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TINGLEY’S PROBLEM FOR COMBINATORIAL TSIRELSON SPACES

NATALIA MAŚLANY

Abstract. We extend the existing results on surjective isometries of unit spheres in the
Tsirelson space T

[
1
2 ,S1

]
to the class T [θ,Sα] for any integer θ−1 ⩾ 2 and 1 ⩽ α < ω1,

where Sα denotes the Schreier family of order α. This positively answers Tingley’s problem
for these spaces, which asks whether every surjective isometry between unit spheres can
be extended to a surjective linear isometry of the entire space.

Furthermore, we improve the result stating that every linear isometry on T [θ,S1](
θ ∈

(
0, 1

2

])
is determined by a permutation of the first ⌈θ−1⌉ elements of the canoni-

cal unit basis, followed by a possible sign change of the corresponding coordinates and
a sign change of the remaining coordinates. Specifically, we prove that only the first ⌊θ−1⌋
elements can be permuted. This finding enables us to establish a sufficient condition for
being a linear isometry in these spaces.

1. Introduction and the main result

In 1987, Tingley [22] proposed a question that has since become known as Tingley’s

problem:

Let X and Y be normed spaces with unit spheres SX and SY , respectively. Suppose that

U : SX → SY is a surjective isometry. Is there a linear isometry Ũ : X → Y such that

Ũ |SX = U?

Many authors have shown that Tingley’s problem has a positive solution for surjec-

tive isometries of unit spheres in classical Banach spaces ℓp(Γ), Lp(µ) (1 ⩽ p ⩽ ∞), and

C(Ω) (see, e.g., [6–11,13–16,19,20,25]). However, the general case remains open. Notable

results in the search for a solution to Tingley’s problem in specific spaces have been com-

prehensively documented in surveys by A. M. Peralta [18], G. G. Ding [12], X. Yang, and

X. Zhao [26]. Recently, a positive solution to this isometric expansion problem has been

found for 2-dimensional Banach spaces (see [2]); nevertheless, the answer remains unknown

for higher dimensions. Positive solutions for certain subspaces of function algebras, includ-

ing closed function algebras on locally compact Hausdorff spaces, have been presented in

more recent studies (see [5]).
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The Tsirelson space T (the dual of the space constructed by Tsirelson [24], which was

the first example of a space containing no isomorphic copies of c0 or ℓp for 1 ⩽ p < ∞) can

be regarded as a special case of the double-parameter family of Banach spaces T [θ,Sα],

where θ ∈
(
0, 1

2

]
and 1 ⩽ α < ω1, with Sα being the Schreier family of order α, where α

is a countable ordinal. For the sake of brevity, we use the term combinatorial Tsirelson

spaces to refer to the members of this family, in line with the terminology used in previous

articles such as [3, 17].

In [17] we have characterized linear isometries of combinatorial Tsirelson spaces. How-

ever, the methods employed assume linearity of the isometries throughout the entire space.

We improve the main theorem from this article by proving the following first main result:

Theorem A. Let θ ∈
(
0, 1

2

]
. Then U : T

[
θ,S1

]
→ T

[
θ,S1

]
is a linear isometry if and only

if

Uei =

{
εieπ(i), 1 ⩽ i ⩽ ⌊θ−1⌋
εiei, i > ⌊θ−1⌋

(i ∈ N)

for some {−1, 1}-valued sequence (εi)
∞
i=1 and a permutation π of

{
1, 2, . . . , ⌊θ−1⌋

}
.

Then, following the approach of [21], where the authors determine the surjective isome-

tries of the unit spheres of Tsirelson space T [1
2
,S1] and the modified Tsirelson space TM

and answer Tingley’s problem affirmatively in these spaces, we establish the subsequent

main Theorem.

Theorem B. Let θ−1 ⩾ 2 be an integer and let U : ST [θ,Sα] → ST [θ,Sα] be surjective isometry.

If α = 1, then

U

( ∞∑
i=1

aiei

)
=

θ−1∑
i=1

εiaieπ(i) +
∞∑

i=θ−1+1

εiaiei

and if 1 < α < ω1, then

U

( ∞∑
i=1

aiei

)
=

∞∑
i=1

εiaiei,

for every
∑∞

i=1 aiei ∈ ST [θ,Sα], where (εi)
∞
i=1 is a {−1, 1}-valued sequence and π is a permu-

tation of
{
1, 2, . . . , θ−1

}
.

This result together with Theorem A get an affirmative answer to the Tingley’s problem

in combinatorial Tsirelson spaces T
[
θ,Sα

]
for an integer θ−1 ⩾ 2 and 1 ⩽ α < ω1.
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2. Preliminaries

2.1. Combinatorial spaces. Let us denote by (ei)
∞
i=1 the standard unit vector basis of

c00 and by [N]<ω the family of finite subsets of N. We adopt the following notation for sets

F1, F2 ∈ [N]<ω: F1 < F2 means that maxF1 < minF2, and we say that F1 and F2 are

consecutive in this case. Additionally, we use the notation F1 < n instead of F1 < {n} for

n ∈ N.

