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ON DIFFERENTIAL SYSTEMS IN SOBOLEV SPACES WITH

GENERIC INHOMOGENEOUS BOUNDARY CONDITIONS

OLENA ATLASIUK, VLADIMIR MIKHAILETS

Abstract. We study linear systems of ordinary differential equations of an
arbitrary order on a finite interval with the most general (generic) inhomoge-
neous boundary conditions in Sobolev spaces. We investigate the character of
solvability of inhomogeneous boundary-value problems, prove their Fredholm
properties, and find the indices, the dimensions of the kernel, and the cokernel
of these problems. Moreover, we obtained the necessary and sufficient condi-
tions for continuity in a parameter of solutions to the introduced problems in
Sobolev spaces.

1. Boundary-value problems

Boundary-value problems with inhomogeneous boundary conditions containing
derivatives whose order is greater than or equal to the order of the differential
equation arise naturally in some mathematical models (see, for example, [1, 2, 3]).
The theory of such problems contains few results so far even for the case of ordinary
differential equations. The purpose of this paper is to develop this theory regarding
linear systems of ordinary differential equations of an arbitrary order with generic
inhomogeneous boundary conditions in Sobolev spaces.

Let a finite interval (a, b) ⊂ R and the next parameters be given

{m, n, r, l} ⊂ N, 1 ≤ p ≤ ∞.

By Wn+r
p = Wn+r

p

(
[a, b];C

)
:=
{
y ∈ Cn+r−1[a, b] : y(n+r−1) ∈ AC[a, b], y(n+r) ∈

Lp[a, b]
}
we denote a complex Sobolev space and set W 0

p := Lp. This space is a
Banach one with respect to the norm

∥∥y
∥∥
n+r,p

=

n+r−1∑

k=0

∥∥y(k)
∥∥
p
+
∥∥y(n+r)

∥∥
p
,

where ‖·‖p is the norm in Lp

(
[a, b];C

)
. Similarly, by (Wn+r

p )m := Wn+r
p

(
[a, b];Cm

)

and (Wn+r
p )m×m := Wn+r

p

(
[a, b];Cm×m

)
we denote Sobolev spaces of vector-valued

functions and matrix-valued functions, respectively, whose elements belong to the
function space Wn+r

p .
We consider the following linear boundary-value problem

(Ly)(t) := y(r)(t) +

r∑

j=1

Ar−j(t)y
(r−j)(t) = f(t), t ∈ (a, b), (1.1)

By = c, (1.2)

Key words and phrases. Differential system; boundary-value problem; Sobolev space; index of
operator; continuity in parameter.
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where matrix-valued functions Ar−j(·) ∈ (Wn
p )

m×m, a vector-valued function f(·) ∈

(Wn
p )

m, vector c ∈ Cl, a linear continuous operator

B : (Wn+r
p )m → C

l (1.3)

are arbitrarily chosen; and a vector-valued function y(·) ∈ (Wn+r
p )m is unknown.

If l < r, then the boundary conditions are underdetermined. If l > r, then the
boundary conditions are overdetermined.

We represent vectors and vector-valued functions in the form of columns. A
solution to the boundary-value problem (1.1), (1.2) is understood as a vector-valued
function y(·) ∈ (Wn+r

p )m satisfying equation (1.1) (for n ≥ 1 everywhere, and for
n = 0 almost everywhere) on (a, b), and equality (1.2) specifying l scalar boundary
conditions.

It includes all known types of classical boundary conditions, namely, the Cauchy
problem, two- and many-point problems, integral and mixed problems, and nu-
merous nonclassical problems. The last class of problems may contain derivatives
(generally fractional) y(k)(·), with 0 < k ≤ n+ r, (see, for instance, [4]).

The solutions of equation (1.1) fill the space (Wn+r
p )m if its right-hand side

f(·) runs through the space (Wn
p )

m. Therefore, the boundary condition (1.2) with
continuous operator (1.3) is the most general condition for this equation.

