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COSIMPLICIAL COHOMOLOGY OF RESTRICTED

MEROMORPHIC FUNCTIONS ON FOLIATED MANIFOLDS

A. ZUEVSKY

Abstract. Starting from the axiomatic description of meromorphic functions

with prescribed analytic properties on complex manifolds, we introduce the cosim-
plicial cohomology of restricted meromorphic functions defined on foliations of

smooth complex manifolds. Spaces for double chain-cochain complex and bound-

ary operator are constructed and examined. Multiplications among pairs of re-
stricted meromorphic functions with non-commutative parameters, as well as for

double complex spaces are introduced that their properties are discussed. In

particular, we prove that constructions of cosimplicial cohomology of restricted
meromorphic functions are non-vanishing, canonical, independent of the choice of

the transversal basis for a foliation, and invariant with respect to changes of coor-

dinates on a smooth manifold and on transversal sections. As an application, we
provide an example of cohomological invariants generalizing the Gadbillon–Vay

invariant for codimension one foliations.

AMS Classification: 53C12, 57R20, 17B69

1. Introduction

It is natural to consider the cohomology of various structures associated to folia-
tions of a smooth manifold [5, 6, 8, 10, 14, 18, 28, 30, 31]. In this paper we construct
explicitly a cohomology theory of meromorphic functions with specified analytical
properties. Restricted meromorphic functions depend on non-commutative param-
eters provided by elements of an infinite-dimensional Lie algebra as well as sets of
commutative formal variables which can be associated to local coordinates of certain
complex domains. Restricted meromorphic functions are defined subject to several
axioms and restrictions on their convergence. A particular example of such functions
can be given by bilinear pairing on the algebraic completion of spaces associated to
an infinite-dimensional Lie algebras [8, 9, 11, 12, 13, 16, 41]. For a smooth complex
manifold M , one needs to identify formal variables of restricted meromorphic func-
tions with local coordinates of domains on M . In the case of a foliated manifold,
additional formal parameters can be identified with local coordinates on sections of
a transversal basis. Our motivation was to understand further the continuous coho-
mology [1, 4, 5, 6, 8, 10, 11, 12, 13, 14, 15, 16, 18, 20, 21, 23, 24, 27, 28, 29, 31, 35, 41]

Key words and phrases. Meromorphic functions with prescribed analytic properties, foliations,

cohomology.
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2 A. ZUEVSKY

of structures defined on foliations. One hopes to use properties of restricted mero-
morphic functions to be able to describe new invariants of foliations. In particu-
lar [4], one hopes to relate cohomology of functions with specified behavior origi-
nating from infinite-dimensional Lie algebras-valued series on manifolds. In order to
construct a cohomology theory on foliations, we define double complex spaces of re-
stricted meromorphic functions on cosimplicial domains introduced in the standard
way [41]. Properties of such spaces are then studied. We prove independence of
their elements with respect to changes of the transversal basis and coordinates on
M and transversal sections. An appropriate coboundary operator is defined. To
be able to study examples of cohomology invariants, we introduce a multiplication
between pairs of elements of two double complex spaces and determine its prop-
erties. An example generalizing the Gadbillon–Vay invariant for codimension one
foliations [2, 3, 15, 18, 30, 32, 33, 34] is derived and examined. For further devel-
opments, we plan to study applications of restricted meromorphic functions and the
cosimplicial construction introduced in this paper for K-theory, description of co-
homological invariants of foliations [1, 20, 21, 35, 40, 36], deformation theory [17],
Losik’s approach [15, 31], Krichever–Novikov algebras [37, Schl1, 38], current alge-
bras on manifolds [39], factorization algebras [23], and classification of types of leaves
for foliations [2, 3, 32, 33, 34].

2. Axiomatics of restricted meromorphic functions

Developing ideas of [26], we introduce in this section the notion of restricted mero-
morphic functions, i.e., meromorphic functions with prescribed analytic behavior on
open complex domains. In Sections 3–5 we will see that the space of such functions
underlies a cohomology theory. Restricted meromorphic functions depend on an num-
ber of non-commutative parameters (provided by an infinte-dimensional Lie algebra
elements) as well as commutative formal variables. First, let us set the notations we
use. For a tuple of n complex formal variables z = (z1, . . . , zn), we dedicate the nota-
tion zl for l sets of n values of z, namely, zl = ((z1,1, . . . , z1,n), . . . , (zl,1, . . . , zl,n)). For
local coordinates on transversal sections of codimension p foliation F (see Subsection
3.1), the notation z′ for k-sets of p formal parameters is reserved. In general, for a
set of m elements (y1, . . . , ym) we use the notation ym, while for k1 ≤ k2 ∈ Z, we
denote y(k1,k2) = (yk1 , yk1+1, . . . , yk2). When m is arbitrary we write y. In particular,
for l sets of n algebra/group elements we denote gl = (g1, . . . , gl). When combined
with l sets of n formal parameters zl, we use the specific notation xl = (gl, zl).
For a function A(x) we denote the sequence (A(x1), ..., A(xn)) by A(x), while A(xl)
stands for (A(x1,1), . . . , A(x1,n)), . . . , (A(xl,1), . . . , A(xl,n)). The notations for prod-
ucts of functions are A(x) = (A(x1) . . . A(xn)) and A(xl) = A(x1,1) . . . A(x1,n) . . .
A(xl,1) . . . A(xl,n).