Definition 1. A family F ⊂ [N]<ω is regular, whenever it is simultaneously

• hereditary
(
F ∈ F and G ⊂ F =⇒ G ∈ F

)
;

• spreading
(
{l1, l2, . . . , ln} ∈ F and li ⩽ ki =⇒ {k1, k2, . . . , kn} ∈ F

)
;

• compact as a subset of the Cantor set {0, 1}N via the natural identification of F ∈ F
with

χF =
∑
i∈F

ei ∈ {0, 1}N.

The simplest examples of regular families include

An :=
{
F ∈ [N]<ω : |F | ⩽ n

}
(n ∈ N)

i.e., for a given n ∈ N, the family of subsets of N having at most n elements. The family

of Schreier sets is defined using these families in the following manner.

Definition 2. Given a countable ordinal α, we define inductively the Schreier family of

order α as follows:

• S0 := A1;

• if α is a successor ordinal, i.e., α = β + 1 for some β < ω1, then

Sα :=

{
d⋃

i=1

Si
β : d ⩽ S1

β < S2
β < · · · < Sd

β,
{
Si
β

}d
i=1

⊂ Sβ and d ∈ N

}
∪
{
∅
}
;

• if α is a non-zero limit ordinal and (αn)
∞
n=1 is a fixed strictly increasing sequence of

successor ordinals converging to α with Sβn ⊂ Sβn+1 for all n ∈ N, where αn = βn+1

for all n ∈ N, we set

Sα :=
{
Sαn ∈ [N]<ω : Sαn ∈ Sαn , n ⩽ minSαn for some n

}
∪
{
∅
}
.

We emphasize that in the case where α is a limit ordinal, we require the sequence (αn)
∞
n=1

cofinal in α to comprise successor ordinals as needed in the proof of Theorem B. We can

assume, and we will, that Sαn ⊂ Sαn+1 for all n ∈ N, which will also be employed in the

proof of Theorem B. Indeed, repeating the proof of [4, Proposition 3.2.] in the case of

Schreier families
{
Sξ

}
ξ<ω1

which are multiplicative in the sense of [4] we can also derive
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the desired result for Schreier families. Elements belonging to Sα are called Sα-sets. The

fact that these families are regular is well-established; see [4][Proposition 3.2] or [23].

2.2. Combinatorial Tsirelson spaces. For a regular family F and θ ∈
(
0, 1

2

]
, we define

the Banach space T [θ,F ] specializing it later to a combinatorial Tsirelson space T [θ,Sα]

for some countable ordinal α.

For a vector x = (a1, a2, . . . , an) ∈ c00 and a finite set E ⊂ N, we employ the symbol Ex

to represent the projection of x onto the space [ei : i ∈ E], given by

(2.1) E

(
n∑

i=1

aiei

)
=
∑
i∈E

aiei.

We denote by ∥ · ∥0 the supremum norm on c00. Suppose that for some n ∈ N the norm

∥ · ∥n has been defined. Let

∥x∥n+1 = max
{
∥x∥n, ∥x∥Tn

}
(n ∈ N),

where

∥x∥Tn = sup

{
θ

d∑
i=1

∥∥Eix
∥∥
n
: E1 < · · · < Ed, d ∈ N, {Ei}di=1 ⊂ [N]<ω, {minEi}di=1 ∈ F

}
.

We define the norm ∥x∥θ,F := supn∈N ∥x∥n and denote by T [θ,F ] the completion of c00

with respect to it.

A proof by induction demonstrates that this norm is bounded above by the ℓ1-norm and

is given by the following implicit formula for x ∈ T [θ,F ]:

(2.2) ∥x∥θ,F = max
{
∥x∥∞, ∥x∥T

}
,

where

∥x∥T = sup

{
θ

d∑
i=1

∥∥Eix
∥∥
θ,F : E1 < · · · < Ed, d ∈ N, {Ei}di=1 ⊂ [N]<ω, {minEi}di=1 ∈ F

}
.

It can be readily deduced from the definition that the unit vectors (ei)
∞
i=1 form an 1-

unconditional basis of the space T [θ,Sα] for a countable ordinal α.

For x1, x2 ∈ c00, we write x1 < x2 whenever supp x1 < supp x2 and for n ∈ N we

streamline the notation of supp x1 < n to x1 < n.

We adopt the following convention in this paper: we say that the norm of an element

x ∈ T [θ,F ] is given by sets E1 < E2 < · · · < Ed for some d ∈ N (with {minEi}di=1 ∈ F)

precisely when

∥x∥θ,F = θ ·
d∑

i=1

∥∥Eix
∥∥
θ,F .
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To be concise, we write ∥ · ∥ instead of ∥ · ∥θ,Sα , where θ ∈
(
0, 1

2

]
, 1 ⩽ α < ω1.

3. Linear isometries on T [θ,S1] spaces for θ ∈
(
0, 1

2

]
For further considerations, let us fix θ ∈

(
0, 1

2

]
and let ⌊θ−1⌋ and ⌈θ−1⌉ be the floor and

the ceiling of θ−1, respectively. Note that we do not yet require θ−1 to be an integer. Fix

a countable ordinal α ⩾ 1. Throughout this paper we use ST[θ,Sα]to denote the unit sphere

of T [θ,Sα].

