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Abstrakt

Disertační práce je věnována studiu matematických problémů Navierových -
Stokesových rovnic v kontextu rigorózního matematického odvození modelů
a jejich matematické analýzy. Zejména je práce zaměřena na problematiku
singulárních limit v mechanice tekutin pro stlačitelné tekutiny (režim malého
Machova čísla, velkého Reynoldsova čísla, redukce dimenze) a problematice reg-
ularity pro nestlačitelné tekutiny.

Klíčová slova
Navierovy-Stokesovy rovnice, stlačitelné tekutiny, Navierovy-Stokesovy-Fourierovy
rovnice, singulární limity, slabé řešení, silné řešení, Eulerovy rovnice, teorie reg-
ularity, nestlačitelné tekutiny, anisotropní Lebesgueovy prostory.
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Abstract

The present thesis is devoted to the study of mathematical problems related to
the Navier-Stokes equations in the context of mathematical rigorous derivation
of models and their analysis. In particular we deal with the problem of singular
limits in fluid mechanics for compressible fluids (low Mach number limit and
high Reynolds number limit, reduction of dimension) and the problem of global
regularity for incompressible fluids.

Keywords
Navier-Stokes equations, compressible fluids, Navier-Stokes-Fourier equations,
singular limits, weak solutions, strong solutions, Euler equations, regularity the-
ory, incompressible fluids, anisotropic Lebesgue spaces.
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Estratto

Il presente lavoro di tesi è dedicato allo studio di problematiche legate alle
equazioni di Navier-Stokes nel contesto della derivazione rigorosa di modelli
e della loro analisi. In particolare ci occuperemo dei problemi relativi ai limiti
singolari nella meccanica dei fluidi comprimibili (limite di bassi numeri di Mach e
alti numeri di Reynolds, riduzione di dimensione) e del problema della regolarità
globale per fluidi incomprimibili.

Parole chiave
Equazioni di Navier-Stokes, fluidi comprimibili, equazioni di Navier-Stokes-
Fourier, problemi ai limiti singolari, soluzioni deboli, soluzioni forti, equazioni di
Eulero, teoria della regolarità, fluidi incomprimibili, spazi di Lebesgue anisotropi.
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Preface

Navier-Stokes equations is a challenging problem in mathematical analysis. Dur-
ing the years several authors have faced different problems related to these equa-
tions. Some of these problems concern variations of the Navier-Stokes equations
depending on the properties of the fluid and the presence of external forces. The
present work deals with the so-called problem of singular limit in fluid mechanics
for compressible fluids and the problem of global regularity for an incompressible
fluid. The following articles are the result of this work:

• Guo Z., M. Caggio, Z. Skalák, Regularity criteria for the Navier-Stokes
equations based on one component of velocity, Nonlinear Analysis: Real World
Application, 35, 379-396, 2017.

• Caggio M., Š. Nečasová, Inviscid incompressible limit for rotating fluids,
to appear in Nonlinear Analysis.

• Ducomet B., M. Caggio, Š. Nečasová, M. Pokorný, The rotating Navier-
Stokes-Fourier system on thin domains, submitted in Acta Appl. Math; available
on arXiv:1606.01054v1.
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Chapter 1

Introduction

The present work is devoted to the study of mathematical problems related to
models describing the dynamics of fluids.

A fluid is a continuous medium whose state is characterized by its veloc-
ity, pressure and density fields, and possibly other relevant fields (for example
temperature).

Most of the fluid dynamics results have been obtained starting from the
Navier-Stokes equations. These equations have many variations depending on
the properties of the fluid itself, for example compressibility, thermoconduc-
tivity, viscosity, etc., and on the forces acting on the fluid, for example the
centrifugal force, the Coriolis force, the gravity force etc. (see Nazarenko [79]).

Two kind of problems will be under consideration: the problem of singular
limits for compressible fluids and the problem of global regularity for incom-
pressible fluids.

1.1 The problem of singular limits for compress-
ible fluids

The problem of singular limits for compressible fluids can be presented in the
following way. One starts from a system of equations describing the motion of
a kind of fluid. After a scale analysis the system presents several characteristic
parameters whose asymptotic behavior determines a change in the fluid phe-
nomenology and consequently, at least at a formal level, a different system of
equations compared to the starting one. The singular limit problem requires to
show that the solution of the starting system converges to the solution of the
limit (or target) system when these parameters tend to zero or infinity in some
sense.

