Novinky
Na čem pracujeme: Radioteleskop ALMA pomohl určit teplotní strukturu sluneční protuberance
Sluneční protuberance patří mezi velmi dynamické projevy sluneční aktivity. Vznikají v komplikovaných strukturách koronálního magnetického pole, v nichž kondenzuje látka s vlastnostmi chromosféry. Určení teploty plazmatu v protuberancích je náročným úkolem. Petr Heinzel společně s dalšími kolegy ze Slunečního oddělení ASU i kolegy ze zahraničních institucí ukazuje, že s pomocí rádiového interferometru ALMA lze tuto úlohu vyřešit.
Spektrální diagnostika slunečních protuberancí se provádí téměř rutinně již po desetiletí. Díky stále se zlepšujícím pozorováním s vysokým rozlišením v kombinaci s realističtějšími numerickými modely se daří tyto objekty stále lépe popisovat. Protože jsou ale tyto analýzy postaveny především na tvarech a intenzitě spektrálních čar, je velmi obtížné rozlišit důležitost fyzikálních procesů, které se na tvaru těchto čar podepisují. Například intenzita spektrální čáry závisí na kinetické teplotě částic plazmatu, ale také na hustotě, na intenzitě osvětlení protuberance z fotosféry a dalších faktorech. Tepelné rozšíření čáry je také těžké odlišit od rozšíření tzv. mikroturbulencí. V běžných modelech je tedy kinetická teplota plazmatu určena obvykle nepřímo, často na základě analogií nebo fyzikálně odůvodněných předpokladů.
Petr Heinzel z ASU se již dříve se svými kolegy zabýval otázkou přímého měření teploty pomocí rádiového záření. A to zejména proto, že v protuberancích je rádiové záření převážně opticky tlusté a určená jasová teplota tak přímo koresponduje s kinetickou teplotou plazmatu. Optická tloušťka je faktor, který lze určit z pozorování téže protuberance v témže čase ve spektrální čáře vodíku Hα. Pracovníci z ASU tedy navrhovali pozorovací kampaň se simultánním sledováním Slunce v čáře Hα a interferometrem ALMA, avšak neúspěšně. Je tak zajímavé, že se stejně formulovanou kampaní uspěl jiný tým, kterému se podařilo 19. dubna 2018 pozorovat dobře patrnou protuberanci, a to právě jednak s pomocí rádiového interferometru ALMA na milimetrových vlnách, a současně se zobrazovacím spektrografem MSDP v polském Bialkově (Vratislavská univerzita). Po uplynutí exkluzivního období pro autory pozorovacího návrhu byla ALMA data zveřejněna a náš tým se mohl dát do práce.
Rádiová data byla velmi pečlivě zredukována s pomocí odpovídajících úloh redukčního programového balíku CASA, do něhož čeští autoři pod vedením M. Bárty také velmi intenzívně přispívají. Stejně tak datové kostky pořízené velkým koronografem v Bialkově byly zpracovány odpovídajícími nástroji, a oba typy pozorování byly přes sebe přeloženy tak, aby si prostorově odpovídaly. Zde je třeba poznamenat, že prostorové rozlišení v optické oblasti z polské observatoře shodou okolností velmi dobře odpovídá prostorovému rozlišení interferometru ALMA v rádiových vlnách, i když v budoucnu by měla ALMA poskytovat rozlišení na Slunci mnohem větší.
Další analýza dat šla ruku v ruce s numerickým modelováním. Ze snímků v čáře Hα nelze přímo určit potřebnou optickou tloušťku na 3 mm, ale jen tzv. míru emise. Kalibrační vztah mezi těmito dvěma veličinami ovšem musel být nalezen s pomocí numerického modelování záření v protuberancích. Autoři sestavili síť celkově více než sta tisíc modelů, na nichž tolik potřebný kalibrační vztah nalezli.
Ten pak využili při přepočtu jasové teploty, která je úměrná intenzitě rádiového záření měřeného interferometrem ALMA, na kinetickou teplotu. Zkušenosti z numerického modelu však bohužel ukázaly, že jednoznačný přepočet těchto dvou veličin je možný jen pro jasné partie protuberancí. Méně jasné oblasti pak neumožnily získat jednoznačné řešení a v dalším postupu již nebyly uvažovány.
Autorský tým v práci zmiňuje ještě jednu neznámou, a tou je výplňový faktor. Tedy procento elementárního obrazového boxu (pixelu), které je skutečně zabráno strukturami protuberance. Tento výplňový faktor je neznámý a bylo by možné jej určit jen v případě, že by byla k dispozici pozorování s extrémním prostorovým rozlišením, což v současnosti není možné. Autoři tedy prezentovali řešení svého problému pro několik realistických hodnot výplňového faktoru a ukázali, že kinetické teploty v této protuberanci se typicky pohybují mezi 6000 a 12 000 stupni. Důsledkem neznámého výplňového faktoru je mimo jiné to, že určené teploty v protuberanci klesají směrem k jejímu okraji. To ale může být jen zdánlivý efekt „rozmazání“ okraje protuberance, kdy výplňový faktor ke kraji klesá. Reálně by se zde měly vyskytovat teplejší, avšak jemnější struktury.
Představovaná práce je tak vpravdě pionýrská. Ukazuje, že vhodnou kombinací pozorování lze na dálku principiálně určit fyzikální veličiny, které bylo doposud nutné víceméně odhadovat. Autoři současně poukazují, že kdyby měli k dispozici současná pozorování z více kanálů ALMA, analýza by se ještě zjednodušila a umožnila by eliminovat některé zde zmíněné problémy. Jednoznačným výsledkům by pak pomohla i pozorování s vyšším prostorovým rozlišením, což by s interferometrem ALMA mělo být možné.
Poznámka: ALMA (Atacama Large Millimeter Array) je velký rádiový interferometr v poušti Atacama v Čile, mezinárodní projekt ESO, USA a Japonska.
Michal Švanda
Citace práce
P. Heinzel a kol., ALMA as a Prominence Thermometer: First Observations, Astrophysical Journal Letters 927 (2022) id.L29, preprint arXiv:2202.12761
Kontakt: prof. RNDr. Petr Heinzel, DrSc., pheinzel@asu.cas.cz