In [17, Theorem A] we have obtained the following description of linear isometries on

combinatorial Tsirelson spaces.

Theorem 3. Let θ ∈
(
0, 1

2

]
. If U : T

[
θ,S1

]
→ T

[
θ,S1

]
is a linear isometry, then

Uei =

{
εieπ(i), 1 ⩽ i ⩽ ⌈θ−1⌉
εiei, i > ⌈θ−1⌉

(i ∈ N)

for some {−1, 1}-valued sequence (εi)
∞
i=1 and a permutation π of

{
1, 2, . . . , ⌈θ−1⌉

}
.

Armed with this result, we are now ready to prove Theorem A.

Proof. Suppose that U : T
[
θ,S1

]
→ T

[
θ,S1

]
is a linear isometry.If θ−1 is an integer, there

is nothing to prove, so assume that this is not the case. Then ⌈θ−1⌉ − 1 = ⌊θ−1⌋ and

⌈θ−1⌉ > θ−1.

It is enough to show that for any i ̸= ⌈θ−1⌉ holds π(i) ̸= ⌈θ−1⌉.
Let i ∈ {1, 2, . . . , ⌈θ−1⌉ − 1} and suppose for the contrary that π(i) = ⌈θ−1⌉, i.e.,

Uei = εie⌈θ−1⌉. Then, by Theorem 3, for any indices ⌈θ−1⌉ < j1 < j2 < · · · < j⌈θ−1⌉−1 we

have ∥∥∥∥∥Uei −
⌈θ−1⌉−1∑

k=1

Uejk

∥∥∥∥∥ =

∥∥∥∥εie⌈θ−1⌉ −
⌈θ−1⌉−1∑

k=1

εjkejk

∥∥∥∥ = θ · ⌈θ−1⌉ > 1.

On the other hand, since U is a linear isometry, we obtain∥∥∥∥∥Uei −
⌈θ−1⌉−1∑

k=1

Uejk

∥∥∥∥∥ =

∥∥∥∥∥Uei − U

( ⌈θ−1⌉−1∑
k=1

ejk

)∥∥∥∥∥ =

∥∥∥∥∥ei −
⌈θ−1⌉−1∑

k=1

ejk

∥∥∥∥∥ = 1.

This contradiction finishes the proof that the isometry has the desired form.

Let U : T
[
θ,S1

]
→ T

[
θ,S1

]
be of the form

Uei =

{
εieπ(i), 1 ⩽ i ⩽ ⌊θ−1⌋
εiei, i > ⌊θ−1⌋

(i ∈ N).

We will show that U is an isometry. If θ−1 is an integer, then the proof is in [1, Theorem 4.1],

so assume that this is not the case. Then ⌊θ−1⌋ < θ−1. We will show that it is impossible
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that the norm of some x ∈ T
[
θ,S1

]
is given by certain sets d ⩽ E1 < E2 < · · · < Ed for

some d ∈ N with d ⩽ ⌊θ−1⌋. Assume not. Then

(3.1) ∥x∥ = θ ·
d∑

i=1

∥∥Eix
∥∥.

and

θ ·
d∑

i=1

∥∥Eix
∥∥ ⩽ θ · d · ∥x∥ < ∥x∥.

Hence (3.1) cannot hold; a contradiction.

□

4. Isometries on ST [θ,Sα] for an integer θ−1 ⩾ 2 and 1 ⩽ α < ω1

To prove Theorem B we need a series of lemmas; the proofs emulate that of [21].

Lemma 4. Let u, v ∈ ST [θ,Sα]. Then for α = 1 we have

(1) min(∥u+y∥, ∥u−y∥) ⩽ 1 for all y ∈ ST [θ,Sα] if and only if u ∈ {±e1,±e2, . . . ,±e⌊θ−1⌋};
(2) If v ⩾ ⌊θ−1⌋ + 1 and min(∥v + y∥, ∥v − y∥) ⩽ θ · (⌊θ−1⌋ + 1) for all y ∈ ST [θ,Sα],

then v has one of the following forms:

(a) |v⌊θ−1⌋+1| = 1 with |vi| ⩽ θ for all i ̸= ⌊θ−1⌋+ 1;

(b) v = εem + ae⌊θ−1⌋+1 for some m ⩾ ⌊θ−1⌋ + 2, some ε ∈ {−1, 1} and some

|a| ⩽ θ,

and for α > 1 holds

(3) min(∥u+ y∥, ∥u− y∥) ⩽ 1 for all y ∈ ST [θ,Sα] if and only if u = ±e1;

(4) If v > 1 and min(∥v+y∥, ∥v−y∥) ⩽ θ ·(⌊θ−1⌋+1) for all y ∈ ST [θ,Sα], then v = ±em

for some m > 1.

