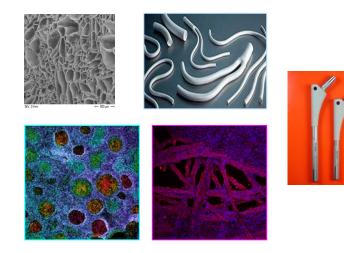
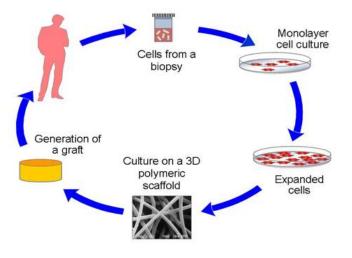
Adipose issue-derived stem cells in tissue engineering and cell therapy

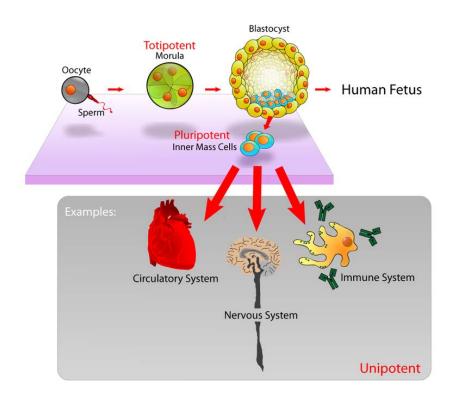

Lucie Bačáková¹, Nikola Kročilová¹, Jana Havlíková¹, Martin Pařízek¹, Hooman Motarjemi², Martin Molitor²

¹Dept. Of Biomaterials and Tissue Engineering, Institute of Physiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, Praha 4 – Krč


²Dept. of Plastic Surgery, Bulovka Hospital, Budínova 67/2, Praha 8 – Libeň

Biomaterials and Tissue Engineering

- A biomaterial is any matter, surface, or construct that interacts with living systems
 - Nature-derived (ECM proteins, polysaccharides...)
 - Prepared artificially (metallic alloys, synthetic polymers, ceramics, composite materials...)
- Biomaterials are used as cell carriers for tissue engineering (TE)
 - an interdisciplinary field that applies the principles of engineering and the life sciences toward the development of biological substitutes that restore, maintain, or improve tissue function (Langer and Vacanti, Science 260: 920-926, 1993)



Basic principles of Tissue engineering

Definition of Stem Cells

Stem cells are undifferentiated biological cells that can differentiate into specialized cells and can divide (through mitosis) to produce more stem cells.

Mike Jones: The source of pluripotent stems cells from developing embryos. https://commons.wikimedia.or g/wiki/File:Stem_cells_diagra m.png#/media/File:Stem_cells _diagram.png

Sources of Stem Cells

• Embryonic

- Zygote
- Morula
- Blastula
- Blastocyst

•Adult organism

- Bone marrow
- Blood (endothelial progenitor cells)
- Skeletal muscle satellite cells
- Skin
- Organs (liver, heart, kidneys...)
- Urinary stem cells
- Adipose tissue-derived stem cells

• Extrafetal tissues

- Placenta
- Amniotic fluid
- Umbilical cord
- Umbilical cord blood
- Induced pluripotent stem cells (iPS)
 - Genetically manipulated and reprogrammed from adult differentiated somatic cells
 - Potential tumorigenicity
 - Immunogenicity

Why Stem Cells?

- •Non-differentiated cells with a higher proliferation potential than in differentiated cells
- •Can be isolated in larger quantities
- Expandable to larger quantities, withstand more passages, slower senescence
- •Less immunogenic than differentiated cells
- Immunomodulatory and immunosuppressive function (treatment of inflammatory and autoimmune diseases)
- Have autocrine and paracrine functions
- •Can be differentiated into desired cell phenotypes by appropriate culture conditions

Adipose Tissue-Derived Stem Cells (ASCs)

- Seem to be the most advantageous for cell therapies and tissue engineering
- Adipose tissue is abundant in many patients
- Subcutaneous localization, easily accessible
- Can be easily harvested with less discomfort, low donor-site morbidity and high amount compared to bone marrow-derived stem cells
- High amount of ASCs:
 - adipose tissue: is 1 cell per 50 cells
 - bone marrow: 1 cell per 10 000 cells
- Higher proliferation capacity compared to bone marrow stem cells (BMSCs)
- Undergo senescence later than BMSCs
- No calcification when used for cardiovascular tissue engineering

