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Abstract

In this paper, we perform an in—depth investigation of relative merits of two adaptive

learning algorithms with constant gain, Recursive Least Squares (RLS) and Stochastic

Gradient (SG), using the Phelps model of monetary policy as a testing ground. The

behavior of the two learning algorithms is very different. Under the mean (averaged) RLS

dynamics, the Self—Confirming Equilibrium (SCE) is stable for initial conditions in a very

small region around the SCE. Large distance movements of perceived model parameters

from their SCE values, or “escapes”, are observed.

On the other hand, the SCE is stable under the SG mean dynamics in a large region.

However, actual behavior of the SG learning algorithm is divergent for a wide range of con-

stant gain parameters, including those that could be justified as economically meaningful.

We explain the discrepancy by looking into the structure of eigenvalues and eigenvectors

of the mean dynamics map under SG learning.

Results of our paper hint that caution is needed when constant gain learning algorithms

are used. If the mean dynamics map is stable but not contracting in every direction,

and most eigenvalues of the map are close to the unit circle, the constant gain learning

algorithm might diverge.
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Abstrakt

V této práci podrobně zkoumáme relativńı výhody dvou algoritmů adaptivńıho učeńı

s konstantńım výnosem, Rekurzivńıho algoritmu nejmenš́ıch čtverc̊u (Recursive Least

Squares, RLS) a Algoritmu stochastického gradientu (Stochastic Gradient, SG), na Phelpsově

modelu monetárńı politiky. Chováńı těchto dvou algoritmů je velmi odlǐsné. Uvažujeme-

li pr̊uměrnou dynamiku RLS, pak je stav Sebe-potvrzuj́ıćı rovnováhy (Self-Confirming

Equilibrium, SCE) stabilńı pro počátečńı podmı́nky v malé oblasti okolo SCE. Jsou ale

pozorovány velké pohyby sledovaných parametr̊u od SCE hodnot, tzv. “úniky”. Na

druhé straně, SCE je stabilńı pro pr̊uměrnou dynamiku SG v rozsáhlé oblasti. Nicméně

chováńı SG jako algoritmu adaptivńıho učeńı je divergentńı pro velký rozsah parametr̊u

konstantńıch výnos̊u, včetně těch které mohou být vńımány jak ekonomicky realistické.

Vysvětlujeme tyto nesrovnalosti pomoćı analýzy vlastńıch hodnot (eigenvalues) a vlastńıch

vektor̊u (eigenvectors) rozděleńı pr̊uměrné dynamiky v SG algoritmu adaptivńıho učeńı.

Výsledky naš́ı práce naznačuj́ı, že při použ́ıváńı konstantńıch výnos̊u uč́ıćıho algoritmu je

potřeba opatrnosti. Jestliže je rozděleńı pr̊uměrné dynamiky stabilńı, nikoli však ve všech

směrech, a většina vlastńıch hodnot je bĺızko k jednotkové kružnici, konstantńı výnos

algoritmu adaptivńıho učeńı může divergovat.
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1 Introduction

In this paper, we perform an in—depth investigation of the relative merits of two

adaptive learning algorithms with constant gain, Recursive Least Squares (RLS) and

Stochastic Gradient (SG). Properties of RLS as a learning algorithm are reasonably

well understood as it has been used extensively in the adaptive learning literature.

For an extensive review, see Evans and Honkapohja (2001). SG learning received

more limited attention in the past, but the situation is changing: Evans, Honkapohja,

and Williams (2005) promote the constant gain SG (and generalized SG) as a robust

learning rule, which is well suited to the situation of time—varying parameters.

A different motivation for studying the properties of the SG learning comes

from recent interest in heterogeneous learning, cf. Honkapohja and Mitra (2005) or

Giannitsarou (2003). In this literature, several types of agents use different adaptive

rules to learn the parameter values of the model. Often, some of the groups are using

RLS while the others employ SG. A desirable property of such a model is its stability

under all implemented types of learning.

Finally, our interest is not restricted to the dynamics of the learning algorithm

in a small neighborhood of the rational expectations equilibrium (REE) which mo-

tivates our focus on constant gain learning. It is known that E—stability of the REE,

which implies local stability under RLS learning with decreasing gain, does not au-

tomatically imply local stability under SG with decreasing gain, see Giannitsarou

(2005). Here the equilibrium is E—stable under both RLS and SG learning, but the

behavior of the constant gain versions of the two methods is substantially different

away from the equilibrium.