Proof. (1) Since the implication (⇐) is trivial, we only need to prove the implication

(⇒). Assume that min(∥u+ y∥, ∥u− y∥) ⩽ 1 for all y ∈ ST [θ,S1]. We will show that

v has only one non-zero coordinate. Indeed, suppose to the contrary that un ̸= 0

and um ̸= 0 for some n,m ∈ N, n ̸= m. Define y := sgn unen − sgn umem. Then

y ∈ ST [θ,S1]. Since

∥u+ y∥ ⩾ 1 + |un| > 1

and

∥u− y∥ ⩾ 1 + |um| > 1

we get a contradiction.
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Since ∥u∥ = 1, so u = ±ei for some i ∈ N. Suppose that i ⩾ ⌊θ−1⌋+ 1 and take

any indices i < j1 < j2 < . . . < j⌊θ−1⌋. Then∥∥∥∥∥
⌊θ−1⌋∑
k=1

ejk

∥∥∥∥∥ = max{1, θ · ⌊θ−1⌋} = 1

and ∥∥∥∥∥u+

⌊θ−1⌋∑
k=1

ejk

∥∥∥∥∥ =

∥∥∥∥∥u−
⌊θ−1⌋∑
k=1

ejk

∥∥∥∥∥ = θ · (⌊θ−1⌋+ 1) > 1.

This contradiction ends the proof that u = ±ei for some i ⩽ ⌊θ−1⌋.
(2) We will show that ∥v∥∞ = 1. Indeed, suppose to the contrary that ∥v∥∞ < 1. Take

ε = θ−1−⌊θ−1⌋+1−∥v∥∞
4

> 0. Since ∥v∥T = 1, there exist sets d ⩽ E1 < E2 < · · · < Ed

for which
d∑

i=1

∥∥Eiv
∥∥ > θ−1 − ε.

Choose indices Ed < j1 < j2 such that |vj1|+ |vj2| < ε.

Suppose that the set E1 has more than 2 elements. Let F be the set consisting

of 2 smallest numbers from the set E1 and define E0 := E1 \ F . Note that ∥Fv∥ ⩽

∥Fv∥∞ ⩽ ∥v∥∞ and E0 ⩾ d + 2. Taking E0 < E2 < E3 < . . . < Ed < {j1} < {j2}
we obtain

min(∥v + ej1 + ej2∥, ∥v − ej1 − ej2∥} ⩾ θ

(∥∥E0v
∥∥+ d∑

i=2

∥∥Eiv
∥∥+ 1− |vj1|+ 1− |vj2|

)

⩾ θ

( d∑
i=1

∥∥Eiv
∥∥− ∥∥Fv

∥∥+ 1− |vj1|+ 1− |vj2|
)

⩾ θ

( d∑
i=1

∥∥Eiv
∥∥− ∥v∥∞ + 1− |vj1 |+ 1− |vj2|

)
> θ
(
θ−1 − ε− ∥v∥∞ + 2− ε

)
> θ(⌊θ−1⌋+ 1).

Since ∥ej1 + ej2∥ = max{1, 2θ} = 1 we get a contradiction.

Suppose now that the set E1 has at most 2 elements. Then ∥E1v∥ ⩽ ∥E1v∥∞ ⩽

∥v∥∞ and E2 ⩾ d+1. Repeating the similar reasoning for the sets E2 < E3 < . . . <

Ed < {j1} < {j2} we again obtain a contradiction.

Since ∥v∥∞ = 1, so |vm| = 1 for some m ∈ N. Observe that for any i ̸= m

∥v + vmem − sgn viei∥ ⩾ ∥v + vmem − sgn viei∥∞ = 2
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and

∥v −
(
vmem − sgn viei

)
∥ ⩾ ∥v −

(
vmem − sgn viei

)
∥∞ = 1 + |vi|.

Hence, by assumption θ(⌊θ−1⌋+1) ⩾ 1+|vi|, so |vi| ⩽ θ for i ̸= m. If m = ⌊θ−1⌋+1,

then v is of the form (a). Suppose that m ⩾ ⌊θ−1⌋+2. It is sufficient to show that

vi = 0 for all i ̸= m such that i ⩾ ⌊θ−1⌋+ 2.

Take any indices max{m, i} < j1 < j2 < . . . < j⌊θ−1⌋. Then

θ · (⌊θ−1⌋+ 1) ⩾ min

(∥∥∥∥∥v +
⌊θ−1⌋∑
k=1

ejk

∥∥∥∥∥,
∥∥∥∥∥v −

⌊θ−1⌋∑
k=1

ejk

∥∥∥∥∥
)

⩾ θ

(
|vm|+ |vi|+

⌊θ−1⌋∑
k=1

(1− |vjk |)

)

⩾ θ · (⌊θ−1⌋+ 1) + θ

(
|vi| −

⌊θ−1⌋∑
k=1

|vjk |

)
Since limk→∞ vjk = 0, so vi = 0 for all i ̸= m such that i ⩾ ⌊θ−1⌋ + 2 and thus we

get the form (b).

The proof of (3) and (4) is similar to the proofs of (1) and (2), respectively. Indeed, it is

enough to take indices j1 < j2 < . . . < j⌊θ−1⌋ with additional assumption: j1 > ⌊θ−1⌋. □

Lemma 5. Let x ∈ ST [θ,Sα]. Then ∥x+ en∥ = 2 if and only if x(n) = 1.