Clinical Applications of ASCs I

- Cell-assisted lipotransfer for tissue augmentation (CAL): autologous ASCs implanted together with an autologous fat graft in order to enhance its survival and to reduce its postoperative atrophy or resorption
 - cosmetic breast enhancement
 - facial contouring Parry-Romberg syndrome (progressive atrophy of the right hemiface)

- A. Preoperative view of a 19 year old woman with Parry-Romberg Syndrome.
- B. Postoperative view of a 19 year old woman, one year after Cell Assisted Lipotransfer.

Sterodimas A. et al.: Journal of Plastic, Reconstructive & Aesthetic Surgery 63, 1886-1892, 2010

Clinical Applications of ASC II

- Local injection of ASCs
 - healing wound after radiation therapy
 - skin rejuvenation
- Treatment of inflammatory and autoimmune diseases (by intravenous infusion of stem cells):
 - graft-versus-host disease
 - Crohn's disease
 - multiple sclerosis
- Orthopaedic applications
 - Repair of maxilla: ASCs + β-tricalcium phosphate and bone morphogenetic protein-2 (Mesimaki K *et al*.: Int J Oral Maxillofac Surg 2009;38:201–9)
 - Repair of calvaria: ASCs + fibrin glue in a 7-year-old girl with severe head injury (Lendeckel S *et al.*: J Craniomaxillofac Surg 2004;32:370–3)

Clinical Applications of ASC III

Critical limb ischemia – ,,diabetic foot"

Patient 7

Patient 3

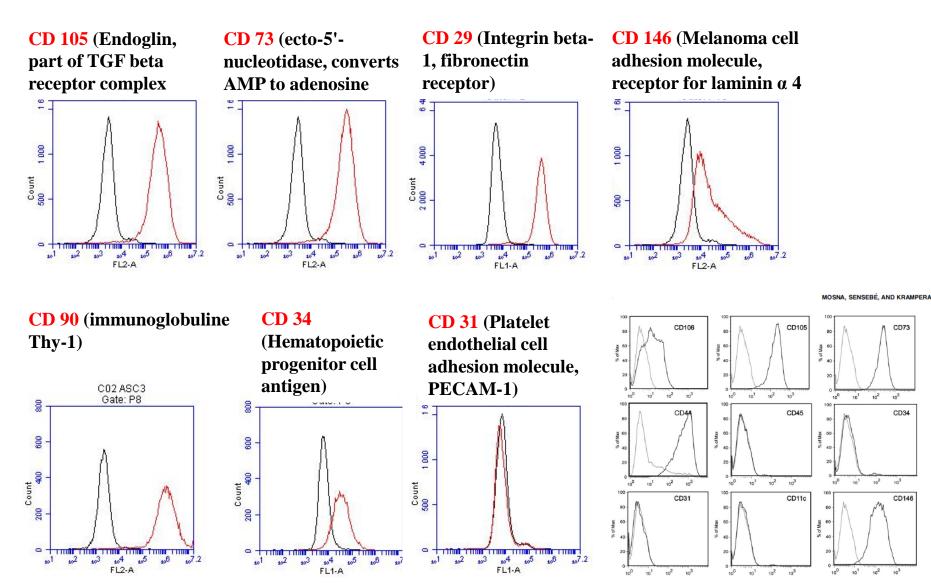
Patient 1

- ASCs from abdominal fat were grown for 2 weeks
- More than 200 million cells were obtained
- ASCs (10⁸) were then intramuscularly injected into
- the ischemic leg of patients

Bura A *et al*.: **Cytotherapy** 16(2): 245-257, 2014.

