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Navier—Stokes—Fourier system

Mass conservation
Oro + divi(ou) =0

Momentum balance (Newton’ s second law)

Ot (ou) + dive(ou ® u) + Vip(o,9) = diviS(Dxu) + 0V« G

Internal energy balance (First law of thermodynamics)

Oroe(o, ) +divi(oe(o, )u) +diviq(Vx?) = S(Dxu) : Dyu—p(g, ¥)diviu

Newton'’s rheological law

S(Dxu) = p (qu + Viu— %divxuﬂ) + ndiveul, 4 >0, n>0
Fourier’s law

q(Vyd) = —kVid, >0




Thermodynamics

Gibbs’ law, Second law of thermodynamics

¥Ds = De + pD <§)

Entropy balance equation (Second law of thermodynamics)

Ot(0s(0,9))+divx(os(o, ¥)u)+divy (%) = % (S(Dxu) : Dyu — q- Zxﬁ)

Thermodynamic stability

1|mp? :
(0,S,m) — Eﬁ + oe(o, S)J strictly convex, S = gs, m = pu
[

Boyle-Mariotte equation of state

p(o,9) = 09, e(o,¥) =¥, ¢, >0, s(p,9) =c, log¥ —logp




Data

Physical space

Q Cc R, d=1,2,3 (bounded) domain

Impermeable boundary
u- n|aQ =0

Kinematic boundary condition, complete slip
[S(Dxu) - n] x njapg =0
Kinematic boundary condition, tangential velocity

uXxnjpg =ug xn

Boundary temperature
19|[)Q =g

Thermal insulation — zero heat flux

q-njape =0




Initial /boundary value problem

Initial state of the system

Q(O7 ) = 0o, 19(07 ) = 1907 Qo > 07 190 > 07 U(O, ) = Uo

+ compatibility conditions

Existence of local-in—time strong solutions
m Valli, Valli-Zajaczkowski [1986], Kawashima—Shizuta [1988]

00 € W(Q), 9o € WF(Q), up € WF(Q; RY), k>3
m Cho—Kim [2006]

20 € WHP(Q), 9o € W?*(Q), uo € W?*(Q;R%), 3<p<6
ug =0, q-njpg =0
m Kotschote [2015]

o0 € WHP(Q), do € WHP(Q), wo € WHP(QiRY), p>3




Conditional regularity

Nash’s conjecture: Probably one should first try to prove a con-
ditional existence and uniqueness theorem for flow equations. This
should give existence, smoothness, and unique continuation (in
i time) of flows, conditional on the non-appearance of certain gross
John F. Nash types of singularity, such as infinities of temperature or density.
[1928-2015]

e D
m EF, Wen, Zhu [2022]

ug =0, q-nlpe=0

sup (sup g(t,-)+sup19(t,~)) <00 = Tmax>T
tel0,T) Q Q

m Basari¢, EF, Mizerova [2023]

uB-n:O, ’19|3Q=’l93

sup (sup o(t,-) + sup9d(t,-) +sup|u(t,-)|> <00 = Tmax > T
te[0,T) Q Q Q




Data space (Valli-Zajaczkowski, k = 3)

Ip € L*(0,00; WH*(Q)), 8:9p € L*(0,00; W*(Q)), ¥p > 0,
9p(0,-) = Yo, Iplag = UB
up € L2(0,00; W*2(Q; RY)), dwup € LP = 2(0, 00; W*?(Q; R?))
up(0,-) = ug, uplog = us

Data space

Xp = {(QD,ﬂDJlD) 0D = 0o, igf op >0 + compatibility conditions }

Topology on the data space

1 1
IDllxo = llop w22y + 1195 lw22(q)
+ llenllwa.2(q) + 190l 2(0,00:w2(Q))nWL-2(0,00:W2.2(Q))
+ Ul 12(0,00;Wa-2(@:RAY) AWL2(0,00;,W2:2(@:R))

Metrics
dxp[D1; D2] = ||D1 — D2l xp




Solution space (trajectory space)

Solutions (trajectories)
U= (0,%,u) € X7, T < Tmax; Tmax = Tmax|[D]
Trajectory space
o€ C'([o, T, W**(Q))
¥ € L2(0, T; WH(Q)) n WH3(0, T; W*2(Q)) — C([0, T]; W**(Q))
uc 20, T; W*(Q; RY)) n W™?(0, T; W*?(Q; RY))
— C([0, T]; W*?(Q; RY))