For 1 ≤ p < ∞, every operatorB in (1.3) admits a unique analytic representation

By =

n+r−1∑

k=0

αky
(k)(a) +

∫ b

a

Φ(t)y(n+r)(t)dt, y(·) ∈ (Wn+r
p )m,

where the matrices αk ∈ Crm×m, 1/p+ 1/p
′

= 1, and the matrix-valued function
Φ(·) ∈ Lp

′

(
[a, b];Crm×m

)
.

For p = ∞ this formula also defines an bounded operator B : (Wn+r
∞

)m → C
rm.

However, there exist other operators from this class generated by the integrals over
finitely additive measures. Hence, the study of the p = ∞ case faces additional
difficulties, unlike when p < ∞ ([5, 6, 7]).

2. Solvability

With the generic inhomogeneous boundary-value problem (1.1), (1.2), we asso-
ciate a linear operator in pair of Banach spaces

(L,B) : (Wn+r
p )m → (Wn

p )
m × C

l. (2.1)

Recall that a linear continuous operator T : X → Y , where X and Y are Banach
spaces, is called a Fredholm operator if its kernel and cokernel are finite-dimensional.
If operator T is Fredholm, then its range T (X) is closed in Y and the index is finite

ind T := dim kerT − dim(Y/T (X)) ∈ Z.

Theorem 2.1. The linear operator (2.1) is a bounded Fredholm operator with index
mr − l.

The proof of Theorem 2.1 uses the well-known theorem on the stability of the
index of a linear operator with respect to compact additive perturbations (see [8]).

This theorem naturally raises the question of finding the Fredholm numbers.
This is a quite difficult task because the Fredholm numbers may vary even under
arbitrarily small one-dimensional perturbations.

To formulate the following result, let us introduce some notation and definitions.
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For each number k ∈ {1, . . . , r}, we consider a family of matrix Cauchy problems:

Y
(r)
k (t) +

r∑

j=1

Ar−j(t)Y
(r−j)
k (t) = Om, t ∈ (a, b),

with the initial conditions

Y
(j−1)
k (a) = δk,jIm, j ∈ {1, . . . , r}.

Here, Yk(·) is an unknown (m × m) – matrix-valued function, and δk,j is the
Kronecker symbol.

By [BYk] we denote the numerical (m× l) – matrix, in which j-th column is the
result of action of the operator B on the j-th column of the matrix-valued function
Yk(·).

Definition 2.2. A block rectangular numerical matrix

M(L,B) := ([BY0] , . . . , [BYr−1]) ∈ C
mr×l

is characteristic to the inhomogeneous boundary-value problem (1.1), (1.2).

It consists of r rectangular block columns [BYk] ∈ C
m×l.

Here mr is the number of scalar differential equations of the system (1.1), and l
is the number of scalar boundary conditions.

Theorem 2.3. The dimensions of the kernel and cokernel of the operator (2.1)
are equal to the dimensions of the kernel and cokernel of the characteristic matrix
M(L,B), respectively.

Theorem 2.3 implies the necessary and sufficient conditions for the invertibility
of the operator (2.1).

Corollary 2.4. The operator (L,B) is invertible if and only if l = mr and the
square matrix M(L,B) is nondegenerate.

The following theorem shows that the functions dimker(L,B) and dim coker(L,B)
are semi-continuous in the strong operator topology in the class of problems we have
considered.

With the problem (1.1), (1.2), we consider a sequence of boundary-value prob-
lems

L(k)y(t, k) := y(r)(t, k) +
r∑

j=1

Ar−j(t, k)y
(r−j)(t, k) = f(t, k), t ∈ (a, b), (2.2)

B(k)y(·, k) = c(k), k ∈ N, (2.3)

where the matrix-valued functions Ar−j(·, k), the vector-valued function f(·, k), the
vector c(k), and the linear continuous operators B(k) satisfy the above conditions
to the problem (1.1), (1.2).