2.1. Meromorphic functions with non-commutative parameters. In this pa-
per we consider functions f(zl) of of several complex variables defined on sets of
open domains extendable to converging meromorphic functions M(f(zl)) on larger
domains. Denote by FlnC the configuration space of l ≥ 0 ordered sets of n complex
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coordinates in Cln, FlnC = {zl ∈ Cln | zi,l 6= zj,l′ , i 6= j}. Let g be an infinite-
dimensional Lie algebra generated by {ξi, i ∈ Z}, and G(xl) be the space of complex-
valued functions depending on l-pairs of elements g and zl. Abusing notations, for
F ∈ G(xl) we call a linear map with the only possible poles at zi,l = zj,l′ , i 6= j, 1 ≤ l,
l′ ≤ n, F : xl 7→ M(F (xl)), the meromorphic function in zl.

Next, let us state further properties of meromorphic functions we require. We define
the left action of the permutation group Sln on F (xl) by σ(F )(xl) = F (gl, zσ(i)),
1 ≤ i ≤ l. Denote by (TG)i the translation operator f(zi) 7→ f(zi + z0) acting on the
i-th entry. We then define the action of partial derivatives on an element F (xl)

∂ziF (xl) = F ((TG)igl, zl),
∑
i≥1

∂ziF (xl) = TGF (xl), (2.1)

and call it TG-derivative property. For z ∈ C, let

ezTGF (xl) = F (gl, zl + z). (2.2)

Let Insi(A) denotes the operator of multiplication by A ∈ C at the i-th position.
Then we define

F (gl, Insi(z) zl) = F (Insi(e
zTG) gl, zl), (2.3)

equal as equal power series expansions in z, in particular, absolutely convergent on
the open disk |z| < mini6=j{|zi,l − zj,l′ |}. A meromorphic function has KG-property
if for z ∈ C× satisfies zzl ∈ FlnC,

zKGF (xl) = F
(
zKGgl, z zl

)
. (2.4)

Let us recall the notion of a shuffle. For m ∈ N and 1 ≤ p ≤ m − 1, let Jm;p be the
set of elements of Sm which preserves the order of the first p numbers and the order
of the last (m− p) numbers, that is, Jm,p = {σ ∈ Sm | σ(1) < . . . < σ(p), σ(p+ 1) <
. . . < σ(m)}. Let J−1m;p = {σ | σ ∈ Jm;p}. For some meromorphic functions we require
the property: ∑

σ∈J−1
ln;p

(−1)|σ|σ(F (gσ(i), zl)) = 0. (2.5)

LetW(g) be the space of universal enveloping algebra U(g)-valued formal series in zl.
We will consider meromorphic functions F (xl) depending on elements gl ∈ W(g)
and satisfying the above conditions of this subsection. In what follows we con-
centrate on the case G(g) = G where G is the algebraic completion of W(g). In
order to define a specific space of restricted meromorphic functions associated to
W(g) and satisfying certain properties we have to work with the algebraic com-
pletion of W(g). In particular, for that purpose, we have to consider elements of
a W(g) with inserted exponentials of the grading operator KG, i.e., of the form∑
m∈Z

z−m−1 aKGgm bKGg. For general a, b, z ∈ C×, such elements do not satisfy the

properties needed to construct a appropriate cohomology theory of restricted mero-
morphic functions. Thus we have to extend W(g) algebraically and analytically, i.e.,
to consider G =W(g) =

∏
m∈ZW(m) = (W ′)∗(g), as well as include extra elements to

make the structure of W(g) compatible with the descending filtration with respect to
the grading subspaces, and analytic properties with respect to formal parameters zl.
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Then G has the structure that is complete in topology determined by the filtration.
When a particular set zm of formal parameters is specified for G we denote it as Gzm .
We assume that G is endowed with non-degenerate bilinear pairing (., .) (not to be

confused with the notation (g, z) for parameters), and denote by G̃ the dual space to
G with respect to this pairing. For gl ∈ G, denote xl = (gl, zl). In this paper we will
deal with meromorphic functions given by F : xl 7→ M ((ϑ, F (xl))), and converging
in zl on certain complex domains Vl.

2.2. Restricted meromorphic functions. In this subsection, following [26], we
give the definition of meromorphic functions with prescribed analytical behavior on
a complex domain. Let us assume that the space G is endowed with a grading
G =

⋃
m∈Z,m>m0

G(m) bounded from below with respect to the grading operator KG.
We denote by Pm : G→ G(m), the projection of G on G(m). For each element g ∈ G,

and x = (g, z), z ∈ C let us associate the differential form νG(x) =
∑
k∈C

gm zm dzwt (g),

where wt (g) is the weight with respect to the grading operator KGg = wt (g)g. Fi-
nally, we formulate the definition of restricted meromorphic functions with extra sets
of parameters. Due to the nature of axiomatics of meromorphic functions described
in Subsection 3.2, we have to restrict their analytic behavior to be able to introduce
corresponding cohomology theory. In particular, we would like to make F (xl) to play
the role of cocains. Corresponding coboundary operators are supposed to include in-
sertions into F (xl) of extra x-dependence by means of extra νG(x)-forms. The result
of such insertions should remain in G. As a formal sum, such map has to be absolutely
convergent in zl. For this purpose we formulate the following definition representing
extra restricting conditions on meromorphic functions introduced in Subsection 3.2.

