthogonality is maintained to O(ε)κ(Bk), where Bk = [r0, AV̄k]
and V̄k is the matrix generated in finite precision arithmetic at iteration k, with computed vectors as
columns. Our backward error analysis of the iterated Gauss-Seidel Gram-Schmidt Algorithm 2.1 is
also based on the QR factorization of the matrix B̄k. The error matrix, Fk, for the computed Arnoldi
expansion after k iterations is expressed as

AV̄k − V̄k+1H̄k+1,k = Fk,

and is a matrix that grows in size by one column at each iteration. Recall that the strictly lower triangular
matrix Lk is incrementally computed one row per iteration as in (2.2) and is obtained from the relation
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Fig. 1. fs1836 matrix. Arnoldi relative residual, spectral radius of M−1
k Nk and Paige’s ‖Sk‖ for one and two

Gauss-Seidel iterations.

V̄ T
k V̄k = I + Lk + LT

k . Thus it follows from the analysis in Section 3 that the loss of orthogonality is

(4.4) ‖ I − V̄ T
k V̄k ‖2 . O(ε).

The IGS-GMRES algorithm (Algorithm 4.1) thus maintains orthogonality to the level O(ε). Therefore,
it follows from Drkošová et al. [8], that under the reasonable assumption of the numerical non-singularity
of the coefficient matrix, the algorithm is also backward stable.

Our first experiment illustrates that the bounds derived in the previous sections properly capture
the behavior of the IGS-GMRES algorithm in finite precision. In the next section, we demonstrate that
our bounds continue to hold for a broad class of matrices. In particular, we examine the fs1836 matrix
studied by Paige and Strakoš [3]. Our Figure 1 should be compared with Figures 7.1 and 7.3 of their
(2002) paper. In order to demonstrate empirically that the backward error is reduced by the iteration

matrix M−1k−1Nk−1, the quantity ‖S(2)
k ‖2 is computed, as defined by Paige et al. [2], which measures

the loss of orthogonality for two iterations. The spectral radius ρk of the matrix M−1k Nk is highly

correlated with, and follows the metric, ‖S(2)
k ‖2. The metric ‖S(2)

k ‖2 is plotted for one and two Gauss-
Seidel iterations in Figure 1. The Arnoldi relative residuals are plotted as in Figure 7.1 of Paige and
Strakoš [3], which, for one iteration, stagnate near iteration forty-three at 1×10−7 before reaching O(ε).
For two Gauss-Seidel iterations, the (Arnoldi) relative residual continues to decrease monotonically and
the norm-wise relative backward error (1.3) reaches the level of machine precision: β(xk) = 6.6× 10−17

at iteration fifty. Most notably, the 2-norm of A is large, where ‖A‖2 = 1.2× 109.
A normal matrix X ∈ Cn×n satisfies X∗X = XX∗. Henrici’s definition of the departure from

normality

(4.5) dep(X) =
√
‖X‖2F − ‖Λ(X)‖2F ,

where Λ(X) ∈ Cn×n is the diagonal matrix containing the eigenvalues of X [23], serves as a useful
metric for the loss of orthogonality. While we find practical use for this metric for measuring the degree
of (non)normality of a matrix, there are of course other useful metrics to describe (non)normality. We
refer the reader to [23–25] and references therein. In particular, the loss of orthogonality is signaled by
the departure from normality as follows:

(4.6) dep2(M−1k ) = dep2(I + Lk) = ‖I + Lk‖2F − ‖I‖2F = ‖I‖2F + ‖Lk‖2F − k = ‖Lk‖2F .
12
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Note that for the iteration matrix M−1k Nk = (I +Lk)−1LT
k we have, and it is observed in practice, that

‖M−1k Nk‖2 ≤ ‖M−1k Nk‖F ≈ ‖Lk‖F up to the first order in ε.