In the following we would like to briefly describe the problems we will deal
with, postponing a deeper analysis to the next chapters.

1.1.1 The inviscid incompressible limit for compressible
barotropic fluids

The motion of a compressible barotropic fluid is described by means of two
unknown fields: the density % = % (x, t) and the velocity u = u (x, t) of the
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fluid, functions of the spatial position x ∈ R3 and the time t ∈ R, and satisfying
the following Navier-Stokes system of equations. The continuity equation reads

∂t%+ divx(%u) = 0. (1.1.1) continuity

The momentum equation is

∂t (%u) + divx (%u⊗ u) +∇xp(%) = divxS (∇xu) + %f , (1.1.2) momentum_intro

with the stress tensor given by the following relation

S = S(∇xu) = µ

(
∇xu +∇t

xu−
2
3
divxuI

)
+ η divxuI, µ > 0, η ≥ 0.

(1.1.3) stress_intro
The system above presents two parameters: the shear viscosity coefficient µ
and the bulk viscosity coefficient η. The scalar function p is the pressure, given
function of the density, and %f represents an external forcing.

For each physical quantity X present in the Navier-Stokes system (1.1.1)
- (1.1.3), we introduce its characteristic value Xchar and replace X with its
dimensionless analogue X/Xchar. As a result, we obtain the scaled version of
the compressible Navier-Stokes system

[Sr] ∂t%+ divx(%u) = 0, (1.1.4) continuity_scaled

[Sr] ∂t (%u) + divx (%u⊗ u) +
1

[Ma]2
∇xp(%) =

1
[Re]

divxS +
1

[Fr]2
%f . (1.1.5) momentum_scaled

The above system presents several characteristic numbers. The Strouhal number

[Sr] =
lengthchar

timecharvelocitychar
.

The Strouhal number plays a role in oscillating, non-steady flows, as the Kármán
vortex street. It is often defined as

[Sr] =
fL

U
,

where f is the frequency of vortex shedding in the wake of von Kármán, L is the
characteristic length of the body invested by the flow and U is the characteristic
velocity of the flow investing body. The Mach number

[Ma] =
velocitychar√

pressurechar/densitychar

.

The Mach number is the ratio of the characteristic velocity of the flow to the
speed of the sound in the fluid. Low Mach number limit characterizes incom-
pressibility. The Reynolds number

[Re] =
densitycharvelocitycharlengthchar

viscositychar
.

21



The Reynolds number is the ratio of the inertial to the viscous forces in the fluid.
High Reynolds number is attributed to turbulent flows. The Froude number

[Fr] =
velocitychar√

lengthcharfrequencychar
.

The Froude number is the ratio of the flow inertia to the external field. The
latter in many applications simply due to gravity.

Redefining the Reynolds number and the Mach number in terms of a non-
negative parameter ε, namely Re := ε−1 and Ma := ε, and setting the other
characteristic numbers equal to one, the inviscid incompressible limit aims to
show the convergence u → v and % → 1, for ε → 0, where v is the solution of
the incompressible Euler system

∂tv + v · ∇xv +∇xΠ = 0, divxv = 0 (1.1.6) euler_intro

and u is the solution of the compressible Navier-Stokes system. Indeed, in the
high Reynolds number limit the viscosity of fluid becomes negligible and in the
low Mach number limit the fluid becomes incompressible. The inviscid and/or
incompressible limit problem was investigated by several authors in similar and
different contexts: in bounded, unbounded or expanding domains, in presence of
external forces and for barotropic or heat conductive fluids. For more details we
refer to the works of Bardos and Nguyen [2], Feireisl [39], Feireisl and Novotný
[44], Feireisl, Jin and Novotný [46], Feireisl, Nečasová and Sun [47], Lions and
Masmoudi [72] (see also [73, 74]), Masmoudi [75], Sueur [104] and references
therein.

