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Abstract The paper presets a coordinate-free analysis of deformation measures
for shells modeled as 2D surfaces. These measures are represented by second-
order tensors. As is well-known, two types are needed in general: the surface strain
measure (deformations in tangential directions), and the bending strain measure
(warping). Our approach first determines the 3D strain tensor E of a shear defor-
mation of a 3D shell-like body and then linearizes E in two smallness parameters:
the displacement and the distance of a point from the middle surface. The lin-
earized expression is an affine function of the signed distance from the middle
surface: the absolute term is the surface strain measure and the coefficient of the
linear term is the bending strainmeasure. The main result of the paper determines
these two tensors explicitly. It turns out that the derived surface strain measure
coincides with Naghdi’s surface strain measure, but the bending strain measure is

different from Naghdi’s bending strain measure (actually it seems to be new). In
the particular case of a Kirchhoff-Love deformation our bending strain measure
reduces to a tensor introduced earlier by Anicic & Léger in [2] (rather than to the
Koiter bending strain measure frequently used in this context).
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1 Introduction

The paper presents an analysis of deformations of thin shells. The ultimate goal is
the determination of appropriate deformation measures for linear shells modeled as
2D surfaces. It is well-known that the literature contains multiple suggestions in this
case, with different, often not entirely clear, motivations. Our motivation is based on
a 3D-2D approximation of the geometry of deformation. The main novel features in
our analysis are

– strict adherence to an index-free notation for curved surfaces and
– simultaneous linearization in small magnitude of deformation and small thick-

ness of the 3D shell.
Christoffel’s symbols and covariant derivatives do not occur in our analysis. It is

important to realize that the linearization of, say, the second fundamental form of the
deformed surface taken as a second-order tensor is different from the linearization of
the components in a given coordinate system on the undeformed surface. The point
is that the use of the same coordinate system on the deformed surface involves (im-
plicitly) a change of the basis vectors aα , α ¨ 1Ù 2Ù in the undeformed configuration
to the convected coordinate vectors ~α in the deformed configuration. The first way
of linearization takes the change of the basis vectors into account but the second not.
The details are presented in Section 5; the results in Theorems 5.3 and 5.5, respec-
tively. The first linearization leads to a linearized curvature tensor ρC apparently not
mentioned hitherto, while the second gives, standardly, Koiter’s bending strain tensor
ρKØWhen tested on a radial expansion of a sphere, the trace of ρC gives the correct
linearized value of the scalar curvature,while the trace of ρK gives the opposite value.
See Example 5.7. However, Sections 4 and 5 on the changes of geometric quantities
under deformations of a surface are included only for completeness, because it is not
apriori clear, why the change of curvature should be related to the elastic response of
the shell.

The main line of our argument motivates deformation measures for linear shells
by the 3D linear elasticity, which is governed by the 3D small strain tensor. We con-
sider a 3D shell-like body with the reference configuration

Ω Ú¨ !x ¨ ξ + tn�ξ� Ú ξ X SÙ −h ° t ° h)Ù

where S is the middle surface with the normal n Ù and where h ± 0 is the thickness
of the shell. If h is sufficiently small, a general point x X Ω can be written uniquely
as

x ¨ ξ + tn�ξ� where ξ X S and − h ° t ° hØ (1.1)
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The pair �ξ Ù t� is called normal coordinates of xØ A shear deformation is defined by
the 3D displacement u of Ω of the format

u�ξ + tn�ξ�	 ¨ ω �ξ� + tδ �ξ� (1.2)

where ω and δ some vector-valued functions defined on SØ Clearly, ω is the dis-
placement on the middle surface. The quantity δ is called the change of the director;
the deformation moves the normal fiber of direction n�ξ� in the reference configura-
tion into a fiber whose direction is n�ξ�+δ �ξ�. Generally, n�ξ�+δ �ξ� is different
from the normal ��ξ� to the deformed middle surface.

Next, we calculate the 3D small strain tensor of the displacement u in (1.2), i.e.,

E ¨
1

2
�∇u +∇uT�

where∇ is the 3D gradient with respect to the variable x X Ω. We use (1.1) to express
E as a function of ξ and t and of ω and δ and their surface derivatives, and linearize
E simultaneously when t and ω and δ and their surface derivatives are small. The
linearization is defined explicitly (but on a formal level); no ambiguities occur, see
Subsection 7.2. The result is

E �ξ + tn�ξ�	 ® εN�ξ� + tρD�ξ�Ù (1.3)

where

εN ¨
1

2
�P �¯ω +¯ωT�P + �δ +¯ωTn	� n + n � �δ +¯ωTn�	Ù

ρD ¨
1

2
�¯δ +¯δT −¯ωL − L¯ωT�Ø

Here¯ denotes the surface gradient relative to S and L ¨ ¯n the curvature of S.
The tensor εN is Naghdi’s surface strain tensor [12; Equation (7.69)]; the tensor ρD

seems to be new.
A linearization procedure similar to ours is undertaken by Naghdi in [12; Section

7], but he arrives at different results [12; Equation (7.69)], viz.,

E �ξ + tn�ξ�	 ® εN�ξ� + tρN�ξ�Ù (1.4)

where εN is as before, but

ρN ¨
1

2
�¯δ +¯δT + L�¯ω + δ � n� + �¯ω + δ � n�TL	Ù

which is called Naghdi’s bending strain tensor in the literature. I am not able to repro-
duce Naghdi’s result. Example 7.5 tests this discrepancy on a radial deformation of
a spherical shell, where E can be evaluated directly. The calculation confirms (1.3),
while (1.4) gives the opposite sign of the term linear in t Ø

The Kirchoff-Love deformations are the special case of shear deformations when
the normal fiber in the reference configuration is deformed into the normal fiber to
the deformedmiddle surface.AKirchoff-Lovedeformation is completely determined
by the displacement ω of the middle surface since δ ¨ −¯ωTn , as will be shown
below. The resulting asymptotics is

E �ξ + tn�ξ�	 ® ε �ξ� + tρAL�ξ� (1.5)
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where

ε ¨
1

2
P �¯ω +¯ωT�P Ù

ρAL ¨ −n ċ ¯2ω − εL − Lε

whereP is the projection onto the tangent space to themiddle surface in the reference
configuration. The tensor ε is used standardly for the Kirchoff-Love deformations.
The tensor ρAL, called the Anicic-Léger bending strain tensor in this paper, was
introduced by Anicic & Léger in [2], but their motivation is different. Most of the
authors use Koiter’s or Budiansky-Sanders bending strain tensors, but Example 7.5
confirms (1.5).

Outline of the paper. Section 2 summarizes the notation and gives a synoptic
view on the surface strain and bending strain tensors to be encountered. Section 3
presents a coordinate-free geometry of surfaces suitable for our purposes. Sections 4
and 5 determine the changes of geometric quantities under the deformationof surfaces
(most importantly of the curvature); Sections 4 exact and Section 5 linearized. Section
6 introduces a shell-like body Ω as mentioned above and calculates the important
formulas for the 3D gradients of the normal coordinates. Finally, Section 7 introduces
the shear and Kirchhoff-Love’s deformations ofΩÙ evaluates the exact value of E for
them and applies the linearization to obtain formulas outlined above.