As a testing ground for comparison, we use the Phelps problem of a govern-

ment controlling inflation while adaptively learning the approximate Phillips curve,

studied previously by Sargent (1999) and Cho, Williams, and Sargent (2002) (CWS

hereafter). A phenomenon known as “escape dynamics” can be observed in the

model under the constant gain RLS learning. In Kolyuzhnov, Bogomolova, and

Slobodyan (2006), we applied a continuous—time version of the large deviations the-

ory to study the escape dynamics and argued that a simple approximation by a
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one—dimensional Brownian motion can be better suited for describing the escape

dynamics in a large interval of values of the constant gain. Here, we derive an even

better one—dimensional approximation and discuss the Lyapunov function—based

approach in establishing the limits of applicability of this approximation. We also

extend our analysis to the SG constant gain learning.

The rest of the paper is organized as follows. We briefly describe the dynamic

and static versions of the model of CWS and define the RLS and SG learning in

Section 2. In Section 3, we present and contrast the non—local effects arising under

the constant gain versions of these algorithms and discuss the possible explanations

for the difference in behavior of the mean dynamics and the actual real—time learning

algorithm. Section 4 concludes.

2 The model and learning algorithms

The economy consists of the government and the private sector. The government

attempts to minimize losses from inflation πn and unemployment Un:

min
{xn}∞n=0

E
P∞

n=0 β
n
¡
U2
n + π2

n

¢
, (1)

It uses the monetary policy instrument xn to control πn, Eq. (2b). It believes (in

general, incorrectly) in the Phillips curve (2c). The true Phillips curve is given by

(2a): Unemployment is affected only by unexpected inflation. The private sector

possesses rational expectations bxn = xn about the inflation rate, and thus unex-

pected inflation shocks come only from monetary policy errors. The whole model is

presented below.

Un = u− χ (πn − bxn) + σ1W1n, u > 0, θ > 0, (2a)

πn = xn + σ2W2n, (2b)

Un = γ1πn + γT−1Xn−1 + ηn. (2c)

In the “static” version of the model, Xn−1 contains only a constant, while two

lags of π and U are added to Xn−1 in the “dynamic” version. W1n and W2n are zero

mean, unit—variance independent Gaussian shocks. Vector γ =
¡
γ1, γ

T
−1

¢T
represents

a government’s beliefs about the Phillips curve; it is 6—dimensional in the “dynamic”
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and 2—dimensional in the “static” model. ηn is perceived by the government as a

white noise uncorrelated with regressors πn and Xn−1.

The equilibrium is defined as a vector of beliefs γ at which the government’s

assumptions about orthogonality of ηn to the space of regressors are consistent with

observations:

E
h
ηn · (πn, Xn−1)

T
i

= 0. (3)

CWS call this point a self—confirming equilibrium, or SCE. Williams (2001) shows

that at the SCE, γ = (−χ, 0, 0, 0, 0, u(1 + χ2))
T
, and the average inflation is xn = χu.

For a detailed description of the model, see CWS.

In a period n, the government solves (1), subject to (2b) and (2c), assuming

that current beliefs γn will never change. The monetary policy action xn is cor-

rectly anticipated by the private sector. Un is generated according to (2a), and

the government’s beliefs are adjusted in a constant gain adaptive learning step.

Let ξn =
£
W1n W2n XT

n−1

¤T
; g(γn, ξn) = ηn ·

¡
πn,X

T
n−1

¢T
; and Mn(γn, ξn) =¡

πn,X
T
n−1

¢T · ¡πn,XT
n−1

¢
. The next period’s beliefs γn+1 and Rn+1 are given by

γn+1 = γn + �R−1
n g(γn, ξn), (4a)

Rn+1 = Rn + � (Mn(γn, ξn)−Rn) , (4b)

under RLS learning and by

γn+1 = γn + �g(γn, ξn) (5)

under the SG learning.1

Set the parameter vector θ�,SGn equal to γn for the SG and θ�,RLSn =
£
γTn , vechT (Rn)

¤T
for the RLS case.2 DefineHRLS(θ�n, ξn) =

h
(R−1

n · g(γn, ξn))
T
, vechT (Mn(γn, ξn)−Rn)

iT
and HSG(θ�n, ξn) = g(γn, ξn) to write the Stochastic Recursive Algorithm (SRA) in

the standard form:

θ�,jn+1 = θ�,jn + �Hj(θ�,jn , ξn), j = {RLS, SG} , (6a)

ξn+1 = A(γn)ξn + B ·
£
W1n+1 W2n+1

¤T
. (6b)

1Rn is the current estimate of the 2
nd moments matrix of the regressors.