In the context described above, we will deal with the inviscid incompressible
limit for a compressible barotropic fluid in a "fast" rotating frame occupying the
whole space R3. More precisely, we would like to show the convergence of the
solution of the compressible Navier-Stokes system

∂t%+ divx(%u) = 0, (1.1.7) massI

∂t (%u) + divx (%u⊗ u) = − 1
ε2
∇xp(%) + εdivxS(∇xu)− (%u× ω) , (1.1.8) momentumI

S = S(∇xu) = µ

(
∇xu +∇t

xu−
2
3
divxuI

)
+ η divxuI, µ > 0, η ≥ 0.

(1.1.9) stressI
towards the solution of the rotating incompressible Euler system

∂tv + v · ∇v + v × ω +∇xΠ = 0, divxv = 0, (1.1.10) eulerI

for large values of the angular velocity ω = [0, 0, 1], namely "fast" rotating frame.
Above, the shear viscosity coefficient µ and the bulk viscosity coefficient η are
assumed to be constant. The quantity (%u× ω) represents the Coriolis force.
The effect of the centrifugal force is neglected. This is a standard simplification
adopted, for instance, in models of atmosphere or astrophysics (see [54, 55, 56]).

The analysis will be based on the work of Caggio and Nečasová [7]. The
problem is a particular case of the Masmoudi [75] result where we will use a
different technique (see the discussion below).
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The technique to reach the convergence will be based on the so-called rel-
ative energy method in the framework of the relative energy inequality. The
relative energy inequality was introduced by Dafermos [20] in the context of
the Second Law of Thermodynamics. In the fluid context, it was introduced by
Germain [51]. Afterwards, the method was developed by Feireisl, Novotný and
co-workers in the framework of the problem of singular limits in fluid mechanics
(see for example Feireisl and Novotný [41], [43], Feireisl, Jin and Novotný [45]
and Feireisl, Novotný and Sun [50] and references therein). In the following we
describe briefly the method, leaving the technical details to the next chapters.
The basic idea is to introduce a relative energy functional. This functional plays
the role of measuring the stability of two solutions. One with more regularity
compared to the other one. In our context, the two solutions will be the weak so-
lution of the Navier-Stokes system and the classical solution of the Euler system
respectively. Next, along with the relative energy functional, a relative energy
inequality has to be derived. This last will give us the possibility to reach the
convergence in terms of a Gronwall type inequality.

The compressibility of the fluid allows the propagation of acoustic waves de-
scribed by the acoustic system related to the Navier-Stokes model. The acoustic
waves have to decay in the incompressible limit. Therefore, the analysis requires
a technique in order to ensure this decay. In the whole space is common to use
the so-called dispersive estimates (see Desjardins and Grenier [22], Feireisl and
Novotný [42], Masmoudi [75], Schochet [95] and Strichartz [103]). We will in-
troduce the acoustic system and the dispersive estimates during our analysis.

1.1.2 The dimension reduction limit for compressible heat
conducting fluids

The motion of an heat conducting compressible fluid is described by means of
three unknown fields: the density % = % (x, t), the velocity field u = u (x, t) and
the temperature ϑ = ϑ(x, t) of the fluid, functions of the spatial position x ∈ R3

and the time t ∈ R, and satisfying the following Navier-Stokes-Fourier system
of equations. The continuity equation reads

∂t%+ divx (%u) = 0. (1.1.11) cont_eps_intro

The momentum equation is

∂t (%u) + divx (%u⊗ u) +∇xp(%, ϑ) = divxS (ϑ,∇xu) + %f . (1.1.12) NSFP_intro

with the stress tensor given by the following relation

S (ϑ,∇xu) = µ (ϑ)
(
∇xu +∇t

xu−
2
3
divxuI

)
+ η (ϑ) divxuI. (1.1.13) S_intro

The entropy equation is

∂t (%s (%, ϑ)) + divx (%s (%, ϑ)u) + divx

(
q (ϑ,∇xϑ)

ϑ

)

=
1
ϑ

(
S (ϑ,∇xu) : ∇xu−

q (ϑ,∇xϑ) · ∇xϑ

ϑ

)
, (1.1.14) s_intro
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with
q = −κ (ϑ)∇xϑ. (1.1.15) flux_intro

In the system above the shear viscosity coefficient µ (ϑ), the bulk viscosity co-
efficient η (ϑ) and the heat conductivity coefficient κ (ϑ) are functions of the
temperature. The scalar functions p(%, ϑ) and s(%, ϑ) are the pressure and the
entropy respectively, functions of the density and the temperature, and %f rep-
resents an external forcing.