2 Glossary of notation

General:

SÙ ξ ν−1 dimensional oriented surface inRν and its typical point
(in applications, ν ¨ 3 or 2)

n Ù P Ù L normal, projection onto the tangent space, and curvature
tensor for S

Ù̄ ¯2 surface gradient and second surface gradient for S
η Ú S r § deformation mappingS onto the deformed surface§
�Ù s Ù o normal, projection onto the tangent space, and curvature

tensor for §
F ¨ ¯η surface deformation gradient of η
n convected curvature of§
F−1 generalized inverse of a possibly noninvertible tensor
ω ¨ η − ξ displacement
k�G� ¨ k0�G� + k1�G� linearization of a differential function G ¨ G�ξ Ùω �k��
ΩÙ xÙ �ξ Ù t� solid (bulk) 3D shell with middle surface S ⊂ Ω, typical

point ofΩ and its normal coordinates �ξ Ù t� X S��−hÙh�
y Ú Ω r R

ν shear deformation or Kirchhoff-Love deformation of Ω
u Ú Ω r R

ν displacement for y
E small strain tensor of y
d the director of a shear deformation
δ ¨ d − n change of the director
l ¨ l�G� linearization of a differential function G ¨ G�ξ Ù� �k�Ù t�
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Review of the surface strain and bending strain tensors:

Shear deformations

Present analysis: Naghdi’s surface strain εN and the a new bending strain tensor ρD:

εN ¨
1

2
�P �¯ω +¯ωT�P + �δ +¯ωTn	 � n + n � �δ +¯ωTn�	

ρD ¨
1

2
�¯δ +¯δT −¯ωL − L¯ωT�

Naghdi: Naghdi’s surface strain εN and Naghdi’s bending strain tensor ρN:

ρN ¨
1

2
�¯δ +¯δT + L�¯ω + δ � n� + �¯ω + δ � n�TL	

Kirchhoff-Love deformations

Present analysis: classical surface strain ε and the Anicic-Léger bending strain tensor
ρAL:

ε ¨
1

2
P �¯ω +¯ωT�P

ρAL ¨ −n ċ ¯2ω − εL − Lε

Koiter, Ciarlet: classical surface strain ε and Koiter’s bending strain tensor ρK:

ρAL ¨ −n ċ ¯2ω

Budiansky-Sanders: classical surface strain ε and Budiansky-Sanders bending strain
tensor ρBS:

ρBS ¨ −n ċ ¯2ω −
1

2
�εL + Lε�

Invariant change of curvature

Present analysis: a new bending strain tensor ρC:

ρC ¨ −n ċ ¯2ω − L�¯ω −¯ωTn � n� − �¯ωT − n �¯ωTn�L

3 Geometry of surfaces, surface gradients of orders 1 and 2

This section presents the geometry of ν − 1 dimensional surfaces in R
ν . Central to

the approach are the first and second surface gradients as defined in [14, 13]. Our
approach has many features in common with [11, 8, 6, 3–4].

3.1 Surface and its tangent space By a surface we mean an oriented C2 mani-
fold of dimension ν − 1 (without boundary) embedded in R

ν . Thus a surface is a
pair �SÙn� where S ⊂ R

ν is the set of points and n Ú S r S
ν−1 is the unit

normal giving the orientation, to be specified below. By definition, S can be locally
parametrized by a C2 parametrizations π Ú dom π r S. Specifically, we require
that (i) π maps homeomorphically an open subset domπ of Rν−1 onto a relatively
open subset ranπ of S and (ii) ∇π�ξ� is an injective linear transformation from
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R
ν−1 into Rν for every ξ X dom π . The tangent space to S at ξ X clS is the linear

subspace of Rν of dimension ν − 1 given by

Tan�SÙξ� ¨ ran∇π�ξ� ª !∇π�ξ�a Ú a X R
ν−1)

where π is any local parametrization ofS such that ξ ¨ π�ξ� for some ξ X dom π .
The normal in the pair �SÙn� is any continuous function n Ú S r S

ν−1 with values
in the unit sphere such that n�ξ� is perpendicular to Tan�SÙξ� for every ξ X SØ
The class C2 smoothness ofS implies that n is of class C 1ØWe denote by P �ξ� the
orthogonal projection from R

ν onto Tan�SÙξ�Ù given by
P ¨ 1 − n � n Ø (3.1)

We often denote by S the oriented surface �SÙn�Ø

3.2 Definitions Let V be a finite dimensional vector space and f Ú S r V.
(i) We say that f is differentiable at ξ X S if f has an extension � Ú U r V

to an n -dimensional neighborhood U of ξ that is differentiable at ξ Ø The surface
gradient (¨ derivative)¯f �ξ� X Lin�Rν ÙV� of f at ξ is defined by

¯f �ξ��a� ¨ ∇� �ξ��P �ξ�a� (3.2)

for any a X R
ν . This definition is independent of the choice of the extension. The

element of V defined by
ā f �ξ� Ú¨ ¯f �ξ��a�

is called the directional derivative of f at ξ X S in the direction a X R
ν Ø

(ii) We say that f is twice differentiable at ξ X S if f is differentiable in some
neighborhood of ξ in SÙ and ¯f has the derivative �̄¯f ��ξ� at ξ . We identify
�̄¯f ��ξ� with an equally denoted bilinear form given by

�̄¯f ��ξ��aÙb� ¨ b̄� āf ��ξ�
and define the second surface gradient of f at ξ as a bilinear form¯2f �ξ� given by

¯2f �ξ��aÙb� ¨ �̄¯f ��ξ��PaÙb� (3.3)

for any aÙ b X R
ν Ø

We interpret the second-order tensors as linear transformations from R
ν into Rν Ø

We denote the set of all second-order tensors by Ten2. Define the functions L Ú S r
Ten2 and κ Ú S r R by

L ¨ ¯n Ù κ ¨ tr L

where tr denotes the trace of a second-order tensor. We call L the curvature ofS and
κ the scalar curvature ofS. For the boundary �SÙn� of the unit ball oriented by the
exterior normal n our choice of signs of L and κ provides L a positive-semidefinite
tensor and κ a positive number. See Example 3.7.