With the boundary-value problem (2.2), (2.3), we associate a sequence of linear
continuous operators

(L(k), B(k)) : (Wn+r
p )m → (Wn

p )
m × C

l

and a sequence of characteristic matrices depending on the parameter k ∈ N

M
(
L(k), B(k)

)
:=
(
[B(k)Y0(k)] , . . . , [B(k)Yr−1(k)]

)
⊂ C

mr×l.

We now formulate a sufficient condition for the convergence of the characteristic
matrices M (L(k), B(k)) to the matrix M (L,B).
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Theorem 2.5. If the sequence of operators
(
L(k), B(k)

)
converges strongly to the

operator
(
L,B

)
for k → ∞, then the sequence of characteristic matrices M

(
L(k), B(k)

)

converges to the matrix M
(
L,B

)
.

Corollary 2.6. Under the assumptions from Theorem 2.5, the following inequali-
ties hold for sufficiently large k:

dimker (L(k), B(k)) ≤ dim ker (L,B) ,

dim coker (L(k), B(k)) ≤ dim coker (L,B) .

In particular:

1. If l = mr and the operator (L,B) is invertible, then the operators (L(k), B(k))
are also invertible for large k.

2. If the boundary-value problem (1.1), (1.2) has a solution for any values
of the right-hand sides, then the boundary-value problems (2.2), (2.3) also
have the solutions for large k.

3. If the boundary-value problem (1.1), (1.2) has a unique solution, then the
problems (2.2), (2.3) also have the unique solutions for each large k.

The examples show that for arbitrary Fredholm operators, the statements of the
Theorem 2.3 and its consequences are incorrect.

3. Examples

Example 1. Consider a linear one-point boundary-value problem for differential
equation of the first order

(Ly)(t) := y′(t) +Ay(t) = f(t), t ∈ [a, b], (3.1)

By =
n−1∑

k=0

αky
(k)(a) = c, (3.2)

where A is a constant (m × m) – matrix, a vector-valued function f(·) belongs
to the space (Wn−1

p )m, matrices αk belong to the space Cl×m, a vector c ∈ Cl,

B : (Wn
p )

m → Cl, (L,B) : (Wn
p )

m → (Wn−1
p )m × Cl, y(·) ∈ (Wn

p )
m.

Denote by Y (·) ∈ (Wn
p )

m×m the unique solution of a linear homogeneous matrix
equation of the form (3.1) with the initial Cauchy condition

Y ′(t) +AY (t) = Om, t ∈ (a, b), Y (a) = Im,

where Im is identity (m×m) – matrix.
Put

M(L,B) = [BY ] :=


B




y1,1(·)
...

ym,1(·)


 , . . . , B




y1,m(·)
...

ym,m(·)





 ∈ C

m×l.

Then the fundamental matrix and its k-th derivative will have the following form:

Y (t) = exp
(
−A(t− a)

)
, Y (a) = Im;

Y (k)(t) = (−A)k exp
(
−A(t− a)

)
, Y (k)(a) = (−A)k, k ∈ N.

Substituting these value into the equality (3.2), we have

M(L,B) =

n−1∑

k=0

αk(−A)k.
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Theorem 2.1 implies that ind (L,B) = ind (M(L,B)) = m− l.
Therefore, by Theorem 2.3, we obtain

dimker(L,B) = dimker

(
n−1∑

k=0

αk(−A)k

)
= m− rank

(
n−1∑

k=0

αk(−A)k

)
,

dim coker(L,B) = −m+ l+ dim ker

(
n−1∑

k=0

αk(−A)k

)
= l− rank

(
n−1∑

k=0

αk(−A)k

)
.

From these formulas it follows that the Fredholm numbers of the problem do not
depend on the choice of the length of the interval (a, b).

Example 2. Let us consider a multipoint boundary-value problem for the system
of differential equations (3.1), with A(t) ≡ Om. The boundary conditions at the
points {tk}

N
k=0 ⊂ [a, b] contain derivatives of integer and/or fractional orders (in

the sense of Caputo [4]). They have the next form

By =

N∑

k=0

s∑

j=0

αkjy
(βkj)(tk) = c.