5. Numerical Results. Numerically challenging test problems for GMRES have been proposed
and analyzed over the past 35 years. These include both symmetric and non-symmetric matrices.
Simoncini and Szyld [26] introduced a symmetric, diagonal matrix with real eigenvalues, causing MGS-
GMRES residuals to stagnate. Highly non-normal matrices from Walker [9] were used to explore the
convergence characteristics of HH-GMRES and then the non-normal fs1836 from Paige et al. [2] and
west0132 from Paige and Strakoš [3] encountering stagnation. In addition to these, we consider the
impcol e matrix from Greenbaum et al. [27]. Matrices with complex eigenvalues forming a disc inside
the unit circle such as the Helmert matrix from Liesen and Tichý [28], are also evaluated. Results
from a pressure continuity solver with AMG preconditioner and a circuit simulation with the ADD32
matrix from Rozložńık, Strakoš, and Tůma [29] are also presented. Numerical results were obtained
with Algorithm 4.1 and we verified that Algorithm 4.2 computations are comparable. In particular, the
diagonal elements Rk,k computed with the Pythagorean identity agree with those from Algorithm 4.1 to
at least 16 significant digits in all of our examples. In all cases, the orthogonality between the computed
vectors remains on the level O(ε), the smallest singular value of V̄k remains close to one, and the Krylov
basis vectors remain linearly independent. Therefore the norm of the true relative residual reaches the
level O(ε) at least by the final iteration, while the Arnoldi residual continues to decrease far below this
level.

Ill-Conditioned Diagonal Matrix. Simoncini and Szyld [26] consider several difficult and very
ill-conditioned problems that can lead to stagnation of the residual before converging to the level of
machine precision O(ε). In their example 5.5, they construct A = diag([1e− 4, 2, 3, . . . , 100]), a diagonal
matrix, and the right-hand side b = randn(100, 1) is normalized so that ‖b‖2 = 1. The condition number
of this matrix is κ(A) = 1×106 and ‖A‖2 = 100. With the MGS-GMRES algorithm, the relative residual
stagnates at the level 1× 10−12 after 75 iterations, when ‖Sk‖2 = 1, indicating that the Krylov vectors
are not linearly independent. In the case of the iterative Gauss-Seidel formulation of GMRES (with
two Gauss-Seidel iterations), the convergence history is plotted in Figure 2, where it can be observed
that the relative Arnoldi residual continues to decrease monotonically. Furthermore, the true relative
residual is plotted along with ‖Lk−1‖F . The latter indicates that a significant loss of orthogonality does
not occur.

Ill-Conditioned Symmetric and Non-Symmetric Matrices. Figures 1.1 and 1.2 from Green-
baum et al. [27] describe the results for STEAM1 (using the HH and MGS implementations of GMRES,
respectively). Similarly, Figures 1.3 and 1.4 from Greenbaum et al. [27] correspond to IMPCOLE.
They emphasize that the convergence behavior illustrated in these plots is typical of the MGS-GMRES
and HH-GMRES algorithms. The condition number of the system matrix is κ(A) = 2.855 × 107 and
‖A‖2 = 2.2× 107 for STEAM1, whereas κ(A) = 7.102× 106 and ‖A‖2 = 5.0× 103 for IMPCOLE.

Greenbaum et al. [27] observe that although orthogonality of the Krylov vectors is not maintained
near machine precision, as is the case for the Householder implementation, the relative residuals of the
MGS-GMRES algorithm are almost identical to those of the HH-GMRES until the smallest singular value
of the matrix V̄k begins to depart from one. At that point the MGS-GMRES relative residual norm begins
to stagnate close to its final precision level. This observation is demonstrated with the numerical examples
for matrices STEAM1 (N = 240, symmetric positive definite matrix used in oil recovery simulations) and
IMPCOLE (N = 225, nonsymmetric matrix from modelling of the hydrocarbon separation problem).
In both experiments x = (1, ..., 1)T , b = Ax and x0 = 0. The convergence histories for the iterated
Gauss-Seidel GMRES algorithm applied to these matrices are plotted in Figures 3 and 4. A significant
loss of orthogonality is not observed until the last iteration. Otherwise the computed metric ‖Lk−1‖F
and the true relative residual remain near O(ε). The Arnoldi residual continues to decrease and the
smallest singular value of Vk is 0.99985.

Highly Non-Normal Matrices. Bidiagonal matrices with a δ off-diagonal were studied by Embree
[30]. These are non-normal matrices where 0 < δ ≤ 1 and are completely defective for all δ 6= 0. A
defective matrix is a square matrix that does not have a complete basis of eigenvectors, and is therefore
not diagonalizable, and the pseudo-spectra [25] of these matrices are discs in the complex plane. Our
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IGS-GMRES algorithm leads to convergence after 16 iterations without stagnation and orthogonality
is maintained to machine precision as plotted in Figure 5. The matrix 2-norm is ‖A‖2 = 1.1 and
condition κ(A) = 1.2. Walker [9] employed the highly non-normal matrix in equation (5.1) to compare
the Gram-Schmidt and Householder implementations of GMRES. The element α controls both the
condition number κ(A) and the departure from normality dep(A) of the matrix of size n × n. Here
‖A‖2 = 2.0× 103.