3.3 Proposition The curvature is symmetric and superficial, i.e.,

L ¨ LT and Ln ¨ 0Ø (3.4)

Moreover, we have

b̄Pa ¨ −�n ċ a�Lb − n�La ċ b� (3.5)

for any aÙ b X R
ν Û equivalently,

¯P �b� ¨ −Lb � n − n � Lb (3.6)

for any b X R
ν Ø
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3.4 Proposition If f Ú S r V is twice continuously differentiable then ¯2f is

symmetric, i.e.,

¯2f �aÙb� ¨ ¯2f �b Ùa� (3.7)

and we have

�̄¯f ��aÙb� ¨ ¯2f �aÙb� − �n ċ a�¯f �Lb�Ø (3.8)

3.5 Lemma (Normal extensions) If f Ú S r V is a class C2 function on S then

for each x X S there exists a class C2 extension of f � Ú U r V defined on some

neighborhood U of x in Rν such that

∇� �ξ��n�ξ�� ¨ 0 for every ξ X SP U Ø (3.9)

Proof Let Z be the linear subspace of Rν given by

Z ¨ !�x1ÙÜ Ùxν� X R
ν Ú x1 ¨ x2 ¨ Ü ¨ xν−1 ¨ 0)Ø

By [7; Subsection 3.1.19], each point ofS has a neighjorhood U in Rν , a diffeomor-
phism σ Ú U r R

ν of class C2, and a relatively open subset G of Z such that

σ�SP U� ¨ GØ

If f Ú S r V is a class C2 function on S then g Ú¨ f � σ−1 is a class C2 function
on G ⊂ Z Ø Let  Ú G � R r V be given by

 �x
1
ÙÜ Ùxν� ¨ g�x

1
ÙÜ Ùxν−1

�

for any �x1ÙÜ Ùxν� X G � RØ Then � Ú¨  � σ has the required properties. è
Proof of Propositions 3.3& 3.4 The properties (3.4) are well-known and their proof
is omitted. To prove (3.5), we note that it is easy to verify that the directional surface
gradient satisfies the product rule

ā�β � γ� ¨ � āβ� � γ + β � āγ

for any a X R
ν and any two vector fields β Ù γ Ú S r R

ν Ø Let aÙ b X R
ν be fixed.

From (3.1) we obtain
Pb ¨ b − n�n ċ b�Û

we then take the directional surface gradient ā, use the product rule and the defini-
tion of L to obtain (3.5).

To prove (3.8), we take an arbitrary point x of S, a class C2 extension � of f
to a neighborhood of x in R

ν satisfying (3.9) and a class C 1 extension � of P to a
neighborhood of x inRν . We can assume that � and � are defined on the same neigh-
borhoo U of x . Throughout the proof let a b be fixed vectors in R

ν Ø The definition
gives

¯f �ξ��a� ¨ ∇� �ξ��P �ξ�a� (3.10)

for any ξ X SP U Ø Let ga Ú U r V be defined by

ga�η� ¨ ∇� �η��� �η�a�Ù η X U Ø (3.11)

A differentiation in the direction � b yields

∇ga�� b� ¨ ∇2� �� aÙ� b� + ∇� �∇�� a��� b�� (3.12)
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throughout U . A comparison of the right-hand sides of (3.10) and (3.11) shows that
ga is a class C 1 extension of¯f �a� toU and hence the restriction of (3.12) toSPU

provides
�̄¯f �a���b� ¨ ∇2� �PaÙPb� + ∇� � �̄Pa��b��Ø (3.13)

The insertion of the formula

�̄Pa��b� ¨ −�n ċ a�Lb − n�La ċ b�Ù

which is a consequence of (3.5), into the second term on the right-hand side of (3.13)
and the use of (3.9) yieds

�̄¯f �a���b� ¨ ∇2� �PaÙPb� − �n ċ a�¯f �Lb�Ø (3.14)

By (3.3) then
¯2f �aÙb� ¨ ∇2� �PaÙPb�Ù

which proves (3.7) and reduces (3.14) to (3.8). è

3.6 Example (Surface gradients of the identity map) Let id Ú S r R
ν be the

identity map on S given by

id�ξ� ¨ ξ Ù ξ X SØ (3.15)

Then
¯ id ¨ P Ù ¯2 id ¨ −n � LØ (3.16)

Proof The identity map idRν , given by idRν �η� ¨ η for every η X R
ν Ù is a local

extension of idØ Then (3.2) provides¯ id ¨ ∇ id
Rν P ¨ P Ù which is (3.16)

1
. From

(3.6) we obtain

b̄� ā id� ¨ b̄�Pa� ¨ b̄�a − n�n ċ a�	 ¨ −Lb�n ċ a� − n�La ċ b�Ù

which in combination with (3.3) yields (3.16)
2
Ø è

3.7 Example (The curvature of a sphere) Let S ¨  ξ X R
ν Ú @ξ @ ¨ r( be the

sphere of radius r ± 0Ø This is a surface of dimension ν − 1 of class ð and we
have

n ¨ ξ¤r Ù

P ¨ 1 − ξ � ξ¤r 2Ù
L ¨ P ¤r Ù

¯2n ¨ −n � P ¤r 2

where the quantities on the left-hand sides are evaluated at a general point ξ X S.

Proof The expressions for n and P are immediate. To obtain the curvature,we use the
local normal extension % of n toRν given by %�η� ¨ η¤@η @ for every η X R

ν« 0(Ø
Then ∇%�η� ¨ �@η @2 − η � η	¤@η @3 and (3.2) yields L ¨ ¯n ¨ ∇% ¨ P ¤r Ø
Next we note that for sphere S we have n ¨ id ¤r and thus the expression for¯2n

follows from (3.16)2. è
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4 Deformation of a surface. Changes of normal and curvature

under deformation

This and the next sections determine the changes of the normal, projection onto the
tangent space and curvature under the deformation of a surface. Here we treat exact
formulas, the next section linearizations. The central result are the transformation for-
mulas for the curvature in Proposition 4.4. As a preparation, we introduce the surface
deformation gradient F and its generalized inverse F−1 as a particular case of the
generalized of a non-invertible linear transformation to be introduced below.

4.1 Deformation of surfaces Let �SÙn� be an oriented surface.We say that a map
η Ú S r R

ν is a deformationofS if η is twice continuously differentiable, injective,
and the surface deformation gradient of η Ù

F ¨ ¯η Ù (4.1)

has the rank equal to ν − 1 everywhere on SØ It follows that the pair �SÙn�, given
by

§ ¨ η�S�Ù � � η ¨ @ cofF@−1 cofFn (4.2)

is an oriented surface. Indeed, if π Ú dom π r S is a local parametrisation of S
then η �π is a local parametrisation of§; moreover, the tangent space to§ at � X §

is given by

Tan�§Ù�� ¨ F�ξ�Tan�SÙξ� where ξ ¨ η−1���Ø

To prove (4.2)2, we note that the tensor of cofactors is the unique continuous function
cof Ú Ten2 r Ten2 satisfying FT cofF ¨ �det F�1 for every F X Ten2Ø In the case
(4.1), we have FT cofF ¨ 0 from which cofFn ċ Ft ¨ 0 for every t X Tan�SÙξ�
and hence cofFn ċ � ¨ 0 for every � X Tan�§Ù��Ø

We call the pair �§Ù�� the image of �SÙn� under the deformation η . The gen-
eral unit normal to§ is, of course, locally±@ cofF@−1 cofFn , but our sign convention
for the image is always as in (4.2)