Definition 1. We assume that there exist positive integers β(gl′,i, gl”,j) depending
only on gl′,i, gl′′,j ∈ G for i, j = 1, . . . , (l + k)n, k ≥ 0, i 6= j, 1 ≤ l′, l′′ ≤ n. Let ln
be a partition of (l + k)n =

∑
i≥1 li, and ki = l1 + · · · + li−1. For ζi ∈ C, define for

k̃i = ki+ li, fi = F
(
νG(gk̃i , zk̃i − ζi)

)
, for i = 1, . . . , ln. We then call a meromorphic

function F (xl) satisfying properties (2.1)–(2.4), a restricted meromorphic function if
under the following conditions on domains, |zki+p − ζi| + |zkj+q − ζj | < |ζi − ζj |,
for i, j = 1, . . . , k, i 6= j, and for p = 1, . . . , li, q = 1, . . . , lj , the function∑
rn∈Zn

F
(
Prifi, ζl

)
, is absolutely convergent to an analytic extension in zl+k, inde-

pendently of complex parameters ζl, with the only possible poles on the diagonal of
zl+k of order less than or equal to β(gl′,i, gl′′,j). In addition to that, for gl+k ∈ G,
the series

∑
q∈C F

(
νG(xk) Pq

(
F
(
x(k,k+l)

)))
, is absolutely convergent when zi 6= zj ,

i 6= j |zi| > |zs| > 0, for i = 1, . . . , k and s = k + 1, . . . , l + k, and the sum can be
analytically extended to a meromorphic function in zl+k with the only possible poles
at zi = zj of orders less than or equal to β(gl′,i, gl′′,j).

For an arbitrary θ ∈ G̃ and l ≥ 0 complex variables zl defined in domains Vl, let us
introduce the following vector F (xl) =

[
F
(
gl, zl dzi(ln)

)]
, containing meromorphic

functions given by matrix elements with respect to the pairing (., .), where i(j), j =
1, . . . , ln, are cycling permutations of (1, . . . , ln) starting with j. For k elements g′k,
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k ≥ 0, we call the space of all vectors F (xl) combined with k-sets of forms νG(x′k)
depending on p complex variables z′k defined in domains Uk satisfying TG- and KG-
properties (2.1), (2.4), and (2.5), the space Θ(G,Vl,Uk) of restricted meromorphic
functions.

2.3. Coordinate change invariance. In this subsection we show that vectors F (xl) ∈
Θ(G,Vl,Uk) containing restricted meromorphic functions are canonical with respect
to changes of sets of formal parameters. Let Aut O(ln) = AutC[[zl]] be the group of
formal automorphisms of ln-dimensional formal power series algebra C[[zl]]. In what
follows, we assume that G is equipped with the action of operators

(
zm+1∂z

)
, m ∈ N,

and its Lie subalgebra Der0 O(ln) of g is given by the Lie algebra of Aut O(ln).
Since the vector fields

(
zm+1∂z

)
act on G as operators of degree (−m), the ac-

tion of the Lie subalgebra Der+ O(ln) is locally nilpotent. The operator (z∂z)
acts as the grading operator KG, which is diagonalizable with integral eigenval-
ues. Thus, the action of Der O(ln) on G can be exponentiated to an action of
Aut O(ln). We write an element of Aut O(ln) as z → ρn(z), where elements of

ρn are ρi(z) =
∑
i1≥0,...,in≥0,

n∑
j=1

ij≥1
aik zikk , where aik ∈ C, and are the images of

ρi, i = 1, . . . , l in the finite dimensional C-vector space. In order to represent the
action of the group Aut O(ln) on the variables z of F in terms of an action on ele-
ments gl, we have to transfer (as in n = 1 case of [7]) to an exponential form of the

transformations ρi(z) with corresponding coefficients β
(j)
rl ∈ C recursively found [19]

in terms of coefficients a
(i)
rl .

Next, we recall the general definition of a torsor [7]. Let G be a group, and S a non-
empty set. Then S is called a G-torsor if it is equipped with a simply transitive right
action of G, i.e., given s1, s2 ∈ S, there exists a unique µ ∈ G such that s1 · µ = s2,
where the right action is given by s1 · (µµ′) = (s1 · µ) · µ′. The choice of any s1 ∈ S
allows us to identify S with G by sending s1 · µ to µ. Finally, we state

Lemma 1. The vector F (xl) ∈ Θ(G,Vl,Uk) is invariant with respect to changes of
formal variables.

Proof. Consider the vector F (x̃l) =
[
F
(
gl, z̃l dz̃i(ln)

)]
. Note that dz̃j =

∑ln
i=1 dzi ∂ziρj ,

∂ziρj = ∂ρj/∂zi. By definition of the action of Autn O(1)
ln , for dz̃i, we have F (x̃l) =

R(ρln)
[
F
(
gl, zl dz̃i(ln)

)]
= R(ρln)

[
F
(
gl, zl

∑
ln
j=1 ∂jρi(ln) dzj

)]
, with R(ρln) =[

∂̂Jρi(I)

]
=
[
∂̂Jρi1(I), ∂̂Jρi2(I), . . . , ∂̂Jρiln(I)

]T
. The index operator J takes the

value of index zj of arguments in the vector F (x̃l) while the index operator I takes

values of index of differentials dzi in each entry of the vector F . The index operator
i(I) = (i1(I), . . . , iln(I)) is given by consequent cycling permutations of I. Taking
into account the property (2.2), we define the operator