Proof. We omit the proof of implication (⇐) because it is trivial. Assume that ∥x+en∥ = 2.

It is enough to show that norm of vector x+ en is the supremum norm.

Take any sets d ⩽ E1 < E2 < · · · < Ed. We may assume that n ∈ Ei0 for some

i0 ∈ {1, 2, . . . , d}. Indeed, if this is not the case, we will not get a norm of vector x + en

greater than 1, because ∥x∥ = 1.

Since Eien = 0 for i ̸= i0 and ∥x∥ = 1 we obtain

θ
d∑

i=1

∥Ei(x+ en)∥ ⩽ θ
d∑

i=1

(∥Eix∥+ ∥Eien∥|)

= θ
d∑

i=1

∥Eix∥+ θ∥Ei0en∥

⩽ θ(θ−1 + 1) < 2.

□

The proof of the subsequent lemma is analogous to the proof of [21, Lemma 2.3]. Nev-

ertheless, we include it here for the reader’s convenience.
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Lemma 6. If U : ST [θ,Sα] → ST [θ,Sα] is an isometry satisfying −U(ST [θ,Sα]) ⊂ U(ST [θ,Sα]),

then −U(ei) = U(−ei) for i ∈ N.

Proof. By the assumption −U(ei) = U(xi) for some xi ∈ ST [θ,Sα]. We will show that

xi = −ei. Since ∥U(xi)∥ = 1, so

∥xi − ei∥ = ∥U(xi)− U(ei)∥ = ∥U(xi) + U(xi)∥ = 2.

By Lemma 5 we obtain xi(i) = −1. Again, by assumption, there exists xj, yj ∈ ST [θ,Sα],

where j ̸= i, such that −U(ej) = U(xj) and −U(−ej) = U(yj). Similarly, we obtain

xj(j) = −1 and yj(j) = 1. Hence

|xi(j) + 1| ⩽ ∥xi − xj∥ = ∥U(xi)− U(xj)∥ = ∥ei − ej∥ = 1.

From the other side

|xi(j)− 1| ⩽ ∥xi − yj∥ = ∥U(xi)− U(yj)∥ = ∥ei + ej∥ = 1.

this means that xi(j) = 0 for any j ̸= i, so xi = −ei. □

Lemma 7. Let θ−1 ⩾ 2 be an integer and let U : ST [θ,Sα] → ST [θ,Sα] be surjective isometry.

If α = 1 then

Uei =

{
εieπ(i), 1 ⩽ i ⩽ θ−1

εiei, i > θ−1
(i ∈ N),

and if α > 1 then Uei = εiei, where (εi)
∞
i=1 is some {−1, 1}-valued sequence and π is a

permutation of
{
1, 2, . . . , θ−1

}
.

Proof. Case 1. Let α = 1.

Step 1. Fix 1 ⩽ i ⩽ θ−1.

For any y ∈ ST [θ,S1] there exists x ∈ ST [θ,S1] such that U(x) = y. Since U is isometry, so

∥U(ei)− y∥ = ∥U(ei)− U(x)∥ = ∥ei − x∥.

By Lemma 6 we obtain

∥U(ei) + y∥ = ∥ − U(−ei) + U(x)∥ = ∥ei + x∥.

Hence

min{∥U(ei) + y∥, ∥U(ei)− y∥} = min{∥ei + x∥, ∥ei − x∥} ⩽ 1.

Thus, by Lemma 4 (1) for each i there is index π(i) ∈
{
1, 2, . . . , θ−1

}
so that U(ei) = ±eπ(i).

Note that

1 = ∥ei ± ej∥ =
∥∥U(ei)± U(ej)

∥∥ = ∥eπ(i) ± eπ(j)∥
for any j ̸= i in

{
1, 2, . . . , θ−1

}
. Therefore π(j) ̸= π(i) for j ̸= i, so π is the desired

permutation.
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Step 2. Let i > θ−1. We will show that there is εi ∈ {−1, 1} such that

U(ei) = εieσ(i),

for some permutation σ of set N \ {1, 2, . . . , θ−1}.
Note that

1 = ∥ei ± ej∥ =
∥∥U(ei)± U(ej)

∥∥ = ∥U(ei)± eπ(j)∥

for any j in
{
1, 2, . . . , θ−1

}
, so U(ei) > θ−1. Since for any x ∈ ST [θ,S1] we have

min{∥ei − x∥, ∥ei + x∥} ⩽ θ + 1

and since U is surjective, so

min{∥U(ei)− y∥, ∥U(ei) + y∥} ⩽ θ + 1

for any y ∈ ST [θ,S1].

By the Lemma 4 (b) there are σ, σ̃ : N \ {1, 2, . . . , θ−1} → N \ {1, 2, . . . , θ−1} such that

(4.1)
∣∣(U(ei)

)
(σ(i))

∣∣ = 1 and
∣∣(U−1(ei)

)
(σ̃(i))

∣∣ = 1,

for all i > θ−1. We claim that for all k, i > θ−1 with k ̸= i we have

(4.2)
(
U(ek)

)
(σ(i)) = 0 and

(
U−1(ek)

)
(σ̃(i)) = 0.