(5.1) A =


1 0 · · · 0 α
0 2 · · · 0 0
...

...
...

...
0 0 · · · 0 n

 , b =


1
1
...
1


For large values of α, Walker found that the MGS residual would stagnate and that the CGS algorithm
led to instability. Furthermore, it was found that even CGS-2 with re-orthogonalization exhibited some
instability near convergence. HH-GMRES maintains O(ε) orthogonality as measured by ‖I − V̄ T

k V̄k‖F
and reduces the relative residual to machine precision.

In our experiments, the value α = 2000 leads to a matrix with κ(A) = 4× 105. The departure from
normality, based on Henrici’s metric, is large: dep(A) = 2000. The convergence history is displayed in
Figure 6. The loss of orthogonality remains near O(ε) and our upper bound is close for this problem.
Notably, the oscillations present in the relative residual computed by the CGS-2 variant are not present
in the iterated Gauss-Seidel convergence history plots, where the Arnoldi relative residual decreases
monotonically.

Paige and Strakoš [3] experimented with MGS-GMRES convergence for the non-normal matrices
FS1836 and WEST0132. In all their experiments b = (1, . . . , 1)T . The matrix FS1836 has dimension
n = 183, with ‖A‖2 ≈ 1.2 × 109, and κ(A) ≈ 1.5 × 1011. The matrix WEST0132 has n = 132,
‖A‖2 ≈ 3.2×105, and κ(A) ≈ 6.4×1011. Their Figure 7.1 indicates that the relative residual for FS1836
stagnates at 1×10−7 at iteration 43 when orthogonality is lost. The relative residual for the WEST0132
matrix also stagnates at the 1× 10−7 level after 130 iterations. These results contrast with our Figures
7 and 8. In both cases the Arnoldi residuals continue to decrease and ‖Lk−1‖F grows slowly or remains
close to machine precision. The smallest singular value remains at σmin(V̄k) = 1 for both matrices.

Complex Eigenvalues in a Disc. Liesen and Tichý [28] employ the Helmert matrix generated by
the MATLAB command gallery(’orthog’,18,4). Helmert matrices occur in a number of practical
problems, for example in applied statistics. The matrix is orthogonal, and the eigenvalues cluster around
−1, as in the right panels of their Figure 4.4. The worst-case MGS-GMRES residual norm decreases
quickly throughout the iterations and stagnates at the 12–th iteration, where the relative residual remains
at 1 × 10−10. From the convergence history plotted in Figure 9, the loss of orthogonality remains near
machine precision and the Arnoldi relative residual does not stagnate. The quantity ‖Lk−1‖F is an
excellent predictor of the orthogonality.

Nalu-Wind Model. Nalu-Wind solves the incompressible Navier-Stokes equations, with a pressure
projection. The governing equations are discretized in time with a BDF-2 integrator, where an outer
Picard fixed-point iteration is employed to reduce the nonlinear system residual at each time step. Within
each time step, the Nalu-Wind simulation time is often dominated by the time required to setup and
solve the linearized governing equations. The pressure systems are solved using GMRES with an AMG
preconditioner, where a polynomial Gauss-Seidel smoother is now applied are described in Mullowney
et al. [31]. Hence, relaxation is a compute time intensive component, when employed as a smoother.