2Following the notation of Lütkepohl (1996), vech denotes a column vector in which abridged
columns (the main diagonal and below) of a square matrix are stacked.
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Finally, the approximating ordinary differential equations corresponding to the above

SRA are given by
·
θj = E[Hj(θ�,j, ξn)]. (7)

The SCE (vector γ and corresponding 2nd moments matrix R if RLS is used) is

the only equilibrium of the above ODE. The SCE is stable for both RLS and SG

in the dynamic and static versions of the model: the SCE is E—stable under both

algorithms. Solution of the ODE (7) is called the “mean dynamics trajectory” of the

SRA (6), with the right—hand side of (7) being the “mean dynamics”. For details

and derivations, see Evans and Honkapohja (2001). Another local continuous—time

approximation of the SRA around the SCE θ can be derived in the constant gain

case, as shown by Evans and Honkapohja (2001, Prop. 7.8) and Williams (2001,

Theorem 3.2),

dϕRLS
t = Pϕtdt +

√
�Σ1/2(θ̄

RLS
)dWt, (8)

where ϕt = θRLSt −θRLS are deviations from the SCE, see Kolyuzhnov, Bogomolova,

and Slobodyan (2006). We use the approximation (8) to study behavior of the model

when when RLS learning is employed.

Still another variant of the mean dynamics approximation is the following dif-

ference equation obtained from (6a):

θ�,jn+1 = θ�,jn + � · E[Hj(θ�,jn , ξn)]. (9)

The difference between the above approximation and (7) is that � is not assumed

to be approaching zero asymptotically. This approximation turns out to be useful

when we consider the learning dynamics in the SG case.

3 Behavior of Simulations

The discussion below refers to the model as parametrized in CWS: σ1 = σ2 = 0.3,

u = 5, χ = 1, β = 0.98.

3.1 Recursive Least Squares

3.1.1 Dynamic Model

It is well known that under the constant gain RLS learning beliefs in the Phelps

problem can exhibit “escapes”: After a number of periods spent in the neighbor-
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hood of the SCE, the beliefs vector γ suddenly deviates from the SCE towards the

“induction hypothesis” plane γ1 + γ4 + γ5 = 0 (γ1 = 0 axis for the static model),

see CWS, in particular Figs. 6 and 7. During such an escape, the inflation rate falls

from its Nash equilibrium value equal to χu and approaches 0, see Fig. 1 in CWS.

In Kolyuzhnov, Bogomolova, and Slobodyan (2006), we have studied these es-

capes extensively and described the following sequence of events. If the constant

gain parameter � is not too small, the behavior of equation (4a) is almost one—

dimensional because the two largest eigenvalues of R
−1

, λ1 and λ2, equal 3083.8

and 29.1. As a result, the projection of g(γn, ξn) onto v1, the dominant eigenvector

of R
−1

, is amplified about 100 times as strongly as the projection onto the second

largest eigenvector. It is also well known that in this model, the region of attraction

of the SCE is very small, see Fig. 1 reprinted from Kolyuzhnov, Bogomolova, and

Slobodyan (2006) or Figs. 8 and 9 in CWS. Outside of the immediate neighborhood

of the SCE, the mean dynamics point away from it and towards the “induction hy-

pothesis” plane in the direction which is very close to v1. These trajectories linger

in the neighborhood of the plane for a relatively long time and then start a slow

return to the SCE. As a result, simulation runs with escapes tend to contain a set of

points aligned along the dominant eigenvector of R
−1

all the way towards the “in-

duction hypothesis” plane, which is clearly demonstrated in the Figure 2 reprinted

from Kolyuzhnov, Bogomolova, and Slobodyan (2006).3

We use this essential one—dimensionality to derive the following approximation

of (8). Write ϕt ≈ xt · ev1, and multiply (8) by evT1 from the left. The resulting