2
Ø

The formula
s ¨ 1 − � � �

gives the projection onto the tangent space of§ØWe further denote byo Ú § r Ten2

the curvature of §, given by
o ¨ ¯�Ù

where, of course,¯ denotes the surface differentiation with respect to§Ø Finally, we
denote byn Ú S r Sym the convected curvature, i.e., the pullback of o toSÙ given
by

n ¨ FT�o � η�F Ø

4.2 Generalized inverse To state the formulas that follow in a notationally simple
form, we now introduce the generalized inverse of any F X Ten2, invertible or not.
Namely, we shall prove that for each F X Ten2 there exists a unique F−1 X Ten2

such that
F−1F ¨ P Ù FF−1 ¨ s Ø (4.3)
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whereP is the orthogonal projection onto the orthogonal complement �kerF�þ of the
kernel of F and s is the orthogonal projection onto the range ranF of F Ø It suffices
to note that F maps bijectively �kerF�þ onto ranF and to put

F−1a ¨

8

>

>

<

>

>

:

F−1
0 a if a X ranF Ù

0 if a X �ranF�þÙ

where F−1
0 Ú ranF r �kerF�þ is the inverse of the restriction F

0
of F to �kerF�þØ

Clearly,
F ¨ FP ¨ s F Ù F−1 ¨ F−1s ¨ PF−1Ù

�F−1�−1 ¨ F Ø

If F is bijective, the generalized inverse coincides with the usual inverse of F Ø One
has 0−1 ¨ 0 and P−1 ¨ P for any orthogonal projection P Ø

If D is a Rν -valued bilinear form on Rν � R
ν and c X R

ν a vector, we define the
product c ċ D as a second-order tensor satisfying

�c ċ D�a ċ b ¨ c ċ D�aÙb� (4.4)

for every aÙ and b X R
ν Ø

4.3 Lemma If g Ú S r R
ν is a C2 function and a X R

ν a fixed vector then

�̄¯gTa� ¨ a ċ ¯2g − n � L¯gTa (4.5)

for ever throughoutSØ
Proof Let f Ú S r R be defined by f �ξ� ¨ g�ξ� ċ a for every ξ X SØ Then
¯f �b� ¨ ¯g�b� ċ a ¨ ¯gTa ċ b for every b X R

ν Ø Hence (3.8) yields, for every
c X R

ν Ù
c̄�¯gTa ċ b� ¨ c̄� b̄f �

¨ ¯2f �b Ùc� − �b ċ n�¯f �Lc�

¨ a ċ ¯2g�b Ùc� − �b ċ n� �L¯gTa ċ c�

(4.6)

where we have used¯2f ¨ a ċ¯2gØ Since b and c are arbitrary, we can restate (4.6)
as (4.5). è

The following important proposition expresses the quantities o and n in terms
of the second surface gradient of the deformation function η .

4.4 Proposition We have

o � η ¨ −F−T��� � η� ċ ¯2η�F−1Ù (4.7)

n ¨ −�� � η� ċ ¯2η Ø (4.8)

By (4.4), at each ξ X SÙ the right-hand sides of (4.7) and (4.8) are symmetric second-
order tensors S Ù T satisfying

a ċ Sb ¨ −��η� ċ ¯2η�F−1aÙF−1b�Ù

a ċ Tb ¨ −��η� ċ ¯2η�aÙb�Ù

for every aÙ b X R
ν Ù where the argument ξ has been omitted.
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Proof Since the normal to the deformed surface is always in the orthogonal comple-
ment of F , we have the relation FT�� � η� ¨ 0 at every poin ξ of SØ The surface
gradient of this relation provides

FT �̄� � η� + �¯FT��� � η� ¨ 0Ø

We now apply (4.5) with g ¨ η to evaluate the second term to obtain

FT�¯� � η� + �� � η� ċ ¯2η − n � LFT�� � η� ¨ 0Ø

We multiply this equation by F−1 from the right and combine with the chain rule to
obtain

FTo � η + �� � η� ċ �¯2η�F−1 − n � F−TLFT�� � η� ¨ 0Ø

A multiplication from the right by F−T and the use of F−Tn ¨ 0 gives (4.7). Equa-
tion (4.8) is a consequence. è

5 Linearized changes of normal and curvature under

deformation of a surface

This section gives approximate formulas for the changes of the normal, projection
onto the tangent space and curvature under the deformation η Ú S r § provided
the displacement

ω �ξ� ¨ η�ξ� − ξ Ù ξ X SÙ

and its surface gradients up to some order k are small. We recall that by the results
of Section 4 the quantities �Ùs ÙoÙ and n can be expressed as functions of η and its
surface derivatives up to order 2Ø Hence they can be expressed as functions of ω and
its surface derivatives up to order 2Ø

5.1 Linearization in small displacement If � Ú S r W is a function on S with
values in a finite dimensional vector space W and k ¨ 1 or 2, we denote by

� �k��ξ� ¨

8

>

>

<

>

>

:

�� Ù¯�� if k ¨ 1Ù

�� Ù¯� Ù¯2�� if k ¨ 2
(5.1)

the collection of surface derivatives of � up to order k. By a differential functionG of
� of order k with values in a finite dimensional vector space V we mean a function
G ¨ G�ξ Ù� �k�� where G is a continuously differentiable function on its domain
and with values in VØWe consider a field g onS with values in a finite dimensional
vector space V given by a differential function of order k with values in V

g�ξ� ¨ G�ξ Ùω �k��ξ��Ø

By the linearization¡ of the field g with respect to ω wemean a quantity � Ú S r V

given by

¡The concept of linearization applies verbatim to differential functions arbitrary order
kÙ with (5.1) replaced by

� �k��ξ� ¨ ���ξ�ÙÜ Ù¯k��ξ�	Ø (5.2)
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��ξ� ¨ k�G��ξ Ùω �k��ξ��

where k�G� is a differential function of ω of order k given by

k�G��ξ Ùω �k��ξ�� ¨ k
0
�G��ξ� + k

1
�G��ξ��ω �k��Ù

with k
0
�G� and k

1
�G� the differential functions of ω of order k defined by

k
0
�G��ξ� ¨ F�ξ Ù0�Ù k

1
�G��ξ��ω �k�� ¨

d G�ξ Ù sω �k��
d s

∣

∣

∣

s¨0

Ø

We note that k
1
�G��ξ��ω �k�� depends on ω �k� linearly. We then write

g ≈ k�G� as ω �k� r 0

or equivalently but more standardly

g ¨ k�G� + o�@ω �k�@�Ø

LetV,W and X finite-dimensional vector spaces and let �aÙb� w a�b be a bilinear
operation from V �W into X. The operation� can be, e.g., the product of two real
numbers, scalar or tensor products, etc. Let G and H be differential function with
values in V and W. Then we have Leibniz’s rule

k
1
�G � H� ¨ k

1
�G� � k

0
�H� + k

0
�G� � k

1
�H�Ø (5.3)

5.2 Proposition (Linearized changes of normal and tangential projection) We

have
� ≈ n −¯ωTn Ù (5.4)

s ≈ P +¯ωTn � n + n �¯ωTn (5.5)

as ω �1� r 0.