Paracrine Function of Stem Cells

- Able to produce various growth factors:
 - vascular endothelial growth factor (VEGF)
 - basic fibroblast growth factor (bFGF)
 - epidermal growth factor (EGF)
 - keratinocyte growth factor (KGF)
 - platelet-derived growth factor (PDGF)
 - hepatocyte growth factor (HGF)
 - transforming growth factor-beta (TGF- β)
 - insulin-like growth factor (IGF)
 - brain-derived neurotrophic factor (BDNF)
- Antioxidative effects
- Stem cells improve the growth and function of cells in the damaged tissues by paracrine manner


Isolation of Adipose Stem Cells

- Fat tissue obtained by liposuction (Dept. of Plastic Surgery, Bulovka Hospital, Prague), 10 ml of lipoaspirate
- Rinsed repeatedly with phosphate-buffered saline in order to remove blood cells
- Digested by collagenase I (1 hour at 37°C, shaking), centrifuged
- Filtered through Cell Strainer (100 µm pores, BD Falcon, U.S.A.)
- Seeded into polystyrene flasks (25 cm², TPP, Switzerland; 0.16 ml of the original lipoaspirate per cm²)

Estes BT *et al*.: Nat Protoc 5: 1294-1311, 2010

Characterization of ASCs by Flow Cytometry

Stem Cells Dev. 2010; 19(10):1449-70

Differentiation of ASCs

- Relatively easy:
 - Adipocytes
 - Osteoblasts
 - Vascular smooth muscle cells

• **Difficult**:

- Endothelial cells
- Keratinocytes

• Methods of differentiation:

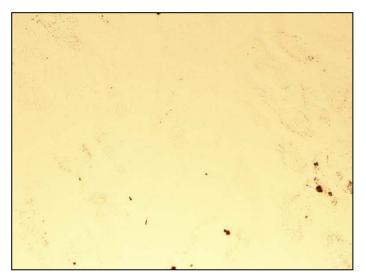
- Composition of cell culture medium
- Appropriate scaffolds
- Mechanical stimulation in dynamic cell culture systems
- Electrical stimulation

Adipogenic Differentiation

• Cultivation in DMEM medium (with FCS) supplemented with:

Dexamethasone (1 mM)

3-isobutyl-1-methylxanthine (0.5 mM)


Indomethacin (60 mM)

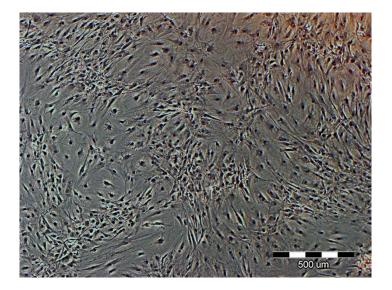
Insulin (10 mg/ml)

Hydrocortisone (0.5 mM)

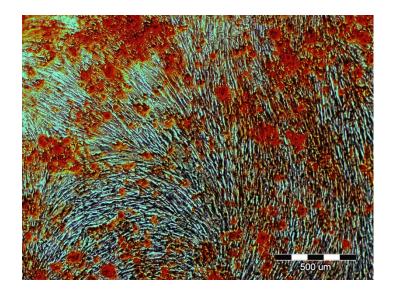
• Oil Red O (lipids stained in red):

Cells in standard medium

Cells in adipogenic medium


Osteogenic Differentiation

• Cultivation in DMEM medium (with 10% of FCS) supplemented with:

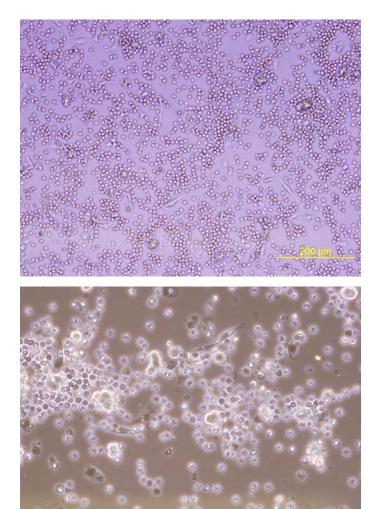

 $\begin{array}{l} \mbox{Dexamethasone} \ \ 10^{-8} \ M \ (393 \ ng/ml) \\ \mbox{β-glycerolphosphate} \ ... \ 10 \ mM \ (2.16 \ mg/ml) \\ \mbox{L-glutamine} \ ... \ 2 \ mM \ (292 \ \mu g/ml) \\ \mbox{Ascorbic acid} \ ... \ 50 \ \mu g/ml \\ \mbox{Dihydroxyvitamin} \ D_3 \ ... \ .10^{-6} \ M \ (385 \ ng/ml) \end{array}$