In analogy with the arguments presented before, we can obtain the scaled
version of the compressible Navier-Stokes-Fourier system

[Sr] ∂t%+ divx (%u) = 0, (1.1.16) cont_nsf_scal

[Sr] ∂t (%u) + divx (%u⊗ u) +
[

1
Ma2

]
∇xp(%, ϑ)

=
[

1
Re

]
divxS (ϑ,∇xu) +

[
1
Fr2

]
%f , (1.1.17) mom_nsf_scal

∂t (%s (%, ϑ)) + divx (%s (%, ϑ)u) +
[

1
Pe

]
divx

(
q (ϑ,∇xϑ)

ϑ

)

=
1
ϑ

([
Ma2

Re

]
S (ϑ,∇xu) : ∇xu−

[
1
Pe

]
q · ∇xϑ

ϑ

)
. (1.1.18) s_nsf_scal

where the Péclet number [Pe] is defined as follows

[Pe] =
pressurecharvelocitycharlengthchar

heat conductivitychartemperaturechar
.

Similarly to Reynolds number, high Péclet number corresponds to low heat
conductivity of the fluid that may be attributed to turbulent flows.

Redefining the Froude number in terms of a non-negative parameter ε,
namely Fr = εβ , with β arbitrary non-negative number, and setting the other
characteristic numbers equal to one, the dimension reduction limit aims to show
the convergence [%,u, ϑ] → [r,w,Θ], for ε→ 0, where the couple [%,u, ϑ] is the
solution of the three-dimensional Navier-Stokes-Fourier system and the couple
[r,w,Θ] is the solution of the corresponding two-dimensional system.

Indeed, in the low Froude number limit the gravitational effects become
predominant forcing the fluid to a two-dimensional dynamics.

The analysis will be based on the work of Ducomet, Caggio, Nečasová and
Pokorný [25] and it aims the extension of the result of Feireisl, Novotný and
co-workers [1].

(Poisson) Remark 1. For the sake of clarity, in the presence of gravity force, the system de-
scribing an heat conducting fluid is given by the Navier-Stokes-Fourier-Poisson
system of equations.

(eps) Remark 2. It is possible to read ε as follows

ε =
l

L
.

Here, l is the horizontal length and L the vertical length. Consequently, the
limit can be also seen, more easily, in terms of a pure geometric reduction.
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In the context describe above, we will deal with the dimension reduction
limit for a compressible heat conducting fluid in a rotating frame occupying a
bounded domain in R3 where the external forcing is given by the gravity force.
More precisely, we consider a fluid confined in a straight layer Ωε = ω × (0, ε)
where ω is a two-dimensional domain. We rescale to a fix domain as follows

(xh, εx3) ∈ Ωε → (xh, x3) ∈ Ω,

where xh = (x1, x2) ∈ ω and x3 ∈ (0, 1). Above, we denoted

∇ε =
(
∇h,

1
ε
∂x3

)
, ∇h = (∂x1 , ∂x2) , (1.1.19) scal_1I

divεu = divhuh +
1
ε
∂x3u3, uh = (u1, u2) , divhuh = ∂x1u1 + ∂x2u2, (1.1.20) scal_2I

4ε = ∂2
x1x1

+ ∂2
x2x2

+
1
ε2
∂2

x3x3
. (1.1.21) scal_3I

The continuity equation reads now as follow

∂t%+ divε (%u) = 0, (1.1.22) cont_epsI

the momentum equation is

∂t (%u) + divε (%u⊗ u) + %u× χ +∇εp(%, ϑ)

= divεS (ϑ,∇εu) + ε−2β%∇εφ+ %∇ε |x× χ|2 , (1.1.23) NSFPI

the entropy equation is

∂t (%s (%, ϑ)) + divε (%s (%, ϑ)u) + divε

(
q (ϑ,∇εϑ)

ϑ

)

=
1
ϑ

(
S (ϑ,∇εu) : ∇εu−

q (ϑ,∇εϑ) · ∇εϑ

ϑ

)
, (1.1.24) sI

with

S (ϑ,∇εu) = µ (ϑ)
(
∇εu +∇t

εu−
2
3
divεuI

)
+ η (ϑ) divεuI (1.1.25) S

and

q = −κ (ϑ)∇εϑ. (1.1.26) fluxI

The quantities %u × χ and %∇ε |x× χ|2 represent the Coriolis force and the
centrifugal force respectively with χ = [0, 0, 1] angular velocity and

∇ε |x× χ|2 =
(
∇h |x× χ|2 , 0

)
=

(x1, x2, 0)√
x2

1 + x2
2

.