Proof Equation (5.4): We apply the operator k
1
to the equations

FT� ¨ 0 and � ċ � ¨ 1Ø

The use of Leibniz’s rule (5.3) and of the relations

k
1
�F� ¨ ¯ω Ù k

0
�F� ¨ P Ù k

0
��� ¨ n Ù

then gives
¯ωTn + P k

1
��� ≈ 0Ù n ċ k

1
��� ≈ 0Ø

The elimination of P from the first equation via P ¨ 1−n�n and the simplification
of the result by the second equation provides

¯ωTn + k
1
�n� ¨ 0

which is (5.4).
Equation (5.5) is obtained by the application of the operator k

1
to the equation

P ¨ 1 − n � n and the use of Leibniz’s rule in combination with (5.4). è
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5.3 Theorem (Linearized changes of plain and convected curvatures) We have

o ≈ L + ρCÙ (5.6)

n ≈ L + ρK (5.7)

as ω �2� r 0, where ρC and ρK are second-order tensors given by

ρC ¨ −n ċ ¯2ω − L�¯ω −¯ωTn � n� − �¯ωT − n �¯ωTn�LÙ

ρK ¨ −n ċ ¯2ω Ø

Proof Recall the identity map id Ú S r R
ν from (3.15).

Equation (5.6): The application of Leibniz’s rule (5.3) to the right-hand side of
(4.7) gives

k
1
�o� ¨ −k

1
�F−T��n ċ ¯2 id� − k

1
��� ċ ¯2 id−n ċ ¯2ω − �n ċ ¯2 id�k

1
�F−1�

(5.8)
where we have used

k
0
�¯2η� ¨ ¯2 idÙ k

1
�¯2η� ¨ ¯2ω (5.9)

since η ¨ id+ω Ø
We now linearize the individual terms occurring in (5.8). First, let us prove that

k1�F
−1� ¨ −P¯ω +¯ωTn � n Ø (5.10)

Indeed, the application of the operator k
1
to the equations F−1F ¨ P and F−1� ¨ 0

and Leibniz’s rule give

k
1
�F−1�P + P¯ω ¨ 0Ù k

1
�F−1�n −¯ωTn ¨ 0Ø

The elimination of P from the first equation via P ¨ 1−n�n and the simplification
of the result by the second equation provides (5.10). Further, Equations (3.16)

2
and

(5.4) provide
n ċ ¯2 id ¨ −LÙ k

1
��� ċ ¯2 id ¨ 0Ø (5.11)

The insertion of (5.10) and (5.11) into (5.8) gives (5.6).
Equation (5.7): We linearize (4.8) by Leibniz’s rule to obtain

k1�n� ¨ −k1��� ċ ¯
2 id ¨ −n ċ ¯2ω Ø (5.12)

Equations (3.16)
2
and (5.4) provide k

1
��� ċ ¯2 id ¨ 0 and thus (5.12) reduces to

(5.7). è

5.4 Coordinates and convected coordinates Let π Ú dom π r S be a local
parametrization of S defined on an open subset dom π of Rν−1 (Section 3.1). Each
ξ X S that belong also to the range ranπ of π can be written as ξ ¨ π�x1ÙÜ Ùxν−1�
where �x1ÙÜ Ùxν−1� X dom π are called local coordinates of ξ Ø Let aα Ú ranπ r
R
ν be the coordinate vectors, i.e.,

aα � π ¨ ãπ¤ãxiÙ aα�ξ� X Tan�SÙξ�Ù α ¨ 1ÙÜ Ùν − 1Ù

and let aα be the dual basis (in the tangent space). If η Ú S r § is a deformation,
then each point l X §Pη�ran π� can be written as l ¨ η�π�x1ÙÜ Ùxν−1�	where
�x1ÙÜ Ùxν−1� X dom π are called convected local coordinates of lØ We denote by
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~α�l�Ù ~
α�l� X Tan�§Ùl� the coordinate vectors corresponding to the convected

coordinates. Clearly,

~α � η ¨ Faα Ù ~α � η ¨ F−Taα (5.13)

whereF is the deformation gradient of η ØLet Lαβ be the components of L in the basis

aα and let oαβ be the components of o in the basis ~α of the convected coordinate
system i.e.,

L ¨ Lαβa
α � aβ Ù o ¨ oαβ~

α � ~β Ù

where we use the summation convention.

5.5 Theorem (Linearized changes of components of the curvature tensor) We have

oαβ ≈ Lαβ + ρK

αβ as ω �2� r 0Ù (5.14)

where ρK

αβ are the components of ρK in the basis aα .

Since the linearization of the components in (5.14) does not take into account the
change aα r ~α , the result does not coincide the linearization of o given by (5.6).
For the linearization of the components of o, see [10], [5; p. 340].

Proof Let nαβ be the components of n in the basis aα Ù i.e.,

n ¨ nαβa
α � aβ Ø

The definition of o and n and (5.13) show that oαβ ¨ nαβ Ø Consequently, n ¨
oαβa

α � aβ and hence

k
1
�n� ¨ k

1
�oαβ�a

α � aβ ¨ ρK

αβa
α � aβ

by (5.7). Equation (5.14) follows. è

The eigenvalues of the curvature tensor L are called the principal curvatures of
S. We recall that L is superficial, i.e., Ln ¨ 0 and hence at least one eigenvalue of L
is equal to 0Ø The remaining eigenvalues are denoted by κ1 ³ Ü ³ κν−1Ù where in
this descending sequence we take into account multiplicities. We define the principal
curvatures h

1
³ Ü ³ hν−1

of § analogously.

5.6 Theorem (Linearized changes of principal curvatures, Anicic [1]) LetS have

distinct principal curvature κα Ù α ¨ 1ÙÜ Ùν − 1Ùwith the corresponding normalized
eigenvectors of L denoted by eα . Then the linearizations of the principal curvatures

of § are

hα ≈ κα + ρCeα ċ eα ª κα + ρALeα ċ eα (5.15)

as ω �2� r 0, where ρAL is a second-order tensor given by

ρAL ¨ −n ċ ¯2ω − εL − Lε Ø (5.16)

Proof Since the principal curvatures hα are the eigenvalues of oÙ which we write
as hα ¨ ¼α�o�, the well-known continuity and differentiability properties of eigen-
values of a symmetric tensor (see, e.g., [9; Eq. (6.10), p. 125] or [15; Section 2, Eq.
(2.1)]) show that ¼α�o� are Lipschitz continuous functions of o and if ¼α�L� is a
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simple eigenvalue of LÙ then ¼α�o� is infinitely differentiable in some neighborhood
of L and the derivative at L is given by