• Alizarin Red (mineral deposits stained in red):

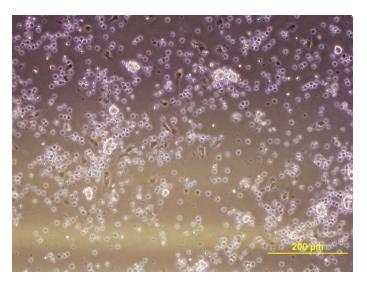
Cells in standard medium

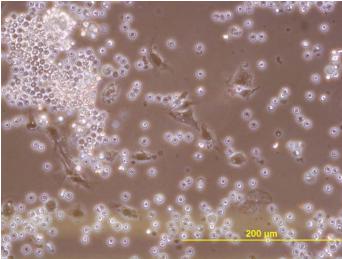
Cells in osteogenic medium

Influence of Liposuction Parameters on the Quantity and Quality of ASCs


- Manual liposuction or vacuum machine
- Anaesthesia (general, local)
- Composition of tumescent solution:
 - Isotonic NaCl
 - Lidocain (2%): anaesthesia, emulsification of fat tissue
 - Adrenalin (1:20000): in order to stop bleeding
- <u>Negative pressure</u>:
 - 200 mm Hg
 - 700 mm Hg
 - Taken from the same patient

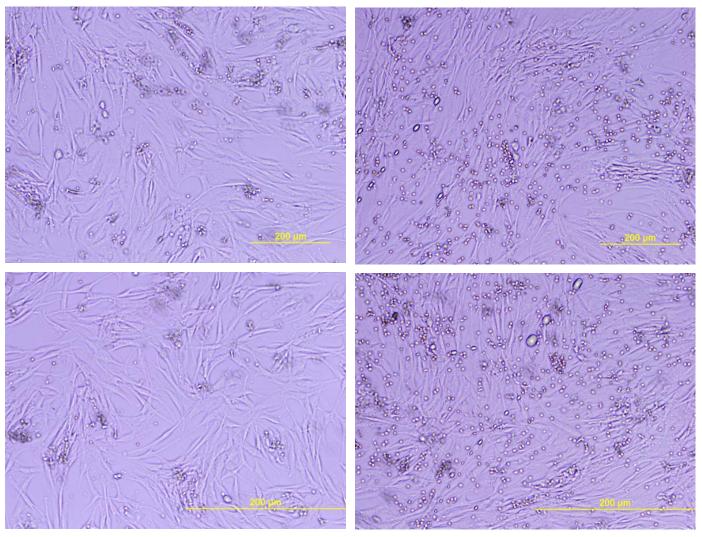
(left and right parts of the abdomen)

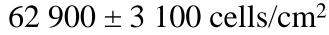



Patient 1: Day 1 after isolation – before medium change

Low negative pressure (-200 mmHg)

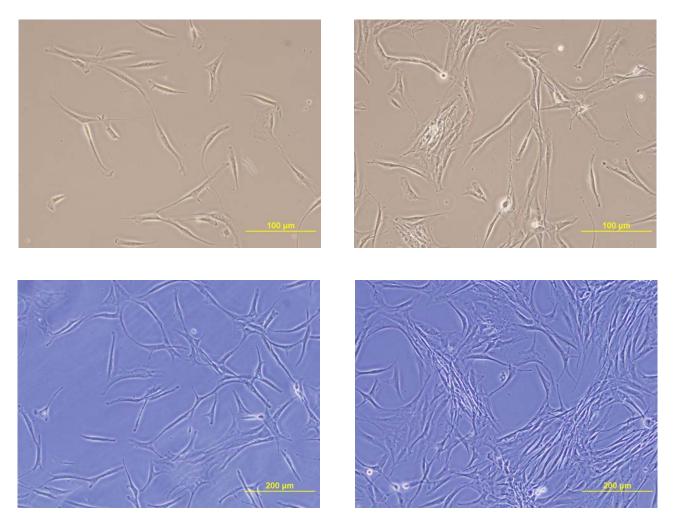
High negative pressure (-700 mmHg)




Patient 1: Primoculture, day 5 after isolation

Low negative pressure (-200 mmHg)