Stability with respect to the data
D = [0D,n,9D,n, up,n] = D = [0p,Yp,up] in Xp

=
liminf Tma,x[Dn] Z TmaX[D] >0
n— oo

(0,%,u)[Ds] = (0,3, u)[D] in X7 for any 0 < T < Tax[D]




Analytical results, summary

Existence and uniqueness

For any data D = (¢p,Yp,up) € Xp, there exists a unique solution
(0,9,u) on a maximal time interval [0, Tmax), Tmax[D] > 0.

Stability

The mapping D € Xp + Tmax[D] is lower semi—continuous. If

D, — D in Xp,
then

(0,9,u)[Dn] = (0,9,u)[D] in Xt for any T < Tmax[D]

Conditional regularity
llo(t, Mlwszq) + 19(t, )llwazq) + lult, )llwsz(qire)

< C(T.[Dllxp. sup (sup@(r,~)+supv(r,-)+sup|u(t,~)|)
te[0,T) Q Q Q

forany 0 <t < T < Tmax, C bounded for bounded arguments




Problems with uncertain data

\_

s N
Probability space
{Q; B,P}, Q measurable space
B o — algebra of measurable sets, P — complete probability measure
Random data
w € Q+— D € Xp Borel measurable mapping
4 Y,
s N

Solutions as random variables

Tmax = Tmax[D] — random variable
D +— (0,9, u)[D] random variable

Statistical solution

strong sense: w € Q — (o,9,u)(t,)[D], t € [0, Tmax)
weak sense: L[(o, 9, u)(t,-)[D]]

L - law (distribution) of (o,9,u)(t,-) in W*?(Q) x W3?(Q) x W*?(Q; RY)

Y,




Strong stability problem |

Data convergence
D, = [0D,n,YD,n, up,n] = D = [0p, Ip, up] in Xp

P— as.

Solution convergence

(0,9,u)[Dy] = (0,9,u)[D] in X7
T < Tmax[D]
P— as.




Weak stability problem |

Data convergence in law (in distribution)
L[Dy] = L[0p,n, Ip,n,up,n] = L

narrowly in B[Xp]

Weak setting
L — L narrowly in PB[Xp]

Prokhorov theorem

(L£n)321 is narrowly precompact
<
(Ln)n2y is tight

For any € > 0, there exists a compact set K(g) C Xp such that

LaX\K()] <eforalln=1,2,...




Tools from probability theory |

Skorokhod (representation) theorem

Let (L£n);2; be a sequence of probability measures on a Polish space X.
Suppose that the sequence is tight in X, meaning for any € > 0, there
exists a compact set K(g) C X such that

LaX\K(e)] <eforalln=1,2,...

Then there is a subsequence ny — oo as k — oo and a sequence of random
variables (Dj, )32, defined on the standard probability space

(ﬁ: [0, 1], B[0, 1],dy)

satisfying:

‘C[E"k] = E"k’

D,, — D in X for every y € [0,1].




Convergence in weak stability problem I

Skorokhod representation theorem
D,7 %XD 5’7k
Strong convergence in the new probability space
Bk, 9k, 1) = (¢, 9,u)[Dn,] = (0,9, u)[D]

in X7 surely dy

Equivalence in law (Borel measurability of the solution mapping)

(§na§n,ﬁn) ~ (Qv 197“)[D"]

Conclusion

L[(e, 9, w)[DA] = L[, 9, w)[D]]

narrowly in ?B[X7]?




Strong stability problem Il - global in time convergence

Data convergence
Dn = [0D,n,YD,n, up,n] = D = [0p,Ip,up] in Xp

P— as.