1—dimensional approximation is then given by

dxt ≈ evT1 Dθp(θ̄
RLS

)ev1 · xtdt +

q
�eλ1 · evT1 · dWt = A · xtdt +

q
�eλ1dWt, (10)

where eλ1 is the dominant eigenvalue of Σ. Note that evT1 · dWt is a one—dimensional

standard Brownian motion. (10) is then an Ornstein—Uhlenbeck process with well—

known properties. In particular, one could easily derive the expected time until the

3In the Figure, 6—dimensional vector of beliefs γ is presented in the space of (eγ1, eγ2), defined
as γ1 + γ4 + γ5 and u · (γ2 + γ3) + γ6. A government’s beliefs about the influence of past and
current inflation on Un are given by eγ1, while eγ2 represents the beliefs about the effect of past
unemployment (and a constant). The significant disbalance of eigenvalues of R

−1
is inherited by

the matrix Σ in (8), and the eigenvector v1 is essentially collinear to the first 6 components of ev1,
the dominant eigenvector of Σ.
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process leaves any interval of the real line, see Borodin and Salminen (1996).4

To estimate the region of applicability of the approximation (10), take x2
t as the

Lyapunov function and calculate LV for one—dimensional diffusion (10):5

LV = 2 ·
³
Ax2

t + �eλ1

´
.

Clearly, LV is positive for small xt, and thus V (xt) = x2
t is expected to increase. In

other words, in a small neighborhood of the SCE the Stochastic Recursive Algorithm

(6) is expected to be locally divergent on average. We would call values of � “small”

if for xt corresponding to the boundary of the SCE’s stability region under the mean

dynamics, the value of LV is negative: Once the SRA approaches this boundary, it

is expected to turn back towards the SCE. If such behavior is observed, one expects

the invariant distribution derived along the lines of Evans and Honkapohja (2001,

Ch. 14.4) to be valid, and other methods of describing escape dynamics are needed,

such as the Large Deviations Theory, see CWS and Kolyuzhnov, Bogomolova, and

Slobodyan (2006). For values of � which are not “small” , the approximation (10)

could be used to derive expected escape time. In the dynamic model, values of �

below 2 · 10−5 are “small”.

3.1.2 What is the right � and the time scale?

How should one approach the problem of choosing �? Putting aside any considera-

tions related to the stability of learning in a particular model, two rules of thumb

for selecting � seem sensible. The first is based on the fact that constant gain adap-

tive learning is well suited to situations with time—varying parameters or structural

breaks. In this case, 1/� should be related to the typical time which is needed to

observe a break, or for the time variation to become “significant”. Alternatively, one

could imagine that the initial value of parameters is obtained through some method

of statistical estimation such as OLS. In this case, it is natural to assign to every

point in the initial estimation a weight equal to 1/N . If there is no reason to believe

4Ornstein—Uhlenbeck approximation could also be useful in case one is interested in selecting
the value of � such that for a given time period the probability of observing an escape is below
some given threshold (dynamics under learning is empirically stable).

5The operator L defined for a function V has the following meaning: Under certain conditions,
the expected value of V (t,X(t)) − V (s,X(s)) is given as an integral from s to t over LV , see
Khasminskii (1980, Ch. 3). In some sense, in stochastic differential equations LV plays the role of
time derivative of the Lyapunov function dV

dt for the deterministic system.
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that subsequent points are in some sense superior to those used to derive an initial

estimate, the constant gain � should be comparable to 1/N . Given the nature of

the Phelps problem where inflation might be available on a monthly basis but the

output gap could be evaluated only quarterly, values of � not much larger or smaller

than 0.01 seem empirically justified. In a recent paper, Orphanides (2006) considers

values of � between 0.01 and 0.03 as fitting the data in a model with constant gain

RLS learning. He also uses � = 0.005 for the SG constant gain learning of a natural

real rate and a natural unemployment rate.

Notice that the period in the Phelps model could not be shorter than a quarter

(or a month). As Table 1 shows, for � < 1·10−4 in the dynamic model and � < 4·10−4

in the static one, the expected time until escape becomes larger than an economically

relevant time scale (say, a hundred years); probability of observing an escape within

this time becomes negligible as � decreases even further. An important caveat to

this statement is that both the theoretical and simulation results are obtained by

imposing the SCE as the starting point of learning. In other words, one starts

from a situation of a completed learning, where the government and the private

sector are playing Nash equilibrium, and is interested in the expected time until

the economy “unlearns” Nash equilibrium given a particular constant gain learning

rule. If, instead of the SCE, initial beliefs are given by a point which is closer to the

stability region’s boundary, one would expect smaller escape times.