∂̂Jρa = exp

−∑
rln,

ln∑
i=1

ri≥1, 1≤J≤ln
rJ β

(a)
rn (ζ)ln ∂zJ

 , (2.6)
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which contains index operators J as index of a dummy variable ζJ turning into zj ,

j = 1, . . . , ln. (2.6) acts on each argument of maps F in the vector F . Due to
properties of G required above, the action of operators R (ρln) on gl ∈ G results in
a sum of finitely many terms. By using (2.2) and linearity of the mapping F , we
obtain F (x̃l) = F (gl, z̃l dz̃l) =

[
F
(
gl, zl dzi(ln)

)]
. We then conclude that the vector

F is invariant, i.e., F (x̃l) = F (xl). Definition 1 of restricted meromorphic functions
F (xl) ∈ Θ (G,Vl,Uk) consists of two conditions on F (xl) and νG(z′k). The first
requires existence of positive integers βnm(gi, gj) depending on gi, gj only, and the
second restricts orders of poles of corresponding sums. The insertions of a sequence
of k forms νG(x′) which are present in Definition 1 of prescribed rational functions
keep elements F invariant with respect to coordinate changes. Thus, elements of

Θ(G,Vl,Uk)-spaces are invariant under the action of the group Autln+kp O(1)
ln+kp. �

3. Cosimplicial double complex defined for a foliation

In this section we introduce spaces for double complexes used to define the re-
stricted meromorphic functions cohomology of a foliation F of codimension p on a
smooth complex manifold M of dimension n.

3.1. Foliation holonomy embeddings and transversal basis. Let us first recall
[10] some definitions concerning transversal basis and holonomy embeddings for a
foliation F . A transversal section is an embedded p-dimensional submanifold U ⊂M
everywhere transverse to all leaves of F . Suppose α is a path between two points p

and p̃ on the same leaf of F . Let U and Ũ be transversal sections comming through
points p and p̃. Then α determines a transport along the leaves from a neighborhood

of p in U to a neighborhood of p̃ in Ũ . Thus it is assumed that there exists a germ of a

diffeomorphism hol(α) : (U, p) −→ (Ũ , p̃) which is called the holonomy of the path α.

In the case that the transport above is defined in all of U and embeds U into Ũ , this

embedding h : U ↪→ Ũ is called the holonomy embeddings. Now recall the definition
of the transversal basis for a foliaion F . A transversal basis for F is a family U of

transversal sections U ⊂ M with the property that, if Ũ is any transversal section

through a given point p ∈ M , there exists a holonomy embedding h : U ↪→ Ũ with
U ∈ U and p ∈ h(U).

3.2. Restricted meromorphic functions associated to a foliation. Suppose M
is endowed with a coordinate chart V = {Vm,m ∈ Z}. Let pl be a set of l points in Vl.
Let us identify l-sets of n-tuples of formal variables zl with l sets of n local coordinates
on Vl. Note that according to our construction, M can be infinite-dimensional. Thus,
in that case, we consider l infinite sets of complex coordinates. For another k sets
of p-tuples of points p′k on transversal sections Uk of the transversal basis U of
foliation F , we take k sets of p-tuples of x′k = (g′k, z

′
k), identify formal parameters

z′k with local coordinates of k points p′k, and consider corresponding series νG (x′k).
While the choice of the initial point p′0 is arbitrary, we assume that other points

are related by the holonomy embeddings hk, p′0
h1−→ p′1

h1−→ . . .
hk−→ p′k. It may

happened that z1,j coincides with some zp,j . In order to work with objects having
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coordinate invariant formulation on M we consider restricted meromorphic functions
F (xl) ∈ Θ (G,V,U). In [7], they proved that νG(x) is an invariant object with respect
to changes of coordinate in one-dimensional complex case. In Section 6.2 we proved
that elements of the space Θ(G,Vl,Uk) and sets of forms νG(x′k) are invariant with
respect to change of coordinates, i.e., to the group of coordinate transformations
Aut O(ln), z̃l 7→ zl, and corresponding differentials.

3.3. Spaces for cosimplicial double complexes. In [16] the original approach to
cohomology of vector fields of manifolds was initiated. We find another approach
to cohomology of Lie algebra of vector fields on a manifold in the cosimplicial setup
in [12, 41]. Taking into account the standard methods of defining canonical (i.e.,
independent of the choice of covering U) cosimplicial object [12, 41] as well as the
Čech-de Rham cohomology construction [10] for a foliation, we consider restricted
meromorphic functions F (xl) with k sets of forms νG(x′k) and give the following
definition of a cosimplicial double complex for G.

For xl with local coordinates zl ∈ V, and a transversal basis U = {Ui, i ∈ I} for F
on M , consider vectors F (xl) defined in Subsection 2.2. Then let us associate to any
subset {i1 < · · · < ik} of I, the space of restricted meromorphic functions with k sets
of νG(x′)-forms with local coordinates z′ ∈ Ul, satisfying Definition 1, and defined
on the intersection of transversal sections

Clk(G,V,U ,F) = Θ

G,V, ⋂
Ui0

hi0−→...
hik−1−→ Uik

, i1≤...≤ik, k≥0

Uik ,

 , (3.1)

where the intersection ranges over all k-tuples of holonomy embeddings hk, among
transversal sections of foliation in U . Since we assume that the points p′k, are related
by holonomies, each consequent arrow hj in the holonomy sequence in the intersection
(3.1) introduces p νG-forms in addition to the initial (j− 1) sets of forms with formal
parameters.