Indeed,

1 = ∥ei ± ek∥ = ∥U(ei)± U(ek)∥ ⩾
∣∣1± (U(ek)

)
(σ(i))

∣∣,
for k ̸= i in N\{1, 2, . . . , θ−1}, and similarly for U−1, so the conclusion follows. In particular

σ and σ̃ are injective.

We will show that there exists l > θ−1 such that
∣∣(U(el)

)
(θ−1 + 1)

∣∣ = 1.

If
∣∣(U(eθ−1+1)

)
(θ−1 + 1)

∣∣ = 1 then the thesis is fulfilled, so suppose that this is not the

case. Since θ−1 is an integer, so by Lemma 4 (b) we have U(eθ−1+1) = aeθ−1+1 + εem for

some m > θ−1 + 1, some |a| ⩽ θ and some ε ∈ {−1, 1}. Then

(4.3) 1 > ∥U(eθ−1+1)− εem∥ = ∥eθ−1+1 − ε · U−1(em)∥.

Moreover, by (4.1), we have |
(
U−1(em)

)
(σ̃(m))| = 1. If σ̃(m) > θ−1 + 1 then

∥eθ−1+1 − ε · U−1(em)∥ ⩾ ∥eθ−1+1 − ε · U−1(em)∥∞ ⩾ 1,

so we obtain a contradiction with (4.3).

This means that σ̃(m) = θ−1 + 1, i.e.,
∣∣(U−1(em)

)
(θ−1 + 1)

∣∣ = 1. Hence from (4.2) we

have
(
U−1(eθ−1+1)

)
(θ−1 + 1) = 0.

This together with Lemma 4 (b) yields U−1(eθ−1+1) = ε̃eσ̃(θ−1+1) for some ε̃ ∈ {−1, 1}.
So U(eσ̃(θ−1+1)) = ε̃eθ−1+1, hence σ̃(θ−1 + 1) is the l we are looking for.
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This together with (4.2) gives us
(
U(ei)

)
(θ−1 + 1) = 0 for any i ̸= l with i > θ−1. By

Lemma 4 (b) we obtain

(4.4) U(ei) = εieσ(i)

for all i ̸= l with i > θ−1 and some {−1, 1}-valued sequence (εi)
∞
i=θ−1+1,

i̸=l

Hence

U−1(eσ(i)) = εiei

for such i and (εi)
∞
i=θ−1+1,

i̸=l

. This together with (4.1) means that σ̃ = σ−1, so σ is surjective.

Since for every p ∈ supp(U(el))\σ(l) there exists i ̸= l with σ(i) = p, i.e.,
∣∣(U(ei)

)
(p)
∣∣ = 1,

by (4.2) we have
(
U(el)

)
(p) = 0. Hence U(el) = εleσ(l) for some εl ∈ {−1, 1}. This together

with (4.4) gives as conclusion.

Step 3. We will show that σ from Step 2 is an identity.

Define

xk := k−1 · θ−1 · (ek, ek+1, . . . , e2k−1)

for k > θ−1. Then

∥U(xk) + U(ei)∥ = ∥xk + ei∥ = ∥xk − ei∥ = ∥U(xk)− U(ei)∥

for all i /∈ suppxk. By Step 2 and since ∥U(xk)∥ = 1 it must be
(
U(xk)

)
(σ(i)) = 0 for all

i /∈ suppxk, so

(4.5) suppU(xk) ⊆ {σ(k), σ(k + 1), . . . , σ(2k − 1)}.

We claim that σ(k) ⩾ k for any k > θ−1.

Suppose that σ(k) < k. Then by (4.5) there is i ∈ {k, k + 1, . . . , 2k − 1} such that∣∣(U(xk)
)
(σ(i))

∣∣ ⩾ (k − 1)−1 · θ−1.

Indeed, if not, then we obtain a contradiction, because

∥U(xk)∥ < max
{
(k − 1)−1 · θ−1, θ · (k − 1) · (k − 1)−1 · θ−1

}
= 1.

Since σ(θ−1 + 1) ⩾ θ−1 + 1, assume firstly that k ∈ {θ−1 + 2, θ−1 + 3, . . . , 2θ−1}. Then

1 + (k − 1)−1 · θ−1 ⩽
∥∥U(xk) + sgn

((
U(xk)

)
(σ(i))

)
eσ(i)

∥∥
=
∥∥xk + sgn

((
U(xk)

)
(σ(i))

)
U−1(eσ(i))

∥∥
⩽ ∥xk + ei∥ = max

{
k−1 · θ−1 + 1, θ ·

(
k−1 · θ−1 · k + 1

)}
= 1 + k−1 · θ−1,

which cannot hold. Hence for θ−1 < k ⩽ 2θ−1 we have σ(k) ⩾ k.
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Assume that k > 2θ−1. Then∥∥U(xk)− sgn
((
U(xk)

)
(σ(i))

)
eσ(i)

∥∥ ⩾ ∥xk − ei∥

= max
{
1− k−1 · θ−1, θ

(
k−1 · θ−1(k − 2) + 1

)}
= 1− 2k−1 + θ > 1 = ∥U(xk)∥.