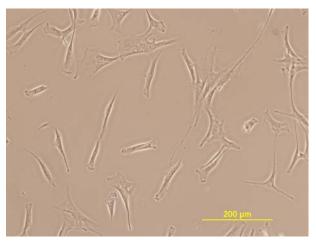
High negative pressure (-700 mmHg)



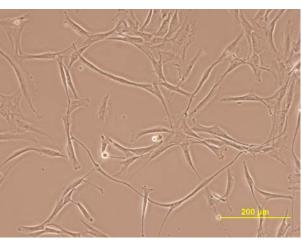
$39\ 800 \pm 3\ 600\ cells/cm^2$

Patient 1: Passage 1 (4 000 cells/cm²)

Low negative pressure (-200 mmHg) High negative pressure (-700 mmHg)

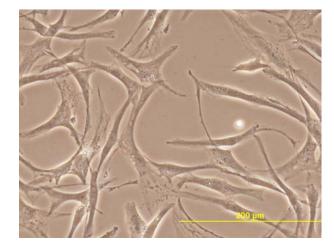

Day 2

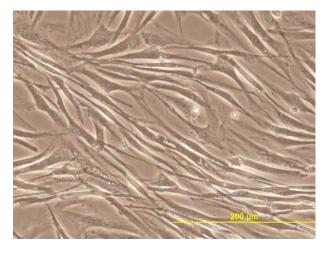
Day 4


 $18\ 500 \pm 600\ cells/cm^2 \quad 27\ 900 \pm 2\ 600\ cells/cm^2$

Patient 1: Passage 2 (4 000 cells/cm²)

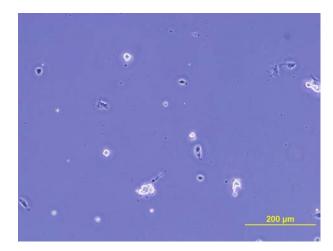
Low negative pressure (-200 mmHg) High negative pressure (-700 mmHg)

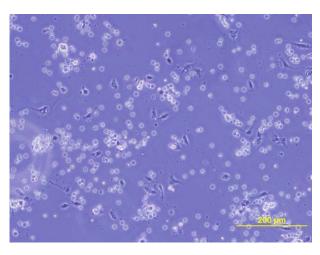



 $8\ 300 \pm 400\ cells/cm^2$

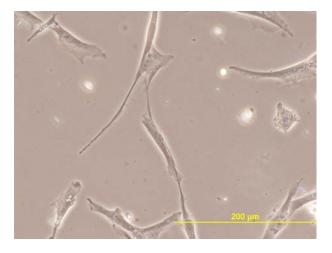
 $13\ 000 \pm 600\ cells/cm^2$

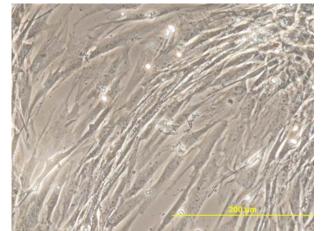
Day 3



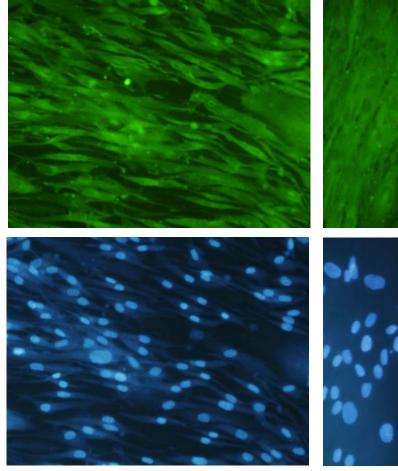


Day 7

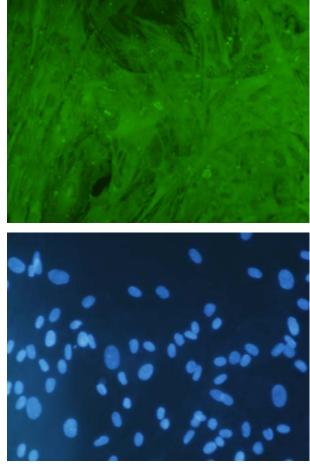

Patient 2 - Primoculture


Low negative pressure (-200 mmHg) High negative pressure (-700 mmHg)