4. Properties of the double complex spaces Clk(G,V,U ,F)

In this section we fix G and F and omit them and V from notations where it is
possible, and study properties of Clk(U) spaces. Let us set C0

k(U) = G. Then we have

Lemma 2. The spaces (3.1) are non-zero, and Clk(U) ⊂ Clk−1(U).

Proof. Recall the conditions on k νG(x)-forms given in Definition (1). Since exists
the lower limit on domain of absolute convergence given in Definition 1, the extension
of the tuple of k-homology embeddings in (3.1) by another embedding preserves the
conditions applied to the mappings F (x) which belong to the spaces (3.1). Thus,
(3.1) is non-zero. �

Lemma 3. For any l, p ≥ 0, the construction (3.1) of double complex spaces Clk(U)
does not dependent of the choice of transversal basis U .
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Proof. Suppose we consider another transversal basis U ′ for F . The of the double
complex spaces then assumes that vectors F on U ′j are defined on all transversal
sections of U ′. According to the definition of the transversal basis given above, for
each transversal section Ui which belongs to the original basis U in (3.1) there exists

a holonomy embedding h̃i : Ui ↪→ U ′j , i.e., it embeds Ui into a section U ′j of our new
transversal basis U ′. Then then statement of the proposition follows. �

In what follows, we omit U from notations of (3.1). Next, we prove that the
construction of spaces (3.1) for the chain-cochain double complex is independent of
the choice of coordinates on V and U .

Proposition 1. Elements F (xl) ∈ Clk with xl ∈ V and the forms νG(x′k), with x′k ∈
Uk of F are canonical, i.e., independent on changes (zl, z

′
k) 7→ (z̃l, z̃

′
k) = ρl+k (zl, z

′
k)

of local coordinates on V and U .

Proof. In Lemma 1 we proved that elements of F (xl) ∈ Θ(G,V,U) are coordinate
change-invariant. The construction of the double complex spaces (3.1) assumes that
F (xl) ∈ Clk satifies conditions of definition of a Θ-space and with extra conditions
of Definition 1 on k sets of p νG(xk)-forms. In [7] they proved in one-dimensional
complex case, that the form νg(x) containing the wt (gi)-power of the differential dz is

invariant with respect to the action of the group Aut O(1). Here we prove that νG(x′k)
are invariant with respect to the change of k sets of p local coordinates z′p 7→ z̃′p(z

′
p)

on a transversal section of F . Let z′ be coordinates on a coordinate chart around a
point p′ on a transversal section U ∈ U . Define a wt (g′i)-differential on coordinate
chart around p′ with values in End (G)z′ as follows: identify End Gz′ with End Gz′

using the coordinates z′. Let z̃′ = (ρ)p(z
′), be another k-set of coordinates on an

p-dimensional coordinates on transversal sections. Let us express the set of wt (g′i)-

differentials on D
(p′),×
p′ νG(g′i, z̃

′
i), i = 1, . . . , p, in terms of of the coordinates z′. We

would like to show that it coincides with the set of wt (g′i)-differentials νG(z′). We
will use the notion of torsors in order to prove the independence of formal series oper-
ators multiplied by some power of differentials for for elements g ∈ G of wt (g) ∈ Z+

such that z′
m+1

∂z′g = 0, for m > 0. The general case then follows. Consider a
vector (g′i, z

′) ∈ Gz′ with g′i ∈ G. Then the same vector equals
(
R−1i (ρp) g

′
i, z̃
′),

i.e., it is identified with R−1i (ρp) g
′
i ∈ G, using the coordinates z̃′. Here Ri (ρp) is

an operator representing transformation of z′ → z̃′, as an action on G. Therefore if
we have an operator on Gz′ which is equal to a Aut O(p)-torsor S under the iden-
tification End Gz′ ∈ End G using the coordinates z̃′, then this operator equals
Ri (ρp) S R−1i (ρp), under the identification End Gz′ ∈ End G(i) using the coor-
dinates (g′i, z

′). Thus, in terms of the coordinates (g′i, z
′), the differential νG(g′i, z̃

′
i)

becomes νG(g′i, z
′
i) = Ri(ρ) νG (g′i, ρ(z′)) R−1i (ρ). According to Definition (3.1), ele-

ments F(xl) satisfy conditions of Definition 1 with the number kp of νg(z
′
k) forms.

Thus we see that F is a canonical object suitable for Clk. �
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5. Chain-cochain operators

Let us fix G and F and skip them from notations. Recall notations provided in
Section 2. Denote by xl,î1,...,îm , 1 ≤ i1 ≤ . . . ≤ im ≤ l, the set x with (xi1 , . . . ,xim)

tuples of x being omitted. For F ∈ Clk, let us define the operator Dl
k by

Dl
kF (xl) = T1(νG(x1)).F

(
xl+1,1̂

)
+

l∑
i=1

(−1)i Ti(νG(xi)) Ti+1(νG(xi+1)).F
(
x
l+1,̂i,̂i+1

)
+ (−1)l+1T1(νG(xl+1)).F

(
x̂
l+1

)
, (5.1)

where νG(xm) = [νG(xm,1), . . . , νG(xm,n)]
T

, and Ti(γ).F (xl+1) denotes insertion of

γ at i-th position of F (xl+1). Next, we have

Proposition 2. The operator (5.1) forms the double complex Dl
k : Clk → Cl+1

k−1 on the

spaces (3.1) (when lower index is zero the sequence terminates) and Dl+1
k−1 ◦Dl

k = 0.