ÿ¼α�L��B� ¨ Beα ċ eα

for every symmetric B X Ten2 where eα is the corresponding unit eigenvector of L.
The last formula in combination with the chain rule and (5.6) gives

k1�hα� ¨ k1�o�eα ċ eα ¨ ρALeα ċ eα Ø

Observing that ρALeα ċ eα ¨ ρALeα ċ eα Ù we obtain (5.15). è

5.7 Example (Comparison of linearized curvature tensors) We here consider an
isotropic expansion a sphere of radius r ± 0 in R

ν and the goal is to compare the
changes of ρKÙ ρBSÙ ρALÙ and ρC. Thus we denote by S the sphere of radius r as
in Example 3.7 and by § the sphere of radius � ± r Ø By the results of that example,
the curvature tensors of S and § are

L ¨ P ¤r Ù o ¨ s ¤� Ù

where P and s are the projections onto the tangents spaces of S and §Ø Let η Ú
S r § be the deformation given by η�ξ� ¨ ��¤r �ξ for every ξ X S so that the
displacement is

ω �ξ� ¨ vn�ξ�

where v ¨ � − r Ø Easy calculations bases on the equation ¯2n ¨ −n � P ¤r 2Ù
proved in Example 3.7, gives that

¯2ω ¨ −�v¤r �n � L ¨ −�v¤r 2�n � P Ø

Based on that we deduce

ρK ¨ �v¤r 2�P Ù ρBS ¨ 0Ù ρC ¨ ρAL ¨ −�v¤r 2�P Ø

We now linearize the difference o�l�− L�ξ�where l ¨ η�ξ� ¨ �r +v�ξ¤r using
calculations independent of the proof of Theorem 5.3. One finds that

o�l� − L�ξ� ¨ �1¤�r + v� − 1¤r	P �ξ�

and after a linearization of the difference 1¤�r + v� − 1¤r ≈ −v¤r 2Ùwe obtain

o�l� − L�ξ� ≈ −�v¤r 2�P �ξ�Ø

Thus only ρAL and ρC give the correct results.

5.8 Example (Normal expansion of a surface) The preceding example can be gen-
eralized. Let S be a general surface and consider a map η Ú S r R

ν given by

η�ξ� ¨ ξ + tn�ξ�Ù

ξ X SÙ where t X R is a given number. Using (3.16)1 we find that the surface
deformation gradient is

F�ξ� ¨ P �ξ� + tL�ξ�Ø

The normal to the deformed surface§ ¨ η�S� is, obviously,

��l� ¨ n�ξ�
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where l ¨ η�ξ�Ø The curvature of the deformed surface is the surface gradient of l
with respect to lØ By the chain rule, o ¨ ¯� ¨ F−T¯n and one finds

o ¨ �P + tL�−1L ª L�P + tL�−1Ø

Thus the change of curvature under the passage from S to § is

o�l� − L�ξ� ¨ L�P + tL�−1 − LØ

It is easy to verify thato�l�−L�ξ� is negative semidefinite if t ³ 0Ø Thus a genuine
normal expansion of S can only decease the curvature, an intuitively clear fact. The
linearized change of curvature is

o�l� − L�ξ� ≈ −tL2Ø

6 Shells-like bodies

The following notion is central for this and the next sections.
A shell-like body is a subset Ω of Rν of the form

Ω Ú¨ !x ¨ ξ + tn�ξ� Ú ξ X SÙ −h ° t ° h)Ù

where �SÙn� is an ν − 1-dimensional oriented surface and h a positive number. For
technical reasons we assume that S is bounded and that there exists a C2 oriented
surface , such that the closure clS of S in R

ν satisfies clS ⊂ ,. We call S
the middle surface of Ω and 2h the thickness of Ω. As before, we denote by P Ù
L Ú S r Ten2 the projection onto the tangent space of S, and the curvature of SÙ
respectively.

6.1 Proposition (Normal coordinates) If the thickness of a shell-like bodyΩ is suf-

ficiently small then the map x� Ú S � �−hÙh� r R
ν defined by

x��ξ Ù t� ¨ ξ + tn�ξ�Ù �ξ Ù t� X S � �−hÙh�Ù (6.1)

is a diffeomorphism onto Ω. The inverse map associates with any x X Ω an element

of S � �−hÙh� which we denote by �ξ��x�Ù t��x�	. We have

∇ξ��x� ¨ �P �ξ� + tL�ξ�	−1Ù ∇t��x� ¨ n�ξ� (6.2)

for any x X ΩÙ where ξ ¨ ξ��x� and where the right-hand side of (6.1)
1
is the

generalized inverse of the noninvertible tensor P + t LÙ see Subsection 4.2. We call

the parameters ξ��x�Ù t��x� the normal coordinates of xØ
Throughout this chapter,Ω denotes a shell-like body that admits normal coordinates
�ξ�Ù t��Ø
Proof The normal coordinates are solutions of the equation

x ¨ ξ��x� + t��x�n�ξ��x�	 (6.3)

Let , be the extension of clS as in the definition of a shell-like body. Consider an
extension /� Ú , � �−hÙh� r R

ν of x� given by the right-hand side of (6.1) for
every �ξ Ù t� X , � �−hÙh�Ø The derivative of /� at ξ X , and t ¨ 0 is given by
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∇/��ξ Ù0��aÙb� ¨ P �ξ�a + b��ξ�

for every a X Tan�,Ùξ� and b X RÙwhere we have used that the surface gradient of
the identity map id, on, is¯ id, ¨ P Ù see (3.16). From the definition of a surface
one readily deduces that ∇/��ξ Ù0� maps Rν bijectively onto R

ν for any ξ X ,Ø
Thus by the inverse function theorem, for every point ξ X ,, /� has a continuously
differentiable inverse /−1

� Ú Oξ r ,� R defined in some neighborhood of ξ . Since
clS is compact, a standard compactness argument shows that /� is invertible in some
neighborhood of clSØHence x� has a continuously differentiable inverse inΩ if h is
sufficiently small. To prove (6.2), we differentiate (6.3) in the direction c X R

ν Ø The
definition of L provides

c ¨ ∇ξ��c� +∇t��c�n�ξ�� + t�L�ξ��∇ξ��c�

where we have omitted the argument xØ Splitting the last equation into the tangential
and normal components and solving for ∇ξ��x� and ∇t��x� we obtain (6.2). è

7 Linearized strain tensors: the shear andKirchhoff-Love’s cases

This section deals with shear deformations and Kirchhoff-Love’s deformations of a
shell-like body ofΩ. The strain tensor E is determined for these two types of defor-
mations as functions of the normal coordinates �ξ Ù t� of a point x X ΩØ The objective
is to linearize E under the assumption that t and the displacement are small.

7.1 Shear deformations A map y Ú Ω r R
ν is said to be a shear deformation if

y�x� ¨ η�ξ� + td �ξ�

for any x X Ω with the normal coordinates �ξ Ù t�, where η Ú S r R
ν is a deforma-

tion of S (see Subsection 4.1) and d Ú S r R
ν is a map.