Here, numerical matrices αkj ∈ Cl×m. The nonnegative numbers βkj are such that

βk,0 = 0 for all k ∈ {1, 2, . . . , N}.

Theorem 2.1 implies the index of the operator (L,B) is equal to m− l.
Let us find its Fredholm numbers. In this case, the matrix Y (·) = Im. Therefore,

the characteristic matrix has the form

M(L,B) = [BY ] =
N∑

k=0

s∑

j=0

αkjI
(βkj)
m =

N∑

k=0

αk,0,

since the derivatives I
(βkj)
m = 0 if βkj > 0. Hence, according to the Theorem 2.3,

dim ker(L,B) = dimker

(
N∑

k=0

αk,0

)
= m− rank

(
N∑

k=0

αk,0

)
,

dim coker(L,B) = −m+ l + dim coker

(
N∑

k=0

αk,0

)
= l − rank

(
N∑

k=0

αk,0

)
.

It follows from these formulas that the Fredholm numbers of the problem do
not depend on the choice of the interval (a, b), the points {tk}

N
k=0 ⊂ [a, b], and the

matrices αkj , with j ≥ 1.
Example 3. Consider a two-point boundary-value problem for a system of second-

order differential equations generated by the expression

Ly(t) := y′′(t) +Ay′(t), t ∈ (a, b),

where A is a constant matrix, with the boundary operator

By =

n+1∑

k=0

(
αky

(k)(a) + βky
(k)(b)

)
.

Here, αk, βk are some rectangular numerical matrices. Then the operator

(L,B) : (Wn+2
p )m → (Wn

p )
m × C

l,

and the characteristic matrix M(L,B) ∈ C
2m×l.
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It is easy to verify that in this case

Y1(t) ≡ Im, Y2(t) = ϕ(A, t),

where, for each fixed t ∈ [a, b], the function ϕ(λ, t) := 1− exp(−λ(t− a))λ−1 is the
entire analytic function of the variable λ ∈ C.

Then

[BY1] =

n+1∑

k=0

(
αkI

(k)
m (a) + βkI

(k)
m (b)

)
= (α0 + β0)Im,

[BY2] =

n+1∑

k=0

(
αkϕ

(k)(A, a) + βkϕ
(k)(A, b)

)
.

But

Y
(k)
2 (t) = (−1)kAk exp(−A(t− a)), k ∈ {0, . . . , n+ 1}.

Hence, we have

[BY2] =

n+1∑

k=0

(αkIm + βk exp(−A(b− a))) (−A)k.

Therefore, the characteristic block matrix

M(L,B) =

(
α0 + β0;

n+1∑

k=0

(αk + βk exp(−A(b− a))) (−A)k

)
.

According to Theorem 2.3, the dimensions of the kernel and cokernel of the
inhomogeneous boundary-value problem are equal, respectively, to the dimensions
of the kernel and cokernel of the matrix M(L,B).

In particular, if βk ≡ 0 and the problem is one-point, then the block characteristic
matrix has the form

M(L,B) =

(
α0;

n+1∑

k=0

αk(−A)k

)
.

Therefore, in this case, the Fredholm numbers of the boundary-value problem
do not depend on the length of the interval (a, b).

Note that the matrix exp(−A(b − a)) can be found in an explicit form since
every entire analytic function of a numerical matrix A ∈ Cm×m is a polynomial
of A. This polynomial is expressed via the matrix A by the Lagrange–Sylvester
Interpolation Formula (see, for example, [9]). Its degree is no greater than m− 1.

4. Continuity of solutions in a parameter

Let us consider parameterized by number ε ∈ [0, ε0), ε0 > 0, linear boundary-
value problem

L(ε)y(t, ε) := y(r)(t, ε) +

r∑

j=1

Ar−j(t, ε)y
(r−j)(t, ε) = f(t, ε), t ∈ (a, b), (4.1)

B(ε)y(·; ε) = c(ε), (4.2)

where, for every fixed ε, matrix-valued functions Ar−j(·; ε) ∈ (Wn
p )

m×m, a vector-
valued function f(·; ε) ∈ (Wn

p )
m, a vector c(ε) ∈ C

rm, B(ε) is a linear continuous
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operator B(ε) : (Wn+r
p )m → Crm, and an unknown vector-valued function y(·; ε) ∈

(Wn+r
p )m.
It follows from Theorem 2.1 that the boundary-value problem (4.1), (4.2) is a

Fredholm one with index zero.