Proof. Note that (l + 1)n formal variables zl+1 in the Definition (3.1) are identified
with coordinates of l + 1 arbitrary points on V ⊂ M not related to coordinates
on transversal sections. By Proposition 2.8 of [26], Dl

kF (xl) satisfies Definition (1)
for (k − 1) νG(x′k−1)-forms and has the TG-derivative (2.1) property and the KG-

conjugation (2.2) properties according of Subsection 3.2. So Dl
kF (xl) ∈ Cl+1

k−1 and

Dl
k is indeed a map whose image is in Cl+1

k−1. In [26] we find the construction of
double chain-cochain complex for n = 1 case and various l ≥ 0. In particular, (c.f.
Proposition 4.1), the chain condition for such double complex was proven. Consider
now Dl

kF (xl+1). By construction of the coboundary operator in each component of

the F a n = 1 case of the action of Dl
k is realized. Thus, according to Proposition 4.1

of [26], each component of Dl+1
k−1 ◦Dl

k vanishes. �

According to Proposition 2 one defines the (l, k)-th restricted meromorphic function
cosimplicial cohomology H l

k, cos(G,F) of a foliation F of M to be H l
k, cos(G,F) =

Ker Dl
k/Im Dl−1

k+1.

6. The multiplication on pairs of double complex spaces Clk(G,V,F)

In order to introduce and study simplest invariants associated to the cohomolody
of a foliation of codimension p, we first have to define a multiplication among elements
of double complex spaces Clk(G,V,F) for various l and k. In this Section we fix G, F ,
V and U , and skip them from further notations. The multiplication of two Θ(G,V,U)
spaces is associated with a a sum of multiplications of restricted meromorphic func-
tions over a basis in G, and powers of a complex parameter for the multiplication.
The formal parameters zli , i = 1, 2 are identified with local coordinates of li points
pli on M . Some r points among pl1 may coincide with points among pl2 . Similarly,
on transversal section, some t points may coinside p′li , i = 1, 2. In that case we keep
only one from each pair of coinciding parameters.
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6.1. The multiplication of restricted meromorphic functions. The structure
of the space of restricted meromorphic functions Θ(G,V,U) is quite complicated and
it is difficult to introduce algebraically a multiplication among two such spaces. As
it follows from definition of the configuration space FlnC in Subsection 3.2, in the
case of coincidence of two formal parameters they are excluded from FlnC. Thus,

we require that the set of formal parameters (˜̃zl1+l2−r) would belong to Fl1+l2−rC.
This leads to the fall off of the total number of formal parameters for Θ(l1 + l2 −
r, k1 + k2 − t). For elements A, B ∈ G the multiplication is associated to the sum

Ω(A,B) =
∑
m∈Z

λm
∑
u∈Gm

(ϑ,Au) (u,B), where u ∈ G̃. The sum is taken over any

G(m)-basis {u}m, where u is the dual of u with respect to a non-degenerate bilinear
pairing (. , .) on G. By the standard reasoning Ω(A,B) does not depend on the choice
of a basis of {u}m of G(m), m ∈ Z.

For xl1 , x̃l2 ∈ G, zl1 , z̃l1 ∈ F(l1+l2−r)nC, i = 1, 2, and F (xl1) ∈ Θ(l1, k1), F (x̃l2) ∈
Θ(l2, k2), introduce the multiplication

∗ : Θ(l1, k1)×Θ(l2, k2)→ Θ(l1 + l2 − r, k1 + k2 − t), (6.1)

F (xl1 , x̃l2 ;λ) = Ω
(
νG
(
F (xl1), ζ1

)
, νG

(
F (x̃l2), ζ2

))
, (6.2)

as an absolutely converging function in λ on the configuration space FCl1+l2−r)n of
(zl1 , z̃l2) with only possible poles at zi = zi′ , z̃j = z̃j′ , and zi = z̃j , 1 ≤ i, i′ ≤ l1,
1 ≤ j, j′ ≤ l2 − r, with excluded ẑlj , and parametrized by ζ1, ζ2 ∈ C, with all
monomials (zil − zjl), 1 ≤ l ≤ r, excluded from (6.2). We will omit λ from further

notations for F (xl1 , x̃l2 ;λ).

6.2. Properties of ∗-multiplication of Θ-spaces. In this subsection we study
properties of the multiplication F (xl1 , x̃l2) given by (6.2). We define the action
of differentiation ∂l = ∂zl = ∂/∂zl , 1 ≤ l ≤ l1 + l2 − r, of F (xl1 , x̃l2) with re-

spect to the l-th entry of (xl1 , x̃l2) as follows ∂lF (xl1 , x̃l2) = Ω
(
∂
δl,i
xi νG

(
F (xl1), ζ1)

)
,

∂
δl,j
x̃j

νG
(
F (x̃l2), ζ2

))
, for j ∈ [1, . . . , li, . . . , lj . . . , n]. It is elementary to check the

following

Lemma 4. The multiplication (6.2) satisfies the TG-derivative (2.2) and KG- conju-
gation (2.4). �

We then define the action of an element σ ∈ Sk+n on the multiplication of F (xli) ∈
Θ(li, ki), i = 1, 2, as