The function d gives the direction after the deformation of the material line that
was normal to the middle surface before the deformation.

The bulk displacement u and the bulk strain tensor E of any deformation are
given by

u�x� ¨ y�x� − xÙ x X ΩÙ

and

E ¨
1

2
�∇u +∇uT�Ø

One obtains
u�x� ¨ ω �ξ� + tδ �ξ�

where �ξ Ù t� are the normal coordinates of x X Ω and

ω �ξ� ¨ η�ξ� − ξ Ù δ �ξ� ¨ d �ξ� − n�ξ� (7.1)

are the displacement of the middle surface and the change of d Ù respectively. A dif-
ferention using (6.2) provides

∇u ¨ �¯ω + t¯δ��P + tL�−1 + δ � n Ø (7.2)
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The derivative in (7.2), and hence also E Ùdepends on �ω �1�Ùδ �1�Ù t� (see the notation
in (5.1)). In addition, there is a parametric dependence on ξ through n , P and LØ
The dependence on t is nonlinear. It will be seen below that in the Kirchhoff-Love
case∇u depends on �ω �2�Ù t� (and the parametric dependence on ξ ). For thin shells
@t@ is small. In addition, we shall consider small displacements. Hence we linearize

simultaneously in �ω �1�Ùδ �1�Ù t� or in �ω �2�Ù t�. The following format covers these
two cases (and more).

7.2 Linearization in �� �k�Ù t� Let � Ú S r W be a function on S with values
in a finite dimensional vector space W and k ¨ 1 or 2. By a differential function G
of �� Ù t� of order k with values in a finite dimensional vector space V we mean a
function G ¨ G�ξ Ù� �k�Ù t� where G is a continuously differentiable function on
its domain and with values in VØ We consider a field g on S with values in a finite
dimensional vector space V given by a differential function of �� Ù t� of order k with
values in V

g�ξ Ù t� ¨ G�ξ Ù� �k��ξ�Ù t�Ø

By the linearization¡ of the field g with respect to �� Ù t� we mean a quantity � Ú
S r V given by

��ξ� ¨ l�G��ξ Ù� �k��ξ�Ù t�

where l�G� is a differential function of �� �k�Ù t� of the following form

l�G��ξ Ù� �k�Ù t� ¨

¨ l
00
�G��ξ� + l

10
�G��ξ��� �k�� + t l

01
�G��ξ� + t l

11
�G��ξ��� �k��Ø

(7.3)

Here
l
00
�G��ξ� ¨ G�ξ Ù0Ù0�Ù

l10�G��ξ��� �k�� ¨
ãG�ξ Ù s� �k�Ù0�

ãs
Ù

t l
01
�G��ξ� ¨

ãG�ξ Ù0Ùτ t�
ãτ

Ù

t l
11
�G��ξ��� �k�� ¨

ã2G�ξ Ù s� �k�Ùτ t�
ãsãτ

where the derivatives are evaluated at s ¨ τ ¨ 0. We note that l
10
�G��ξ��� �k��

and l
11
�G��ξ��� �k�� depend on � �k� linearly. We express the linearization by the

relation
g ≈ l�G� as �� �k�Ù t� r 0Ù

or equivalently but more standardly, by

g ¨ l�G� + o�@� �k�@ + t�Ø

We now apply this formalism to � ¨ �ω Ùδ� and to a differential function G

given by the right-hand side of (7.1) to obtain the following result.

¡The concept of linearization applies verbatim to differential functions arbitrary order
kÙ with (5.1) replaced by (5.2).
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7.3 Proposition We have the following approximate formula for the strain tensor E

of a shear deformation at a point x X Ω with normal coordinates �ξ Ù t�:

E ® εN + tρD as �ω �1�Ùδ �1�Ù t� r 0Ù (7.4)

where

εN ¨
1

2
�¯ω +¯ωT + δ � n + n � δ�Ù (7.5)

ρD ¨
1

2
�¯δ +¯δT −¯ωL − L¯ωT� (7.6)

where all quantities are evaluated at ξ Ø
Proof We first linearize the expression (7.2). Let us preliminarily prove that

d �P + tL�−1

dt

∣

∣

∣

t¨0

¨ −LØ (7.7)

Indeed, if t X R is sufficiently close to 0 then ker�P + tL� ¨ nþ is the orthogonal
complement of n and hence � ker�P + tL�	þ ¨ ranP Ø Thus, invoking the definition
of the generalized inverse, we see that (4.3)

1
reads

�P + tL�−1�P + tL� ¨ P Ø

The differentiation at t ¨ 0 gives (7.7). To linearize the right-hand side of (7.2), let
� ¨ �ω Ùδ� and let G be the differential function given by

G�ξ Ù� �1�Ù t� ¨ �¯ω + t¯δ��P + tL�−1 + δ � n Ø

We now linearize G with respect to �� �1�Ù t� by (7.3). Clearly,

l00�G��ξ� ¨ 0Ù l01�G��ξ� ¨ 0

and one obtains directly from definition with the help of (7.7) that

l10�G��ξ��� �k�� ¨ ¯ω + δ � n Ù l11�G��ξ��� �k�� ¨ ¯δ −¯ωLØ

Hence the linearized form the expression for∇u is

∇u ≈ ¯ω + δ � n + t�¯δ −¯ωL�Ø

A symmetrization gives (7.4), (7.5) and (7.6). è

7.4 Remark In [12; Equation (7.69)] Naghdi derives a different approximate expres-
sion for the components γ ij of E Ø In our notation, he derives

E ® εN + tρN as �ω �1�Ùδ �1�Ù t� r 0Ù (7.8)

where εN is as before, but

ρN ¨
1

2
�¯δ +¯δT + L�¯ω + δ � n� + �¯ω + δ � n�TL	Ù

which is called Naghdi’s bending strain tensor in the literature. It is often used with
the additional realistic restriction δ ċ n ¨ 0Ù in which case we have [5; p. 365], [4]

ρN ¨
1

2
�P¯δ +¯δTP + L¯ω +¯ωTL	Ø (7.9)

The following example is devoted to this discrepancy.
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7.5 Example Let Ω be a solid spherical shell with the middle surface Sν−1 and 2h ,
0 ° h ° 1, i.e.,

Ω ¨ !x X R
ν Ú @@x@ − 1@ ° h)Ø

Let y Ú Ω r R
ν be a deformation given by

y�x� ¨ c�r − 1�x¤@x@ + x

where c is a constant. The corresponding displacement, strain tensor and the gradient
of displacement are

u�x� ¨ c�r − 1�x¤@x@Ù E �x� ¨ ∇u�x� ¨
c�r − 1��@x@21 − x � x	

@x@3
Ø

In terms of the normal coordinates �ξ Ù t�Ù ξ ¨ x¤@x@Ù t ¨ @x@ − 1 we have

E �x� ¨ c�r − 1�P ¤�t + 1� (7.10)

where P ¨ 1 − ξ � ξ is the projection onto the tangent space of Sν−1Ø It is easy to
see that y is a shear deformation of Ω with

ω ¨ c�r − 1�ξ ¨ cÙ δ ¨ 0Ø

The linearization of (7.10) in �ω Ù t� is

E �x� ¨ c��r − 1�P − t�r − 1�P 	Ø (7.11)

Since¯ω ¨ �r − 1�P and since the curvature tensor of Sν−1 is P (see Example 3.7)
we find that

ε ¨ �r − 1�P Ù ρAL ¨ −�r − 1�P Ù ρK ¨ �r − 1�P Ø

Equation (7.11) then shows that Equation (7.4) holds, but (7.8) does not.