The McAlister experiment for wind-turbine blades is an unsteady RANS simulation of a fixed-wing,
with a NACA0015 cross section, operating in uniform inflow. Resolving the high-Reynolds number
boundary layer over the wing surface requires resolutions of O(10−5) normal to the surface resulting
in grid cell aspect ratios of O(40, 000). These high aspect ratios present a significant challenge. The
simulations were performed for the wing at 12 degree angle of attack, 1 m chord length, denoted c,
aspect ratio of 3.3, i.e., s = 3.3c, and square wing tip. The inflow velocity is u∞ = 46 m/s, the density is

ρ∞ = 1.225 kg/m
3
, and dynamic viscosity is µ = 3.756× 10−5 kg/(m s), leading to a Reynolds number

Re = 1.5× 106. Due to the complexity of mesh generation, only one mesh with approximately 3 million
grid points was generated.
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The smoother is hybrid block-Jacobi with two sweeps of polynomial Gauss-Seidel relaxation applied
locally on a subdomain and then Jacobi smoothing for globally shared degrees of freedom. The coarsening
rate for the wing simulation is roughly 4× with eight levels in the V -cycle for hypre [32]. Operator
complexity C is approximately 1.6 indicating more efficient V -cycles with aggressive coarsening, however,
an increased number of solver iterations are required compared to standard coarsening. The convergence
history is plotted in Figure 10, where the loss of orthogonality is completely flat and close to machine
precision.

Circuit Simulation. Rozložńık et al. [29] study a typical linear system arising in circuit simulation
(the matrix from a 32-bit adder design). The matrix has ‖A‖2 = 0.05 and κ(A) = 213. In exact
arithmetic the Arnoldi vectors are orthogonal. However, in finite precision computation the orthogonality
is lost, which may potentially affect approximate solution. In their Figure 3, the authors have plotted
the loss of orthogonality of the computed Krylov vectors for different implementations of the GMRES
method (MGS, Householder and CGS). The comparable results for IGS-GMRES are plotted in Figure
11. The smallest singular value remains at σmin(V̄k) = 1.

6. Conclusions. The essential contribution of our work was to derive an iterative Gauss-Seidel
formulation of the GMRES algorithm due to Saad and Schultz [1] that employs approximate solutions
of the normal equations appearing in the Gram-Schmidt projector, based on observations of Ruhe [6]
and the low-synchronization algorithms introduced by Świrydowicz et al. [4].

The insights gained from the seminal work of Ruhe [6] led us to the conclusion that the modified
Gram-Schmidt algorithm is equivalent to one step of a multiplicative Gauss-Seidel iteration method
applied to the normal equations QT

k−1Qk−1 r1:k−1,k = QT
k−1ak. Similarly, the classical Gram-Schmidt

algorithm can be viewed as one step of an additive Jacobi relaxation. The projector is then given by
Pak = ak−Qk−1 Tk−1Q

T
k−1ak, where Tk−1 is a correction matrix. In the case of DCGS-2, with delayed

re-orthogonalization, Bielich et al. [5] split and apply the symmetric (normal) correction matrix across
two Arnoldi iterations and then apply Stephen’s trick to maintain orthogonality. For MGS, the lower
triangular matrix Tk−1 ≈ ( QT

k−1Qk−1 )−1 appearing in Świrydowicz et al. [4] was identified as the

inverse compact WY form with T
(1)
k−1 = (I + Lk−1)−1, where the strictly lower triangular matrix Lk−1

was computed from the loss of orthogonality relation

QT
k−1Qk−1 = I + Lk−1 + LT

k−1.

The matrix Tk−1 from the inverse compact WY form of the Gram-Schmidt projector was also present,
without having been explicitly defined, in the rounding error analysis of Björck [13], in Lemma 5.1. In
effect, the low-synchronization Gram-Schmidt algorithm presented in [4] represents one iteration step,
with a zero initial guess, to construct an approximate projector. When two iteration steps are applied,

the resulting correction matrix T
(2)
k−1 is close to a symmetric (normal) matrix:

T
(2)
k−1 = M−1k−1 [ I +Nk−1 M

−1
k−1 ] = T

(1)
k−1 − T

(1)
k−1 L

T
k−1 T

(1)
k−1.

However, the Gauss-Seidel formulation described by Ruhe [6] differs from MGS-2 in floating-point
arithmetic and the incremental MGS-2 iterative refinement steps allow us to prove backward stability.
When employed to compute the Arnoldi-QR expansion, the GMRES formulation with two Gauss Seidel
iterations results in an O(ε) backward error, preserving the orthogonality of the Krylov basis vectors
to the level O(ε), which is measured by ‖Lk−1‖F . This result is related to recent work on the iterative
solution of triangular linear systems using Jacobi iterations that may diverge for highly non-normal
triangular matrices [33].