3.1.3 Static Model

Dynamics of the static model under the constant gain RLS learning is qualitatively

similar to that of the dynamic one: a move out of the immediate region of attraction

of the SCE, followed by a long trek to the Ramsey equilibrium outcome with zero

average inflation. The dynamics is essentially one—dimensional. However, the radius

of the region of attraction is slightly larger in the dominant direction than in the

dynamic model, and the diffusion is less powerful.6 As a result, in the static model

� starts to be “small” at about 3 · 10−4.

The combined effect of the stronger drift, weaker diffusion, and larger stability

region is obvious: a significantly larger than in the dynamic model expected num-

6In the dynamic (static) model, A=-0.41 (-0.52) and eλ1 =278 (26).
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ber of periods until the simulations escape the neighborhood of the SCE. Table 1

compares empirically observed average time needed to escape with the theoretically

predicted values for different choices of the constant gain parameter �. For values of �

which are not “small”, the agreement is rather good, especially for the static model.

In agreement with our estimate of the Ornstein—Uhlenbeck approximation’s appli-

cability, it starts to overpredict for “small” �. This effect is especially pronounced

for the static model.

TABLE 1. A comparison of the theoretically derived values of expected escape

time and empirically observed average escape times

Dynamic model Static model

� Simulations Theory Simulations Theory

2 · 10−5 1.10 · 105 1.86 · 105

3 · 10−5 5.10 · 104 7.21 · 104 4.40 · 107 9.40 · 108

5 · 10−5 1.88 · 104 2.34 · 104 1.93 · 106 9.90 · 106

1 · 10−4 4.84 · 103 5.43 · 103 1.50 · 105 2.75 · 105

2 · 10−4 1.26 · 103 1.31 · 103 2.38 · 104 2.97 · 104

4 · 10−4 336.96 321.5 5.06 · 103 5.26 · 103

1 · 10−3 64.59 50.9 733.57 701.5
2 · 10−3 21.49 12.68 189.98 165.7
3 · 10−3 12.50 5.63 87.00 72.27
4 · 10−3 8.77 3.16 52.08 40.28
5 · 10−3 6.79 2.02 34.39 25.64
6 · 10−3 5.99 1.40 24.76 17.74
7 · 10−3 4.98 1.03 19.14 13.00
8 · 10−3 4.49 0.79 15.02 9.93
9 · 10−3 4.12 0.62 13.32 7.84
1 · 10−2 3.70 0.51 11.16 6.34

3.2 Stochastic Gradient Learning

It is necessary to note that in the SG case, the dependence of the learning dynamics

on � is dramatically different from the RLS case. In a nutshell, simulations are

divergent for a rather wide interval of �. On the other hand, the term R−1
n does not

multiply the right—hand—side in Eq. (5), which prevents usage of a one—dimensional

approximation which proved to be so successful in the RLS case.
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3.2.1 Dynamic Model

In the approximation (9), the matrix

z(�) = I + �Dθp(θ̄
SG

)

is stable but only just: For � = 0.01, its eigenvalues range from λ1 =0.2447 to

λ2 =0.9988 to λ6 =0.99999862. Five out of six eigenvalues are almost unitary. Under

the mean dynamics (9), any deviation from the SCE results in a fast movement along

x1, the eigenvector which corresponds to λ1, and then an extremely slow convergence

back to the SCE along the remaining five directions, see Figure 3. On the other hand,

simulations of (6) behave very differently. Figure 4 plots a norm of deviations from

the SCE and γ6 − γ6: There is a clearly distinguishable movement away from the

SCE which seems almost deterministic.7 For this value of �, the inflation rate will

drop below 4 (at the SCE, its mean equals 5) in a couple of hundred periods, which

is definitely the time scale with which one should be concerned. How could one

explain the discrepancy between the mean dynamics (9) and the simulations?

Fig. 5 plots a projection of γn−γ
kγn−γk

onto the sub—space spanned by five eigen-

vectors of z(�) which correspond to the almost unitary eigenvalues for a typical

simulation run with � = 0.01. Within the first hundred simulation periods, this pro-

jection becomes very close to unity: average value for the first ten (hundred) periods

is 0.69 (0.80). Thus, a simulation run quickly approaches some neighborhood of the

sub—space and does not leave it for any extended period of time. This behavior is

natural: Any initial deviation along x1 will shrink to 0.253 ∼1.5% of its initial size

in just 3 steps. On the other hand, deviations along five other eigenvectors will take

at least ln(0.5)
ln(0.9988)

∼577 periods to reach 50% of their initial magnitude.

