14.02.2022
Relic Nuclear Star Clusters and their hidden Super-Massive Black Holes.
I will summarize the current state of the field of surviving nuclear star clusters and what the future holds for these objects with the advent of large surveys such as Euclid. These former Nuclear Star Clusters (NSCs) end up in the halos of massive galaxies when they are stripped of their surrounding stars by tidal forces. Many of these former nuclei contain "hidden" SMBHs, a signpost of their past in the centers of a large galaxy. I will show how can can identify surviving nuclei and use them to trace galaxy and SMBH formation. I will in particular show NGC7727, a system that has two potential nuclear star clusters, one in the photometric center of the galaxy and one offset by only 500pc. Using high-resolution MUSE data, we detect a SMBH in each Nucleus, confirming that the offset nucleus is the relic of a galaxy that has merged with NGC7727. This is the first dynamically confirmed dual SMBH system at a separation of less than a kpc. The orbital parameters of the SMBHs show that it is in an advanced state of merging and it will constitute a ~1:25 mass ratio SMBH merger and produce a gravitational wave event. The discovery of this offset SMBH is another confirmation that many SMBHs exist outside the centers of galaxies that have not been discovered yet but are a crucial element for our understanding of black holes as well as galaxy assembly.