Here, the departure from normality of the inverse of the correction matrix T
(1)
k−1 is a measure of the

loss of orthogonality. In this formulation, the matrix is lower triangular and can substantially depart

from normality as signaled by σ2
max(I + Lk−1) > 1. Because the correction matrix T

(2)
k−1 associated

with two iterations of Gauss–Seidel is close to a symmetric (normal) matrix, the singular values of the
inverse remain close to one. A departure from normality indicates a possible loss of numerical rank
for the Krylov basis vectors Vk with the smallest singular value decreasing from one. Our numerical
experiments, on challenging problems proposed over the past thirty-five years, demonstrate the robust
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convergence and low relative error achievable with our IGS-GMRES. Furthermore, with one iteration
step the loss of orthogonality is at most O(ε)κ(Bk) and for the algorithm with two iterations, it remains
near machine precision.

We have demonstrated that the iterated Gauss Seidel GMRES with two iterations is backward stable
and does not exhibit stagnation in the Arnoldi residual as defined by Greenbaum et al. [27]. This refers
to the approximate residual norm computed as ‖ρ e1 − Hk+1,kyk ‖2/ρ, where xk = x0 + Vkyk is the
approximate solution and the true residual is given by b−Axk. The Arnoldi residual does not stagnate
and will continue to decrease monotonically. In particular, the true relative residual will decrease towards
machine precision level and as noted by Paige et al. [2], the norm-wise relative backward error β(xk) will
be O(ε). In the original algorithm, the Arnoldi residual can stagnate when the Krylov vectors lose linear
independence and the smallest singular value of Vk decreases towards zero. For the iterative Gauss-Seidel
GMRES algorithm described herein, the singular values remain close to one and β(xk) remains close to
machine precision at convergence.

We have also presented a one-reduce algorithm which can be interpreted as an MGS-CGS hybrid.
This algorithm merits further study. Algorithm 4.1 is equivalent to the MGS-CGS GMRES when
Lk−2 = 0 at step k − 1 in exact arithmetic and produces similar results in finite precision (in terms
of the loss of orthogonality and Arnoldi residual). Our numerical experiments demonstrated that the
computed results are comparable to the two-reduce IGS-GMRES and diagonal elements Rk,k agree to
machine precision when the Pythagorean identity is employed. In particular, the loss of orthogonality
remains at O(ε) in all of the examples, implying backward stability according to Drkošová et al. [8].

We anticipate that the iterated Gauss-Seidel algorithms will facilitate the construction of backward
stable iterative solvers based on block Gram-Schmidt algorithms including enlarged Krylov subspace
methods and s-step methods. Mixed-precision formulations may also benefit. Randomization and sketch-
ing may be applied to the normal equations in the projector, with an oblique inner-product xTBTBx
and sketching matrix A, leading to even greater computational efficiency. In addition, these develop-
ments could be relevant for Anderson acceleration of nonlinear fixed-point iterations, which is currently
being applied to optimization algorithms in deep learning for artificial intelligence. The algorithms may
also be useful for computing eigenvalues with the Krylov-Schur algorithm of Stewart [21], where O(ε)
orthogonality is required to obtain an invariant subspace of maximal dimension. We plan to explore the
parallel strong-scaling performance of the IGS-GMRES and hybrid MGS-CGS GMRES for large-scale
scientific computation on exascale supercomputers.
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Fig. 2. Simoncini matrix. Arnoldi relative residual. Loss of orthogonality relation (4.6).

Fig. 3. steam1 matrix. Arnoldi relative residual. Loss of orthogonality relation (4.6).
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Fig. 4. impcol e matrix. Arnoldi relative residual. Loss of orthogonality relation (4.6).

Fig. 5. Embree δ matrix. Arnoldi relative residual. Loss of orthogonality relation (4.6).
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Fig. 6. Walker matrix. Arnoldi relative residual. Loss of orthogonality relation (4.6).

Fig. 7. fs1863 matrix. Arnoldi relative residual. Loss of orthogonality relation (4.6).
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Fig. 8. west0132 matrix. Arnoldi relative residual. Loss of orthogonality relation (4.6).

Fig. 9. Helmert matrix. Arnoldi relative residual. Loss of orthogonality relation (4.6).
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Fig. 10. Pressure matrix. Arnoldi relative residual. Loss of orthogonality relation (4.6).

Fig. 11. Add32 matrix. Arnoldi relative residual. Loss of orthogonality relation (4.6).
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