The gravitational force is expressed by %∇εφ where the potential φ satisfies the
Poisson’s equation
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−4εφ = 4πG(α%+ (1− α)g) in (0, T )× Ω. (1.1.27) PoissonI

Here, G is the Newton constant and α a positive parameter. The first contribu-
tion on the right-hand side of the relation (3.0.6) corresponds to self-gravitation
while in the second one g is a given function modeling the external gravitational
effects. Here and hereafter, we assume that the function % is extended by zero
outside of Ω. Supposing further that g is such that the integral below converges,
we have

φ (t, x) = G

ˆ
R3
K (x− y) (α% (t, y) + (1− α) g (y))dy,

where K (x− y) = 1
|x−y| and the parameter α may take the values 0 or 1. For

α = 0 the gravitation only acts as an external field, for α = 1 only the self-
gravitation is present. Since we also work with ∇εφ (t, x), we have to further
assume that

ˆ
R3
∇εK (x− y) (α% (t, y) + (1− α) g (y))dy <∞.

In particular, the gravitational force is given by the following relation (see [25]
and [26])

∇εφ (t, x) = ε

ˆ
Ωε

α%(t, ξ)
(x1 − ξ1, x2 − ξ2, ε (x3 − ξ3))(
|xh − ξh|2 + ε2 |x3 − ξ3|2

)3/2
dξ

+
ˆ

R3
(1− α) g(y)

(x1 − y1, x2 − y2, ε (x3 − y3))(
|xh − yh|2 + ε2 |x3 − y3|2

)3/2
dy

= εαΦ1 + (1− α)Φ2. (1.1.28) phi_gravI

In our analysis we will distinguish two cases with respect to the behavior of the
Froude number, namely Fr =

√
ε for β = 1/2 and Fr = 1 for β = 0. According

to the choice of the Froude number, we have to consider the correct form of the
gravitational potential. In the former the self-gravitation, namely α = 1, and in
the latter the external gravitation force, namely α = 0. In the latter, we could
also include the self-gravitation, it would, however disappeared after the limit
passage. Taking Fr =

√
ε for β = 1/2 the momentum equation reads as follow

∂t (%u) + divε (%u⊗ u) + %u× χ +∇εp(%, ϑ)

= divεS (ϑ,∇εu) + %Φ1 + %∇ε |x× χ|2 . (1.1.29) NSFPI_phi_1

While, taking Fr = 1 for β = 0, we have

∂t (%u) + divε (%u⊗ u) + %u× χ +∇εp(%, ϑ)

= divεS (ϑ,∇εu) + %Φ2 + %∇ε |x× χ|2 . (1.1.30) NSFPI_phi_2

For Fr =
√
ε and β = 1/2, the corresponding two-dimensional momentum

equation reads as follows

26



r∂tw + rw · ∇hw +∇hp(r,Θ) + r (w × χ)

= divhS(Θ,∇hw) + r∇hφh + r∇h |x× χ|2 , (1.1.31) mom_tI

with the formula
φh(t, xh) =

ˆ
ω

r(t, yh)
|xh − yh|

dyh (1.1.32) grav_t_1I

and

Sh (Θ,∇hw) = µ
(
∇hw +∇t

hw − divhw
)

+
(
η +

µ

3

)
divhwIh (1.1.33) ShI

where Ih is the unit tensor in R2×2 in the domain (0, T )×ω. While, for Fr = 1
and β = 0, we have

φh(t, xh) = G

ˆ
R3

g(y)√
|xh − yh|2 + y2

3

dy. (1.1.34) grav_t_2I

As in the previous discussion, the technique to reach the convergence will
be based on the relative energy method in order to show the convergence of
the weak solution of the three-dimensional Navier-Stokes-Fourier system to the
classical solution of the corresponding two-dimensional system. In particular,
we will follow the framework developed in [43]. The main point of the analysis
will be the treatment of the gravitational force.