Definition 4.1. A solution to the boundary-value problem (4.1), (4.2) depends
continuously on the parameter ε at ε = 0 if the following two conditions are satisfied:

(∗) there exists a positive number ε1 < ε0 such that, for any ε ∈ [0, ε1) and
arbitrary chosen right-hand sides f(·; ε) ∈ (Wn

p )
m and c(ε) ∈ Crm, this

problem has a unique solution y(·; ε) that belongs to the space (Wn+r
p )m;

(∗∗) the convergence of the right-hand sides f(·; ε) → f(·; 0) in (Wn
p )

m and
c(ε) → c(0) in Crm implies the convergence of the solutions y(·; ε) → y(·; 0)
in (Wn+r

p )m.

Here and further, the limits are considered as ε → 0+.
This Definition is equivalent to the following two conditions:

• Operators
(
L(ε), B(ε)

)
are invertible for sufficiently small ε;

•
(
L(ε), B(ε)

)
−1 s

−→
(
L(0), B(0)

)
−1

.

Consider the following assumptions:

(0) homogeneous boundary-value problem has only the trivial solution

L(0)y(t, 0) = 0, t ∈ (a, b), B(0)y(·, 0) = 0;

(I) Ar−j(·; ε) → Ar−j(·; 0) in the space (Wn
p )

m×m for each number j ∈ {1, . . . , r};

(II) B(ε)y → B(0)y in the space Crm for every y ∈ (Wn+r
p )m.

Theorem 4.2. A solution to the boundary-value problem (4.1), (4.2) depends con-
tinuously on the parameter ε at ε = 0 if and only if this problem satisfies conditions
(0), (I), and (II).

This Theorem implies that if the operator
(
L(0), B(0)

)
is invertible, then

(
L(ε), B(ε)

) s
−→

(
L(0), B(0)

)
⇔
(
L(ε), B(ε)

)
−1 s

−→
(
L(0), B(0)

)
−1

.

As for arbitrary bounded Fredholm operators, this conclusion is not correct. Note
that the set of all irreversible operators is everywhere dense in the strong operator
topology.

We supplement our result with a two-sided estimate of the error
∥∥y(·; 0) −

y(·; ε)
∥∥
n+r,p

of the solution y(·; ε) via its discrepancy

d̃n,p(ε) :=
∥∥L(ε)y(·; 0)− f(·; ε)

∥∥
n,p

+
∥∥B(ε)y(·; 0)− c(ε)

∥∥
Crm .

Here, we interpret y(·; 0) as an approximate solution to the problem (4.1), (4.2).

Theorem 4.3. Suppose that the boundary-value problem (4.1), (4.2) satisfies con-
ditions (0), (I), and (II). Then there exist positive numbers ε2 < ε1 and γ1, γ2 such
that, for any ε ∈ (0, ε2), the following two-sided estimate is true:

γ1 d̃n,p(ε) ≤
∥∥y(·; 0)− y(·; ε)

∥∥
n+r,p

≤ γ2 d̃n,p(ε),

where the quantities ε2, γ1, and γ2 do not depend of y(·; ε) and y(·; 0).

Thus, the error and discrepancy of the solution y(·; ε) to the boundary-value
problem (4.1), (4.2) are of the same degree of smallness.
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5. Comments and Remarks

The results of Section 4 are inspired by Kiguradze’s theorem in [10].
Works [11, 12] give sufficient conditions for solutions of multi-point boundary-

value problems to be continue with respect to the parameter in Sobolev spaces.
The approach used in this article can also be applied to other classes of function

spaces (see, for example, [13]).
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