(4.6)

This means that 1−
∣∣(U(xk)

)
(σ(i))

∣∣ > ∣∣(U(xk)
)
(σ(i))

∣∣, so 1− 2
∣∣(U(xk)

)
(σ(i))

∣∣ > 0. Since

for any finite set Ej ⊂ N, where j ∈ N we have∥∥Ej

(
U(xk)− sgn

((
U(xk)

)
(σ(i))

)
eσ(i)

)∥∥
⩽
∥∥Ej

(
U(xk)− 2

(
U(xk)

)
(σ(i))eσ(i)

)∥∥
+
∥∥Ej

(
2
(
U(xk)

)
(σ(i))eσ(i) − sgn

((
U(xk)

)
(σ(i))

)
eσ(i)

)∥∥
= ∥EjU(xk)∥

+
∥∥Ej

(
2
(
U(xk)

)
(σ(i))eσ(i) − sgn

((
U(xk)

)
(σ(i))

)
eσ(i)

)∥∥,
so multiplying by θ both sides of the above inequality and taking the supremum over all

consecutive sets d < E1 < E2 < · · · < Ed for some d ∈ N, we obtain∥∥(U(xk)− sgn
((
U(xk)

)
(σ(i))

)
eσ(i)

∥∥
⩽ ∥U(xk)∥

+ θ ·
∥∥Ej0

(
2
(
U(xk)

)
(σ(i))eσ(i) − sgn

((
U(xk)

)
(σ(i))

)
eσ(i)

)∥∥
for some j0 ∈ {1, 2, . . . , d}. Hence∥∥U(xk)− sgn

((
U(xk)

)
(σ(i))

)
eσ(i)

∥∥ ⩽ ∥U(xk)∥+ θ
(
1− 2

∣∣(U(xk)
)
(σ(i))

∣∣)
= 1 + θ − 2θ

∣∣(U(xk)
)
(σ(i))

∣∣
⩽ 1 + θ − 2θ(k − 1)−1 · θ−1.

which contradicts (4.6).

Doing the same for U−1 instead of U we obtain σ−1(σ(k)) ⩾ σ(k), so k ⩾ σ(k), hence

σ(k) = k for all k > θ−1. This ends the proof for α = 1.

Case 2. Suppose that α = β + 1 for some β < ω1.

The proof that U(e1) = ε1e1, where ε1 ∈ {−1, 1} and for any i > 1 there is εi ∈ {−1, 1}
such that

U(ei) = εieσ(i)

for some permutation σ of set {2, 3, . . .} is similar to the previous case and much simpler,

so we omit it. We will show that σ is an identity.

Fix k > 1 and suppose that t := σ(k) < k.

Note that every Sα-set whose minimum is k is the union of at most k many Sβ-sets, so

the idea of the proof of this case is to choose the indices j1 < j2 < · · · < jm, for some
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m ∈ N, so that they creates k many consecutive Sβ-sets. At the same time, we must ensure

that the set

{σ(j1), σ(j2), . . . , σ(jm)}

associated with these indices was not Sα-set. We proceed as follows. Choose indices

j1 = k, j2 > max
{
k, θ−1

}
. Then take the next index j3 > max

{
j2, σ(j2)

}
, in sequence

j4 = max
{
j3, σ(j3)

}
and so on.

Following this procedure, we may choose a maximal Sβ-set created from the indices

j2 < j3 < · · · < jm1 , for some m1 ∈ N. At the same time, we get the indices

{σ(j1), σ(j2), . . . , σ(jm1)}

so that

σ(j1) < j2 ⩽ max{ j2, σ(j2) } < j3 ⩽ · · ·

· · · ⩽ max{ jm1−1, σ(jm1−1) } < jm1 .

Similarly, we may find the second maximal Sβ-set with minimum jm1+1 greater than

max{jm1 , σ(jm1)}, obtaining indices

σ(j1) < j2 ⩽ max{ j2, σ(j2) } < j3 ⩽ · · ·

· · · ⩽ max{ jm2−1, σ(jm2−1) } < jm2 .

for some m2 ∈ N.
Proceeding analogously, we finally arrive at indices

j2 < j3 < · · · < jm,

for some m ∈ N, that form a union of t maximal Sβ-sets, so we got the conclusion because

we may choose Sβ-sets

(4.7) k ⩽ S1
β < S2

β < · · · < St+1
β ,

where

• S1
β = {j1},

• S2
β = {j2, j3, . . . , jm1},

•
...

• St+1
β = {jmt+1, jmt+2, . . . , jm}.

By the above construction,

S̃m :=
{
σ(j1), σ(j2), σ(j3), . . . σ(jm)

}
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is not Sβ-set because the Schreier family (of order β) is spreading (see Definition 1). Then

we define

xk := θ−1 ·m−1 ·
m∑
i=1

eji .