From a phenomenological point of view, this limit concerns the rigorous
derivation of the equations describing astrophysical objects called accretion disk
which are thin structures observed in various places in the universe. These disks
are indeed three-dimensional but their thickness is usually much smaller than
their extension, therefore they are often modeled as two-dimensional structures.
Indeed, if a massive object attracts matter distributed around it through New-
tonian gravitation in presence of an angular momentum, this matter is not
accreted isotropically around the central object but forms a thin disk around it.
For further details we refer to the work of Choudhuri [17], Montesinos Armijo
[78], Ogilvie [87], Pierens [89], Pringle [90] and Shore [96].

1.2 The problem of global regularity for incom-
pressible fluids

The motion of an incompressible fluid is described by means of its velocity field
u = u (x, t), functions of the spatial position x ∈ R3 and the time t ∈ R, and
satisfying the following Navier-Stokes system of equations

∂tu + u · ∇xu− µ∆xu +∇xp = f , divxu = 0. (1.2.1) NS_intro

In the system above µ is the shear viscosity coefficient. The scalar function p is
the pressure, functions of the spatial position x ∈ R3 and the time t ∈ R, and f
represents a given external forcing.

An open problem in applied analysis concerns the global regularity of the
solution of the Navier-Stokes equations in the whole space R3. Over the years,
several authors have faced the problem (see, for example, [18], [19], [24], [63],
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[64], [66], [70], [71], [92], [102], [107], [108], [109]). It is known that for the initial
data u0 ∈ L2

σ (solenoidal functions in L2) the problem (1.2.1) possesses at least
one global weak solution u satisfying the energy inequality

||u(T )||22/2 +
ˆ T

0

||∇xu(t)||22 dt ≤ ||u0||22/2 (1.2.2) eiI

for every T ≥ 0 (see [53], [67] and [93]). Such solutions are called Leray-Hopf
solutions.

More precisely (see [93]), given u0 ∈ L2
σ, a weak solution of (1.2.1) on [0, T )

is a function u ∈ L∞
(
0, T ;L2

σ

)
∩ L2

(
0, T ;W 1,2

)
such that

ˆ T

0

(u, ϕt)− (∇u,∇ϕ)− ((u · ∇)u, ϕ) = − (u0, ϕ) (1.2.3) weak_NS

for every ϕ ∈ D
(
[0, T ) ,R3

)
, the set of all functions in C∞0

(
[0, T ) ,R3

)
that are

also divergence free, and the following existence Theorem holds (see [93]).

existence_NS Theorem 3. For any u0 ∈ L2
σ there exists at least one weak solution of (1.2.1).

This solution is weakly continuous into L2, namely for any v ∈ L2,

lim
t→t0

(u (t) ,v) = (u (t0) ,v)

for all t0 ∈ [0, T ), and in addition it satisfies the energy inequality (1.2.2) for
every t ∈ [0, T ). Moreover, u(t) → u0 in L2 as t→ 0.

Remark 4. Above we used (·) to denote the inner product in L2.

Nevertheless, the uniqueness, regularity, and continuous dependence on ini-
tial data for weak solutions are still open problems ([10]).

If u0 ∈ W 1,2
σ (solenoidal functions from the standard Sobolev space W 1,2),

then strong solutions exist for a short interval of time whose length depends on
the physical data of the initial-boundary value problem. Moreover, this strong
solution is unique in the larger class of weak solutions ([19], [63], [102], [107]).
In fact, a strong solution is a weak solution with the additional regularity ([93])

u ∈ L∞
(
0, T ;W 1,2

)
∩ L2

(
0, T ;W 2,2

)
.

From the pioneer works of Prodi [91] and of Serrin [98], many results were
presented in providing sufficient conditions for the global regularity (see for ex-
ample Chae and Lee [13], Constantin [18], Doering and Gibbon [24], Ladyzhen-
skaya [63, 64], Lemarié-Rieussett [66], Lions [70, 71], Sohr [102] and Temam
[107, 108, 109] and references therein).