Another feature of the matrix z(�) which helps to explain the behavior of sim-

ulations is the presence of directions along which deviations are expected to in-

crease before declining. Such directions exist because the symmetric part of z(�),

zsym(�) = z(�)+z(�)T

2
, is not stable. After one iteration of the map z(�), initial

deviation in the direction w, the unstable eigenvector of zsym(�), is expected to

increase its projection onto w and thus to increase its norm, at least initially.8 The

7If we observe the simulations for a larger number of periods, the belief vector γ eventually
reaches values at which the state vector process loses stationarity, and the simulation breaks down.

8Suppose an initial deviation is given by w. After one period, this deviation is transformed
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largest eigenvalue of zsym(�) equals 1.103 at � = 0.01, 1.01 at � = 0.001 and 1.001 at

� = 1 · 10−4. A projection of γn−γ
kγn−γk

onto w is plotted in Figure 6 (only the absolute

value of the projection matters, not its sign). It becomes large very fast, in about

one hundred simulation periods or less. A system (9) is expected to demonstrate a

locally divergent behavior whenever this projection is large. To support further the

crucial importance of the projection onto w, Figure 7 presents the norm of deviation

from the SCE for the mean dynamics trajectory which started from a point γ that

lies in the direction w. There is a steep initial increase in the norm, followed by a

long decline which is still far from complete after 2000 periods. To overcome the

initial increase and return the system to the norm of deviation equal to its initial

value, 150 periods are needed.

The norm of the projection of w onto the sub—space spanned by the five eigenvec-

tors is rather large and equals 0.95. When the dynamics of (6) is restricted almost

exclusively to this subspace, mean dynamics plays almost no role in the short run.

Random disturbances are then very likely to produce the value of γn− γ which has

a significant projection onto w during the 150 periods which are needed to eliminate

the effect of the previous shock in this direction. Once such shock happens, the

projection is not likely to disappear given a very weak stabilizing force of the mean

dynamics on the sub—space.

As a final piece of evidence connecting the vector w with the divergent behavior

of simulations, consider Figure 8. In the periods when the projection of γn−γ
kγn−γk

onto

w (crosses) is particularly large, the distance between the beliefs γn and the SCE γ

(solid line) grows the fastest; a relative decline in the projection is correlated with

a temporary stop or even a reversal of the divergent behavior.

Summarizing the discussion, we could say that a clear instability observed in

the behavior of the SRA for SG learning in the dynamic Phelps problem is caused

by a particular structure of the mean dynamics map z(�). The sub—space spanned

by the almost unitary eigenvalues’ eigenvectors of z(�) is almost parallel to the

direction along which the mean dynamics is expanding in the short run rather than

contracting. Given that any random deviation away from the subspace is likely to

into Fw. Projection wTFw then gives a measure of expandion or contraction in the direction of
w after one iteration of map F. But for any vector w, wTFw = wTF symw. Therefore, in order to
find expanding (after one iteration) directions of F , one could look at eigenvalues of F sym.
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be very short—lived, and that a contracting mean dynamics within the sub—space

is very weak, random vectors with a relatively large projection onto the expansive

direction are likely to appear. Once such a projection appears, it is unlikely to be

averaged away by the mean dynamics.

We checked the behavior of the algorithm for other values of �. Qualitatively,

the picture does not change: There is still an apparent divergence of the vector of

a government’s beliefs γn away from the SCE. One could still observe a very fast

convergence towards the sub—space spanned by the five almost unitary eigenvalues’

eigenvectors and a significant projection onto the expanding direction w. Only for

very small values of � ≤ 8 · 10−6 we start observing a different behavior, when the

system (6) does not systematically diverge and fluctuates in some neighborhood of

the SCE.