Primoculture day 1


Primoculture day 6

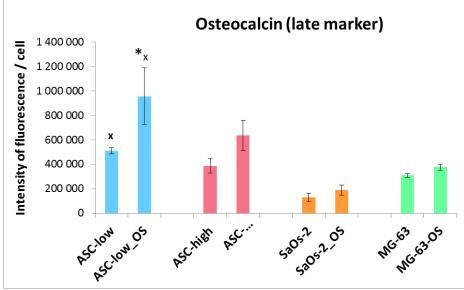
Osteogenic Cell Differentiation


Measured by the intenzity of fluorescence after immunofluorescence staining of collagen I, alkaline phosphatase and osteocalcin

Pat. 1, pas. 2, low pressure, after freezing, day 5

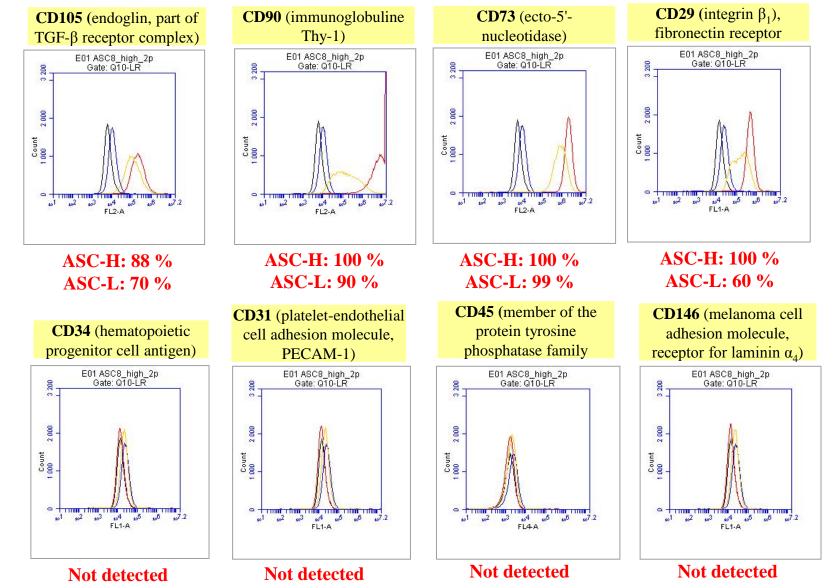
Standard medium

Osteogenic medium



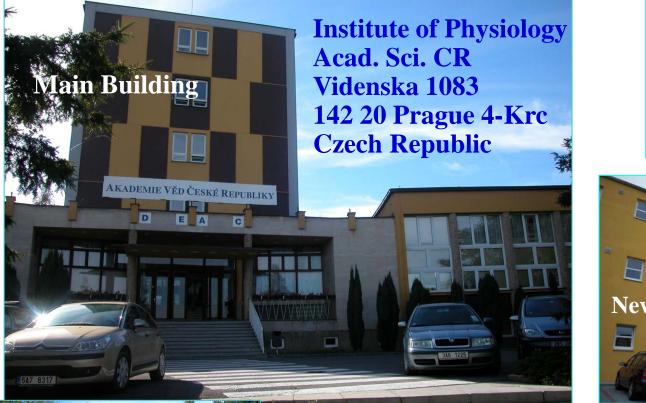
- Fluorescent Image Analyser software (version 1.0)
- The fluorescence intensity was normalized per cell
- The fluorescence intensity of control samples stained without primary antibodies was subtracted

Matejka, R., ALICE: Fluorescent Image Analyser (ver 1.0); http://alice.fbmi.cvut.cz


Osteogenic Differentiation (pat. 1, pas. 2, after freezing, d. 5)

Flow-cytometric characterization of ASCs

black: ASC-H – control/ blue: ASC-L – control/ red: ASC-H - stained/ yellow: ASC-L -stained