σ(F ) (xl1 , x̃l2) = F
(
x(σ(l1)), x̃(σ(l2))

)
= Ω

(
νG
(
F
(
x(σ(l1))

)
, ζ1
)
, νG

(
F
(
x̃(σ(l2))

)
, ζ2
))
.(6.3)

6.3. The multiplication on pairs of double complex spaces Clk. Here we con-
sider an application of the material of subsection 6.1 to the double complex spaces
Clk (3.1) described in previous subsections. Let us introduce the multiplication of

elements of two double complex spaces Cliki , i = 1, 2, associated with the same foli-

ation of codimention p, with the image in another double complex space Cl1+l2−rk1+k2−t.
We assume the same V and U for these spaces. This multiplication is coherent with
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respect to the original differential (5.1), and the symmetry property (2.5). We prove
the canonicity of the multiplication, and derive an analogue of Leibniz formula.

For F (xl1) ∈ Cl1k1 , and F (x̃l2) ∈ Cl2k2 , the multiplication F (xl1) ∗ F (x̃l2) 7→ F(˜̃xl1+l2−r), is a Θ(l1 + l2 − r, k1 + k1 − t)-valued restricted meromorphic function

F
(˜̃xl1+l2−r) = F (xl1) ∗ F (x̃l2) = Ω

(
νG
(
F (xl1), ζ1

)
, νG

(
F (x̃l2), ζ2

))
, (6.4)

induced by (6.2). The action of σ ∈ Sl1+l2 on the multiplication F (xl2 , x̃l2) (6.3) is
given as in Section 2. Since the multiplication (6.2) defined for two Θ-spaces induces
the multiplication (6.4) with increased number of x-variables and νG(x′)-forms, we
then obtain the main proposition of this section

Proposition 3. For F (xl1) ∈ Cl1k1 and F (x̃l2) ∈ Cl2k2 , the multiplication F (xl2 , x̃l2)

(6.3) belongs to the space Cl1+l2−rk1+k2−t, i.e., ∗ : Cl1k1 × C
k2
l2
→ Cl1+l2−rk1+k2−t.

6.4. Coboundary operator acting on the multiplication space. Since the re-
sult of multiplication (6.3) of elements of the spaces Cliki , i = 1, 2, belongs to Cl1+l2−rk1+k2−t,

thus the multiplication admits the action of Dl1+l2−r
k1+k2−t defined in (5.1). The cobound-

ary operator (5.1) possesses a version of Leibniz law with respect to the multiplication
(6.3). Indeed, by elementary computation we get

Lemma 5. For F (xli) ∈ Cliki , i = 1, 2, the action of Dl1+l2
k1+k2

on the multiplica-

tion is given by Dl1+l2
k1+k2

(
F (xl1) ∗ F (x̃l2)

)
=
(
Dl1
k1
F (xl1)

)
∗ F (x̃l2) + (−1)l1F (xl1) ∗(

Dl2
k2
F (x̃l2)

)
. �

Remark 1. Checking (5.1) we see that an extra arbitrary element gl2+1 ∈ G, as well as
corresponding extra arbitrary formal parameter zl2+1 appear as a result of the action

of Dl2
k1

on F (xl2) ∈ Cl2k2 mapping it to Cl2+1
k1−1.

6.5. Relations to Čech-de Rham cohomology in Crainic–Moerdijk construc-
tion. Recall the construction of the Čech-de Rham cohomology by Crainic and Mo-
erdijk [10] for a foliation F of codimension p on a smooth manifold M . Let U be a
transversal basis for F . Consider the double complex Ck,l =

∏
U0

h1−→···
hp−→Uk

ωl(U0),

where the multiplication ranges over all k-tuples of holonomy embeddings between
transversal sections from a fixed transversal basis U . The vertical differential is de-
fined as (−1)kd : Ck,l → Ck,l+1, where d is the ordinary de Rham differential.

The horizontal differential δ : Ck,l → Ck+1,l, is given by δ =
k∑
i=1

(−1)iδi, where

δiω(hk+1) = δi,0 h
∗
1 ω(h(2,k+1)) + (1 − δi,0 − δi,k+1) ω(h(1,i−1), hi+1hi,h(i+2,k+1)) +

δi,k+1ω(hk), expressed in terms of differential forms. This double complex constitutes
a bigraded differential algebra endowed with a natural multiplication (ω η)(hk+k ′) =

(−1)kk
′
ω(hk) (h)∗k .η

(
h(k+1,k+k′)

)
, for ω ∈ Ck,l and η ∈ Ck′,l′ , thus (ω · η)(hk+k′) ∈

Ck+k
′,l+l′ . The cohomology of this complex is called the Čech-de Rham cohomol-

ogy of the leaf space M/F with respect to the transversal basis U . The Čern-de
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Rham cohomology of a foliated smooth manifold introduced in [10] results from re-
stricted meromorphic function cohomology introduced in this paper. Indeed, it can
be seen by making the following associations: hi ∼ gi, i = 1, . . . , ln, ω(hl.n) ∼ F (xl),
h∗(h1) . . . h∗(hl.n)(zln) ∼ ωG(zl,n).