3.2.2 Static Model

Taking into account that under RLS learning the static model was much more stable

(it took much longer for the escape to the “induction hypothesis” plane to happen),

we expect this feature to be preserved under SG learning as well. This is what

is indeed observed. Clearly unstable behavior is observed only for relatively large

values of � above 3 ·10−2. This instability could take two forms: either a convergence

to a quasi—stable stochastic steady state where kγ − γk is about 3 for � between

approximately 6.5 · 10−2 and 7.9 · 10−2 (above � ∼ 7.9 · 10−2, the mean dynamics

map z(�) has a real eigenvalue which is less than -1 making the SCE unstable), or a

divergence of simulations from the SCE for 3.5 ·10−2 . � . 6.5 ·10−2. When � equals

3.5 · 10−2 or less, empirically relevant time scales are characterized by what seems

to be a stable dynamics. The speed of divergence significantly depends on the value

of �: While at � = 5 · 10−2, less than 100 iterations are typically needed to observe

a deviation from the SCE such that kγ − γk ≥ 0.1; such large excursions are not

likely to be observed before the 500th iteration for � = 4 · 10−2. As in the dynamic

model, the eventual outcome of divergent simulations is the value of γ which leads

to at least one eigenvalue of the matrix A(γ) in (6b) being outside of the unit circle

and thus to a non—stationary state process.

Applying the reasoning demonstrated above to the dynamics of the static model
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under SG learning in real time, we could say the following. The map z(�) has two

eigenvalues. One is always close to one (0.9999 for � = 3 · 10−2). The other is a

linearly decreasing function of �. It equals -1 when � ∼ 7.9 ·10−2 and approaches 1 as

�→ 0. It is still true that the divergent behavior is related to the movement along

the almost unitary eigenvalue’s eigenvector: Projection of w onto this eigenvector

equals 0.9988, and the fastest divergence of beliefs from their SCE values occurs

when γ − γ is in the closest alignment with w (wT · γn−γ
kγn−γk

is close to one). There

are two crucial differences with the dynamics model, however. First, the direction

w is very weakly expansive: The unstable eigenvalue of zsym(�) equals only 1.0018

when � ∼ 3 · 10−2 and becomes even smaller as � decreases. At the same time, the

dominant eigenvalue of z(�) equals 0.23 for � ∼ 3 ·10−2 and is decreasing in �. Thus,

for smaller values of �, the dynamics of (9) loses its essentially one—dimensional

nature in the expanding direction, and the expansive movement in the direction w

is not too strong (compare 1.0018 to the 1.103 reported for the dynamic model).

Instead of 150 periods needed to start reversing a deviation in the direction of w,

which we reported for the dynamic model at � = 0.01, only 3-4 iterations are needed

to achieve the same result in the static model at similar values of �. It is not a big

surprise, then, that the static model under the SG learning stops diverging at much

larger values of the constant gain.

3.2.3 Reasons for difference with the RLS case

Why do we observe the diverging behavior documented above only in the SG case?

RLS case differs from the SG one in three respects. First, the mean dynamics is

very weak relative to the stochastic dynamics especially in the direction of dominant

eigenvector of R
−1

, as documented in Kolyuzhnov, Bogomolova, and Slobodyan

(2006). Second, the mean dynamics map z(�) does not contain strongly contracting

eigenvalues. And third, those eigenvalues of z(�) that are closest to the unit circle

are much further from it than in the SG case. A combination of these three factors

assures that even though simulation runs under RLS learning do exhibit relatively

large projections in the expanding direction of zsym(�), these projections are not

correlated with episodes of particularly fast deviations from the SCE.

14



4 Conclusion

We compared the performance of two methods of adaptive learning with constant

gain, Recursive Least Squares and Stochastic Gradient learning, in a Phelps model

of a monetary policy which has been extensively studied previously. For the val-

ues of � which might be justified for the problem, it is a well—known fact that the

RLS adaptive learning could force the government’s beliefs about the Phillips curve

to “escape”, or deviate significantly, from the neighborhood of the Self—Confirming

Equilibrium where the inflation level is set at high levels, towards the beliefs which

lead the policymaker to set inflation close to zero. We approximated the discrete—

time Stochastic Recursive Algorithm which describes RLS constant gain learning

by a one—dimensional continuous—time Ornstein—Uhlenbeck process and derived ex-

pected escape times out of a small neighborhood of the SCE. The theoretical pre-

diction works rather well when compared with the simulation results.