Conclusion

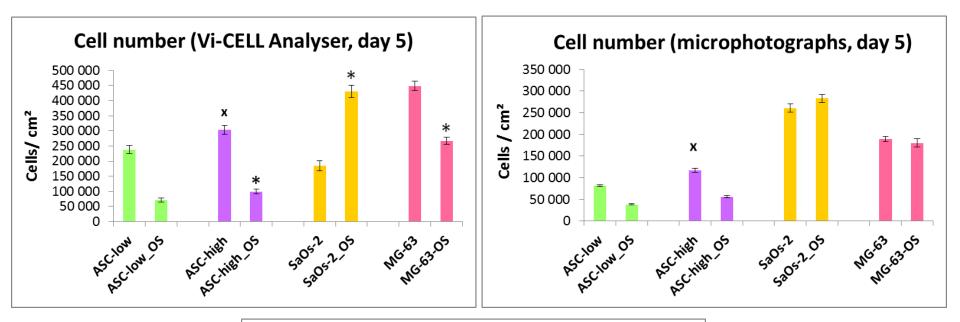
Parameter	Lower pressure (-200 mm Hg)	Higher pressure (-700 mm Hg)
Amount of adhering ASCs after isolation	\downarrow	1
Growth of ASCs (measured by cell number)	\downarrow	1
Osteogenic differentiation of ASCs (AF, Ocn)	1	\downarrow

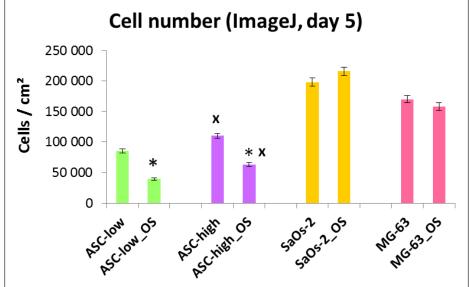
These differences could be, at least partly, explained by phenotypic differences between the two ASC populations revealed by flow cytometry

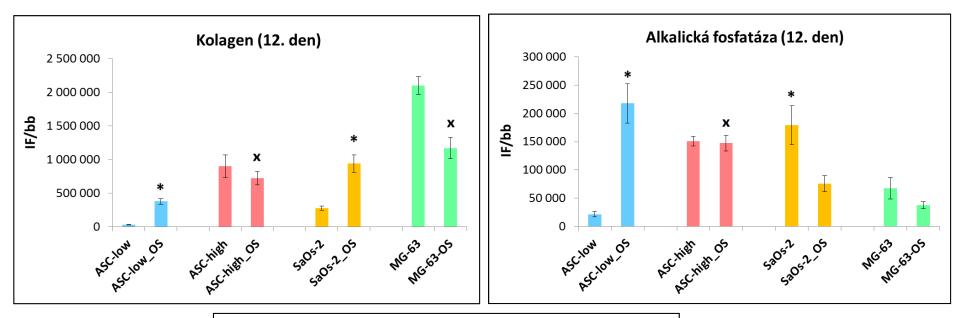
Supported by the grant ,, Application of adipose tissue-derived stem cells obtained by liposuction in tissue engineering", No. 15-33018A, Ministry of Health of the CR **Team members:** Hooman Štěpán Motarjemi Martin Molitor Zdeňka Potocký Kolská Václav Petr vorčík Slepička Roman Matějka Nikola Jana Alexander Kročilová Havlíková Kromka

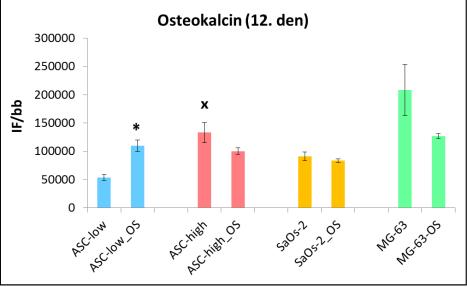
Thank you very much for your attention!

Cell Staining & Microscopy



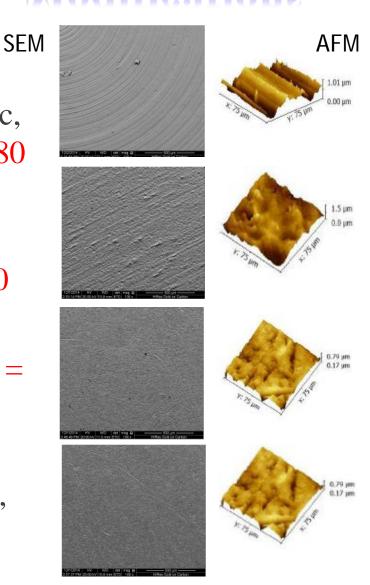





Cell Number (patient 1, pas. 2, after freezing, day 5)