Hypothesis of boundedness in probability
For any € > 0, there exists M > 0 such that

limsupP< sup o[Ds]+ sup I[Ds]+ sup |u[Di]|>M; <e
n— o0 0, T)xQ 0, T)xQ 0,T)xQ

Conclusion (to be shown below)
Tmax > T a.s. and (0,9, u)[Ds] — (0,9,u)[D] in Xt

in probability




Strong stability problem Il - proof of convergence

Skorokhod representation theorem
augmented sequence of random variables (Dy, (0,9, u)[Ds], An)no1

Ao = sup o[Da]+ sup J[Dn]+ sup [u[Dy]
0, T)xQ 0, T)xQ 0,T)xQ

Skorokhod representation
(D, (0,9, u)[Da], An)2s

A= sup o[Da]+ sup 9[Da]+ sup |u[Da]| — A

0, T)xQ 0,T)xQ 0,T)xQ

dy surely

Conclusion by conditional regularity
Tmax[ﬁn] > T, 5n — 5 in XD, Tmax[5] > T

(0,9, u)[Dy] = (0,9, u)[D] in X7
dy surely




Tools from probability theory Il

Gyongy—Krylov theorem
Let X be a Polish space and (Um)m>1 a sequence of X—valued random

variables.
Then (Um)ji—; converges in probability if and only if for any sequence of

joint laws of
(UMk7 UNk)iil

there exists further subsequence that converge weakly to a probability mea-
sure 1 on X x X such that

ply) € X x X, x=y]=1




Approximate solutions

Approximate solutions

(0,u,9)n[D], D € Xp, h > 0 discretization parameter

D e Xp — (0,u,9)s € L*((0, T) x Q; R%"?) Borel measurable for any h > 0



Consistent approximation
Conservative boundary conditions (for simplicity)

ulogg =0, q-njopg =0

Approximate field equations

ath + diVx(Qnun) - e:& in D,((Oa T) X Q)>

Consistent approximation

on = 0n,[D], 9n = U4,[D], up = up,[D]

de(0ntun) + divx(nttn @ uy) + Vip(on, 9n)
= div,S(Dxu,) + 0:VG + e in D'((0, T) x Q; RY)

01 (0n5(0ms 90)) -+ div(0n5(0ms )1 + div (g—>

qn - Vi

! 5 ) +einD'((0,T) x Q)

> 5 (S(]D)Xu,,) : Dyu, —

di/ [ olunl® + one(0n, ¥n) — gnG] dx < ey in D'(0, T)

1 2 3 4 . " "
€,,€n,€n, e, — 0asn— ocoina “weak” sense



Convergence of consistent approximations

Strong data convergence

D = [0D,n,9D,n,up,n] = D = [op,¥p,up] in Xp
P— as.

Consistent approximation

(0nyYn,un) = (0,9,u)n,[Dn] a sequence of consistent approximations

Hypothesis of boundedness in probability
For any € > 0, there exists M > 0 such that

limsupP< sup on[Dn] + sup Ua[Dn] + sup |un[Ds]| > M3 <e
( 0,T)xQ Q

n— oo 0, T)xXQ (0,T)x




Convergence of consistent approximations, |

1 Apply Skorokhod representation theorem to the sequence
(Dm On, ¥nun, An),?ih

A= sup oD+ sup 0,[D]+ sup |u,[Di]
0, T)xQ 0, T)xQ 0,T)xQ

2 New sequence of data D, with the same law on the standard
probability space,

5,, —Din X4, dy surely.
A= sup os[Da]+ sup Ua[Ds]+ sup |us[Dn]] = A
0,T)xQ (0,7)xQ 0,T)xQ
dy surely

0 [Dn] — & weakly-(*) in L=((0, T) x Q)

U, [Dn,] = U weakly-(*) in L=((0, T) x Q)
Un, [Dn,] = U weakly-(*) in L>((0, T) x Q; RY)

dy surely




Convergence of consistent approximations, |l

4 Show the limit is a measure—valued solution with the data D in the
sense of B¥ezina, EF, Novotny [2020], see also Chaudhuri [2022]

5 Apply the weak—strong uniqueness principle to conclude the (g, 5, u)
is the unique strong solution associated to the data D,

(6.9,1) = (0,9,u)[D].

Conclude there is no need of subsequence, Tmax[D] > T, and
convergence is strong for in L9 for any finite q.

6 Pass to the original space using Gyongy—Krylov theorem

Conclusion — unconditional convergence of consistent approximations

Tmax[D] > T ass.
(Q? 197 U)h" [Dn] — (Q? 197 U)[D]
in L9(0, T) x QR forany 1 < g < oo
in probability