7. Example: codimension one invariants

In this section, using the double complex construction of Sections 3–5, we provide a
generalization of the Godbillon–Vey invariant [18] for codimension one foliations. We

call a map F ∈ Clk closed if Dl
kF = 0. For k ≥ 1. It is exact if there exists F ∈ Cl+1

k−1)

such that F̃ = Dl
kF . Taking into account the correspondence with the Čech-de Rham

complex due to [10], we reformulate the derivation of Godbillon–Vey invariant in
restricted meromorphic functions terms. For F ∈ Clk we call the cohomology class of

mappings
[
F
]

the set of all closed forms that differs from F by an exact mapping,

i.e., for F 1 ∈ Cl−1k+1,
[
F
]

= F +Dl−1
k+1F 1, assuming that both parts of the last formula

belongs to the same space Clk.
For a three-dimensional smooth complex manifold, consider a codimension one

foliation F . Following the construction of Definition (3.1), we take k-tuples of one-
dimensional transversal sections. For uj ∈ G, wj ∈ Uj , for each section we attach the
form νG(xj), xj = (uj , wj). We then work with mappings ϕ ∈ C3l

k . As in the setup of
differential forms, a mapping ϕ ∈ C3l

k defines a codimension one foliation. As we see
from (6.4) and definition of the action of the derivative, it satisfies properties similar
to differential forms. The integrability condition for mappings that belong to Clk has

the form: F 0 ∗Dl
k F 0 = 0. It results with the Frobenius theorem, i.e., that there exist

F 2 ∈ Cl
′

k′ , such that

Dl
kF 0 = F 0 ∗ F 2, (7.1)

which uniquely determines a foliation with parameters of νG-forms satisfying Defi-
nition 1 conditions. Since both sides of (7.1) are in the same double complex space
let us apply limitations to possible combinations of (l, k) and (l′, k′). In the follow-
ing proposition we show that the integrability condition delivers a generalization of
Godbillon–Vey invariant.

Proposition 4. The cohomology classes
[(
Dl
k∆
)
∗ ∆], for ∆ = F , F 1, F

′
, and com-

binations (l, k) = (1, 2), (0, 3), (1, t) correspondingly, with non-vanishing
((
Dl
k∆
)
∗∆
)
,

are independent on the choice of ∆.

Remark 2. The case t = 1 corresponds to the classical Godbillon–Vey invariant.

Proof. Consider two maps F (g1) ∈ C1
2 and F 1 ∈ C0

3 . The ortogonality condition has
the form

F ∗D0
3F 1 = 0. (7.2)

Then there exists F
′
(g2) ∈ Cnm such that

D0
3χ = F ∗ F ′, (7.3)
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and 1 = 1 +n− r, 2 = 2 +m− t, i.e., n = r, which results in r = 1; m = t, 0 ≤ t ≤ 2,

i.e., F
′ ∈ C1

t . Here r and t are numbers of common νG-forms. Consider now (7.2).
Taking into account definition of the derivative action we obtain

D2−r′
4−t′ (F

′ ∗D0
3F 1) =

(
D1

2F
)
∗D0

3F 1+F ∗D1
2D

0
3F 1 =

(
D1

2F
)
∗D0

3F 1 =
(
D1

2F
)
∗F ∗F ′.

Thus 0 = D3−r′
3−t′D

2−r′
4−t′ (F ∗D0

3F 1) = D3−r′
3−t′

((
D1

2F
)
∗ F ∗ F ′.

)
, and

((
D1

2F
)
∗F ∗F ′

))
is closed. From (7.2) it follows that 0 = D1

2F ∗D0
3χ−F ∗D1

2D
0
3F 1 =

(
F ∗D0

3F 1

)
. Thus

D1
2F ∗D0

3F 1 = D1
2F ∗F ∗F

′
= 0. Consider (7.3). Acting by D1

2 and substituting back

we obtain 0 = D1
2D

0
3F 1 = D1

2(F ∗ F ′) = D1
2(F ) ∗ F ′ − F ∗D1

tF
′
. thus D1

2(F ) ∗ F ′ =

F ∗D1
tF
′
. The last equality trivializes on applying D3

t+1 to both sides.

Let us show now the non-vanishing property of
((
D1

2F
)
∗ F
)
. Indeed, suppose(

D1
2F
)
∗ F = 0. Then there exists γ ∈ Cnm, such that D1

2F = F 3 ∗ F . Both sides
of the last equality should belong to the same double complex space but one can see
that it is not possible. Thus,

(
D1

2F
)
∗ F is non-vanishing. One proves in the same

way that
(
D0

3F 1

)
∗ F 1 and

(
D1
tF
′) ∗ F ′ do not vanish too. Now let us show that[(

D1
2F
)
∗ F
]

is invariant, i.e., it does not depend on the choice of F ∈ C1
2 . Substitute

F by
(
F + F 4

)
∈ C1

2 . We have(
D1

2

(
F + F 4

))
∗
(
F + F 4

)
=

(
D1

2F
)
∗ F +

((
D1

2F
)
∗ F 4 − F ∗D1

2F 4

)
+

(
F ∗D1

2F 4 +D1
2F 4 ∗ F

)
+
(
D1

2F 4

)
∗ F 4. (7.4)

Since
(
F ∗D1

2F 4 +
(
D1

2F 4

)
∗ F
)

= FD1
2F 4 − (D1

2F 4)F +
(
D1

2F 4

)
F − F D1

2F 4 = 0,

then (7.4) represents the same cohomology class
[(
D1

2F
)
∗ f
]
. The same folds for[(

D0
3F 1

)
∗ F 1

]
, and

[(
D1
tF
′) ∗ F ′]. �
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