Turning our attention to the SG learning, we showed that the model dynamics is

divergent for a large interval of values of �. The divergence is especially pronounced

when SG learning is used in the dynamic version of the Phelps problem. This

behavior is caused by the existence of eigenvalues of the SRA mean dynamics map

which are very close to the unit circle, and thus, deviations in the direction of

corresponding eigenvectors contract very slowly. Moreover, the SRA mean dynamics

map has directions which are expected to expand in the short run rather than

contract, and these directions are almost parallel to the sub—space spanned by the

slowly contracting eigenvectors. Such a combination leads to a divergent behavior of

the SRA, which is reversed only for the very small � values when the expansion rate

reduces to very small values. Behavior of the static model exhibits similar features,

with a crucial difference of the expansion rate: For the empirically relevant values

of �, it is less than 1.02 instead of 1.1 as in the dynamic model. This difference

means that the SRA stops exhibiting divergent behavior for much larger values of

the constant gain parameter in the static than in the dynamic model.

Comparing the two variants of the model under two types of constant gain adap-

tive learning, we could say that only SG learning in the static model demonstrates

an absence of large excursions of beliefs from the SCE at an empirically relevant

time scale and for constant gain values likely to be used in practice (“stability”).
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Additionally, the expected escape time rises very steeply as � decreases. Following

Evans, Honkapohja, and Williams (2005), one could thus endorse using this adaptive

learning method for the static model. The overall result, however, cannot be judged

as very good as three out of four modifications produce an “unstable” result.

A very unbalanced nature (large differences between the dominant eigenvalue

and the rest) of the second moments matrix R plays a significant role in the results,

making the stochastic dynamics strongly one—dimensional in the RLS case and lead-

ing to almost unitary eigenvalues in the SG case. Whether this feature is caused

by the fact that the government uses a mis—specified model in the Phelps problem

warrants further investigation.

The behavior of the SRA under SG learning in real time leads us to express

a warning. Checking that the mean dynamics map is asymptotically stable is not

enough to guarantee “stable” behavior of the constant gain learning algorithm in real

time; moreover, checking that the mean dynamics trajectories are stable in a large

region is not enough either. If many eigenvalues of the mean dynamics map for a

constant gain learning algorithm are close to the unit circle, and the mean dynamics

map is not contracting in every direction, the Stochastic Recursive Algorithm might

exhibit divergent behavior despite convergent mean dynamics.

16



References

Borodin, A. N., and P. Salminen (1996): Handbook of Brownian Motion –

Facts and Formulae. Birkhauser Verlag, Basel Boston Berlin.

Cho, I.-K., N. Williams, and T. J. Sargent (2002): “Escaping Nash Infla-

tion,” Review of Economic Studies, 69(1), 1—40.

Evans, G. W., and S. Honkapohja (2001): Learning and Expectations in

Macroeconomics. Princeton University Press, Princeton, NJ.

Evans, G. W., S. Honkapohja, and N. Williams (2005): “Generalized

Stochastic Gradient Learning,” NBER Technical Working Paper 317.

Giannitsarou, C. (2003): “Heterogeneous Learning,” Review of Economic Dy-

namics, 6, 885—906.

(2005): “E—Stability Does Not Imply Learnability,” Macroeconomic Dy-

namics, 9, 276—287.

Honkapohja, S., and K. Mitra (2005): “Learning Stability in Economies with

Heterogeneous Agents,” mimeo.

Khasminskii, R. Z. (1980): Stochastic Stability of Differential Equations. Sijthoff

& Noordhoof, Alphen aan den Rijn, The Netherlands.

Kolyuzhnov, D., A. Bogomolova, and S. Slobodyan (2006): “Escape Dy-

namics: A Continuous—Time Approximation,” CERGE—EI Working Paper 285.

Lütkepohl, H. (1996): Handbook of Matrices. John Wiley & Sons, Chichester.

Orphanides, A. (2006): “Inflation Targeting under Imperfect Knowledge,” FRB

San Francisco Working Paper 2006-14.

Sargent, T. J. (1999): The Conquest of American Inflation. Princeton University

Press.

Williams, N. (2001): “Escape Dynamics in Learning Models,” Ph.D. thesis, Uni-

versity of Chicago.

17



-1 -0.99 -0.98 -0.97 -0.96 -0.95
9.65

9.7

9.75

9.8

9.85

9.9

9.95

10

γ
1
+γ

4
+γ

5

γ 6+u
*(
γ 2+γ

3)

-1 -0.8 -0.6 -0.4 -0.2 0
5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

γ
1
+γ

4
+γ

5

γ 6+u
*(
γ 2+γ

3)

Figure 1. The mean dynamics trajectories under RLS
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Figure 2. Typical simulation run and the “largest” eigenvector of R−1.
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