Osteogenic Differentiation (pat. 1, pas. 2, after freezing, d, 12)

Ti-6Al-4V Alloy with Various Surface Modifications

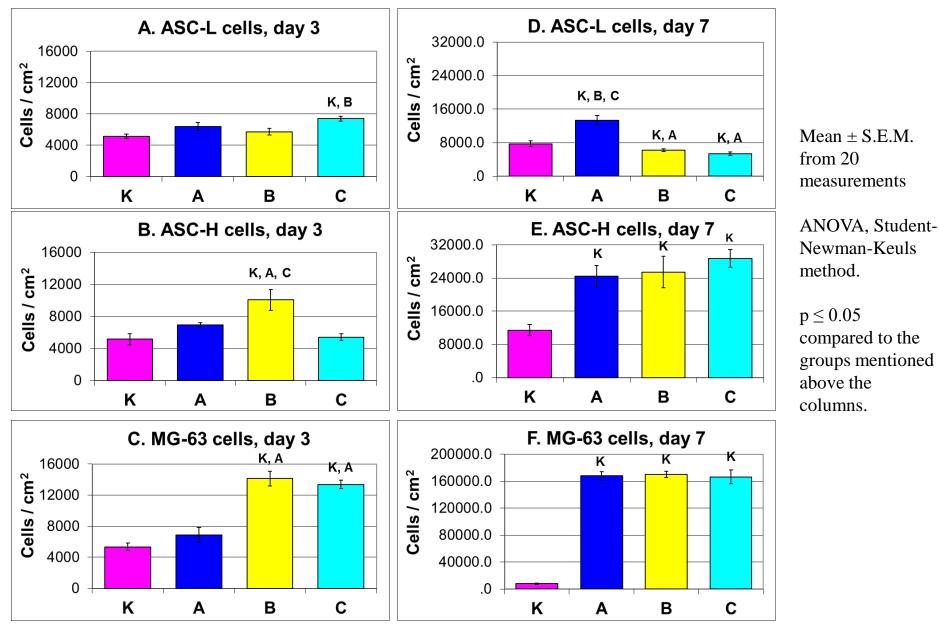

Prepared in collaboration with VUHZ Joint-Stock Co. (Dr. Roman Gabor) and Medin Joint-Stock Co. (Dr. Jaroslav Marvan)

K Control unmodified samples (disc, diameter 14 mm, thickness 2 mm, Ra = 280 nm)

A Modified by shot blasting and tarnishing (tryskání a matování), Ra = 200 nm

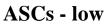
B Vibratory finishing (omílání), Ra = 100 nm

C Vibratory finishing, shot blasting and polishing (omílání, tryskání a leštění), Ra = 80 nm



Contact Angle and Surface Free Energy

Sample	Contact angle [°]		Surface free energy [mN/m]		
	Water	Polyethylene glycol	Total	Disperse part	Polar part
K	85.6 ± 4.9	63.4 ± 4.1	25.4 ± 13.85	19.5 ± 8.47	6 ± 5.38
A	56.8 ± 2.1	12.4 ± 2.9	50.9 ± 2.72	45.3 ± 1.8	5.7 ± 0.9
B	52.7 ± 4.7	33.0 ± 0.7	47.0 ± 10.98	12.8 ± 3.42	34.2 ± 7.55
С	44.0 ± 2.3	30.4 ± 3.0	55.4 ± 5.97	8.7 ± 1.75	46.7 ± 4.22


Mean ± S.D. from 7 measurements (Inst. Chemical Technology; Dr. Nikola Kasálková Slepičková)

Cell Number on Ti-6Al-4V samples

Cell Morphology on Ti-6Al-4V Samples

MG-63 cells

ASCs - high

Day 7 after seeding

Control non-modified

Shot blasting and tarnishing (tryskání a matování)

Vibratory finishing (omílání)

Vibratory finishing, shot blasting and polishing (omílání, tryskání a leštění)

Texas Red C₂-Maleimide and Hoechst 33258. Olympus IX 51 microscope, DP 71 digital camera, objective 10x, bar = 200 μ m

Κ

A

B

С