7.6 Kirchhoff-Love’s deformations A map y Ú Ω r R
ν is said to be a Kirchhoff-

Love’s deformation if
y�x� ¨ η�ξ� + t��η�ξ��

for any x X Ω with the normal coordinates �ξ Ù t�Ùwhere η Ú S r R
ν is a deforma-

tion of S and � is the normal to the deformed surface§ ¨ η�S�Ø
The Kirchhoff-Love’s deformation is a special case in which the normal line be-

fore the deformation is mapped into a normal line to the deformed middle surface,
i.e., d ¨ �Ø The Kirchhoff-Love hypothesis is usually formulated for small defor-
mations; in the verbal statements this restriction is missing. The reader is referred to
e.g., [16; Assumption 4, Section 3.1], [5; p. 336 and p. 372] for essentially the same
assumptions.

The bulk displacement of a Kirchhoff-Love deformation is

u�x� ¨ ω �ξ� + t���η�ξ�� − n�ξ�	 (7.12)

where ω is given by (7.1)
1
. We now differentiate (7.12) with the help of (6.2); the

subsequent use of the chain rule and the definition of the curvature of § provides

∇u ¨ �¯ω + t��o � η�¯η − L	
�P + tL�−1 + �� � η − n� � n Ø (7.13)
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Equations (4.2)2 and (4.7) expresses � and o as a functions of η and its derivatives
up to order 2 and hence also of ω and its derivatives up to order 2. Thus the right-
hand side of (7.13) can be interpreted as an implicitly defined differential function of
�ω �2�Ù t�.

Thus we can apply the linearization of Subsection 7.2 to � Ú¨ ω and G given
by the right-hand side of (7.13) to obtain the following result.

7.7 Proposition We have the following approximate formula for the strain tensor E

of a Kirchhoff-Love deformation at a point x X Ω with normal coordinates �ξ Ù t�:

E �u� ® ε + tρAL + tρD as �ω �2�Ù t� r 0Ù

where

ε ¨
1

2
P �¯ω +¯ωT�P Ù

ρAL ¨ −n ċ ¯2ω − εL − Lε

where all quantities are evaluated at ξ ØWe note that ρAL has already been encoun-

tered in (5.16).

Proof Let G ¨ G�ξ Ùω �2��ξ�Ù t� be the differential function implicitly defined by
the right-hand side of (7.13) as explained above. One immediately obtains

l
00
�G��ξ� ¨ 0Ù l

01
�G��ξ� ¨ 0Ø (7.14)

To calculate l
10
�G��ξ��ω �2��Ù we observe that

G�ξ Ùω �2�Ù0� ¨ ¯ω + �� � η − n� � n

and that

l
10
�G��ξ��ω �2�� ¨

ãG�ξ Ù sω �2�Ù0�
ãs

∣

∣

∣

s¨0

¨ k�¯ω + �� � η − n� � n	

where k�ċ� is the linearization in ω defined in Subsection 5.1. Using (5.4), we find
from the last expression, that

l
10
�G��ξ��ω �2�� ¨ ¯ω −¯ωTn � n Ø (7.15)

We shall now calculate l
11
�G��ξ��ω �2��Ø A calculation based on (7.13) in combi-

nation with (7.7) yields

ãG�ξ Ùω �k�Ùτ t�
ãτ

∣

∣

∣

τ¨0

¨ t�−¯ωL + �o � η�¯η − L	Ø

Next we observe that

ã2G�ξ Ù sω �2�Ùτ t�
ãsãτ

∣

∣

∣

τ¨s¨0

¨ t k�−¯ωL + �o � η�¯η − L	Ø

We have
k�−¯ωL + �o � η�¯η − L	 ¨ −¯ωL + k�H� (7.16)

where
H ¨ �o � η�¯η − LØ
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We calculate k�H� by a method similar to that in the proof of Theorem 5.3. Namely,
from (4.7) we find that

H ¨ −F−T��� � η� ċ ¯2η	Ø

We linearize the products on the right-hand side of the last relation by Leibniz’s rule
(5.3) in combination with (5.9) to obtain

k1�H� ¨ −k1�F
−T��n ċ ¯2 id� − k1��� ċ ¯

2 id−n ċ ¯2ω (7.17)

We now insert k
1
�F−T� ¨ k

1
�F−1�T from (5.10),¯2 id and n ċ¯2 id from (3.16)

2
,

and k
1
��� from (5.4) into (7.17). We obtain

k
1
�H� ¨ �n �¯ωTn −¯ωTP �L − n ċ ¯2ω Ø

By (7.16) then

k�−¯ωL + �o � η�¯η − L	 ¨ −P �¯ω +¯ωT�L − n ċ ¯2ω

and consequently

t l
11
�ξ��� �k�� ¨ −t�n ċ ¯2ω + P �¯ωT +¯ω�L	Ø (7.18)

Thus (7.14), (7.15) and (7.18) yield

∇u ≈ ¯ω −¯ωTn � n − t�n ċ ¯2ω + P �¯ωT +¯ω�L	

A symmetrization provides the result. è

7.8 Remark (Consistency) The linearization of the right-hand side of (7.12) in ω

using (5.4) gives
u ≈ ω − t¯ωTn Ø

In this approximation, a Kirchhoff-Love deformation is a shear deformation with

δ ¨ −¯ωTn Ø (7.19)

Let us show that with the choice (7.19), the bulk stain tensor E of a shear defor-
mation from Proposition 7.3 reduces to that of a Kirchhoff-Love deformation from
Proposition 7.7. That is, let us prove that

εN ¨ ε Ù ρD ¨ ρALØ (7.20)

Equation (7.20)
1
is immediate. To obtain (7.20)

2
Ù we have to determine¯δ Ø By the

product rule,
¯δ ¨ − �̄¯ωT�n −¯ωTLØ

The evaluation of the first term on the right-hand side by (4.5) with ψ ¨ ω provides

¯δ ¨ −n ċ ¯2ω + n � L¯ωTn −¯ωTLØ (7.21)

The insertion into (7.6) provides (7.20)2Ø
Next, let us show that with the choice (7.19), we have

ρN ¨ −n ċ ¯2ω Ø (7.22)

Indeed, from (7.21) we obtain

P¯δ ¨ −n ċ ¯2ω −¯ωTL

and the insertion into (7.9) provides (7.22).
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