As in (4.5) we have

suppU(xn) ⊆ S̃m.

To complete the proof, it is enough to replace each k with m in Step 3 of Case 1. Note

that ∣∣(U(xk)
)
(σ(i))

∣∣ ⩾ (m− 1)−1 · θ−1

holds for some i ∈ {j1, j2, . . . , jm} as we ensured that m > θ−1 + 1.

Case 3 : Suppose that α is a limit ordinal.

We proceed as in Case 2 for α = αt, where (αi)
∞
i=1 is a fixed strictly increasing sequence

of successor ordinals converging to α with Sβi
⊂ Sβn for i ⩽ n, where αn := βn+1 for each

n ∈ N, choosing suitable sequence (ji)
m
i=1. Indeed, Sβt-sets k ⩽ S1

βt
< S2

βt
< · · · < St+1

βt
,

where

• S1
βt
= {j1},

• S2
βt
= {j2, j3, . . . , jm1},

•
...

• St+1
βt

= {jmt+1, jmt+2, . . . , jm},
give rise to an Sα-set (even an Sαt-set). Moreover, the set

S̃m :=
{
σ(j1), σ(j2), . . . σ(jm)

}
is not Sαt-set by the spreading property of Sβn . Hence S̃m /∈ Sα as we ensured that

Sβi
⊂ Sβn for i ⩽ n. Indeed, suppose S̃m ∈ Sα. Then S̃m ∈ Sαj

for some j ⩽ t, i.e. S̃m is

the union of at most j-many successive Sβj
-sets, i.e. Sβt-sets by the assumption on (βi)i.

This means that S̃m ∈ Sαt ; a contradiction. □

We are now ready to prove Theorem A.

Proof. Fix α = 1. Let θ−1 ⩾ 2 be an integer and let

Uei =

{
ε̂ieπ(i), 1 ⩽ i ⩽ θ−1

ε̂iei, i > θ−1
(i ∈ N),

where (ε̂i)
∞
i=1 is some {−1, 1}-valued sequence and π is a permutation of

{
1, 2, . . . , θ−1

}
.

Define π̂(i) as π(i) for 1 ⩽ i ⩽ θ−1 and π̂(i) = i for i > θ−1. For i ∈ N let us set

εi :=
(
U(ei)

)(
π̂(i)

)
.
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Fix x =
∑∞

i=1 aiei ∈ ST [θ,S1] and take y =
∑∞

i=1 biei ∈ ST [θ,S1] such that U(x) = y. If ai

is nonzero and bi = 0 then we use the convention that sgn (bi) = 1. Take

yj =
∞∑

i=1,i̸=π̂(j)

θbiei − εjsgn (aj)eπ̂(j)

and

zj =
∞∑

i=1,i̸=π̂(j)

θbiei − sgn (bπ̂(j))eπ̂(j).

Then ∥yj∥ = 1 and ∥y − zj∥ = 1 + |bπ̂(j)|. Let xj ∈ ST [θ,S1] be such that U(xj) = yj.

We obtain

∥xj − sgn (aj)ej∥ = ∥U(xj)− sgn (aj)U(ej)∥ = ∥yj − sgn (aj)εjeπ̂(j)∥ = 2.

So by Lemma 5 we have xj(j) = −sgn (aj). This yields

1 + |bπ̂(j)| = ∥y − zj∥ ⩾ ∥y − yj∥ = ∥U(x)− U(xj)∥ = ∥x− xj∥ ⩾ 1 + |aj|.

Hence

(4.8) |bπ̂(j)| ⩾ |aj|.

Note that εi =
(
U−1(eπ̂(i))

)
(i) and U−1(ei) = επ̂−1(i)eπ̂−1(i). Similarly, we define

uj =
∞∑

i=1,i̸=π̂−1(j)

θaiei − επ̂−1(j)sgn (bj)eπ̂−1(j)

and

vj =
∞∑

i=1,i̸=π̂−1(j)

θaiei − sgn (aπ̂−1(j))eπ̂−1(j).

Then

∥U(uj)− sgn (bj)ej∥ = ∥uj − sgn (bj)επ̂−1(j)eπ̂−1(j)∥ = 2.

So
(
U(uj)

)
(j) = −sgn (bj). Hence

1 + |aπ̂−1(j)| = ∥x− vj∥ ⩾ ∥x− uj∥ = ∥U(x)− U(uj)∥ = ∥y − U(uj)∥ ⩾ 1 + |bj|.

This means that |aπ̂−1(j)| ⩾ |bj|, which together with (4.8) gives us |aπ̂−1(j)| = |bj|. We

moreover have ∥x−vj∥ = ∥x−uj∥, so επ̂−1(j)sgn (bj) = sgn (aπ̂−1(j)) and finally bπ̂(j) = εjaj

for j ∈ N, hence the conclusion follows.

Fix 1 < α < ω1 and let Uei = ε̂iei, where (ε̂i)
∞
i=1 is some {−1, 1}-valued sequence. The

proof is exactly the same if we define π̂(i) as identity for any i ∈ N. □
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