Some of these conditions provide regularity criteria for the velocity field (see
for example Escauriaza, Seregin and Šverák [31], Fabes, Jones and Riviere [32]
and Serrin [98]): if a Leray-Hopf weak solution u satisfies

u ∈ Lr(0, T ;Ls(R3)) for some
2
r

+
3
s
≤ 1, 3 ≤ s ≤ ∞

then u is regular.
Others involve analogous criteria for the pressure (see for example Berselli

[5], Berselli and Galdi [6], Cao and Titi [9], Kukavica [59], Seregin and Šverák
[97], Zhou [115]): if the pressure p satisfies
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p ∈ Lr(0, T ;Ls(R3)) for some
2
r

+
3
s
≤ 2, s >

3
2

or
∇p ∈ Lr(0, T ;Ls(R3)) for some

2
r

+
3
s
≤ 3, 1 ≤ s ≤ ∞

then u is regular.
An analogical situation occurs for ∇u. It was proved in [3] that u is regular

if

∇u ∈ Lr(0, T ;Ls(R3))

where s ∈ (3/2,∞) and

2
r

+
3
s

= 2.

Still others state sufficient conditions for regularity in terms of the vorticity
(see for example Beirao da Veiga [4]): if the vorticity ω = ∇×u of a Leray-Hopf
weak solution u belongs to the space

Lr(0, T ;Ls(R3)) for some
2
r

+
3
s
≤ 2, s > 1

then u is regular. The result above concerns the regularity of the solution u
when conditions are imposed on all the components of the vorticity vector. Chae
and Choe [12] obtained regularity by imposing the conditions

ωj ∈ Lr (0, T ;Ls) , j = 1, 2, for some
2
r

+
3
s
≤ 2, s ∈ (3/2,∞)

namely, on only two components of the vorticity vector, while the problem with
one vorticity component is an outstanding open problem.

1.2.1 Regularity criteria in terms of one velocity compo-
nent

The above mentioned criteria are based on the entire velocity vector or on the
entire gradient. In the last two decades many authors have studied the regu-
larity criteria where additional conditions were imposed only on some velocity
components or on some items of the velocity and pressure gradients. The first
contribution in this direction was done by Neustupa and Penel [81]. After,
over the years, several authors have obtained important results in that direction
(see for example Kukavica and Ziane [61], Zhou and Pokorný [116], [117] and
reference therein).

In this context described, we are interested in criteria based on only one
velocity component. More specifically, we will study criteria based on u3, ∇u3

and ∇2u3, and prove, for example, that the condition

∇u3 ∈ Lβ(0, T ;Lp),

where p ∈ (2,∞] and

2/β + 3/p = 7/4 + 1/(2p),
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yields the regularity of u on (0, T ].
The analysis will be based on the work of Guo, Caggio and Skalák [52] in

the framework of anisotropic Lebesgue spaces.
The anisotropic Lebesgue spaces framework seems to be convenient for our

purposes, since it differentiates between different directions. It can be useful in
the situations where regularity conditions are imposed only on one velocity com-
ponent. Indeed, in Theorems 38 - 42 we will see that the use of the anisotropic
Lebesgue spaces framework can improve some results from the literature.
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Chapter 2

Inviscid incompressible limit
for rotating fluids

We consider the scaled compressible Navier-Stokes system for a barotropic ro-
tating fluid in the whole space R3 already mentioned in Introduction. The
continuity equation reads

∂t%+ divx(%u) = 0, (2.0.1) mass

the momentum equation is

∂t (%u) + divx (%u⊗ u) = − 1
ε2
∇xp(%) + εdivxS(∇xu)− (%u× ω) , (2.0.2) momentum

with the stress tensor given by the following relation

S = S(∇xu) = µ

(
∇xu +∇t

xu−
2
3
divxuI

)
+ η divxuI, µ > 0, η ≥ 0.

(2.0.3) stress
The system is supplemented by the initial conditions

% (x, 0) = %0 (x) , u (x, 0) = u0 (x) (2.0.4) ic_

and by the following far field conditions for the density and the velocity field

lim
|x|→∞

%(x, t) = 1, lim
|x|→∞

u(x, t) = 0. (2.0.5) bound2

The first relation in (2.0.5) means the mass of the fluid is infinite.
As mentioned in the previous chapter, we want to show that the weak so-

lution of the Navier-Stokes system converges to the classical solution of the
corresponding rotating incompressible Euler system

∂tv + v · ∇v + v × ω +∇xΠ = 0, divxv = 0, (2.0.6) euler

for large values of ω, namely "fast" rotating frame.
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2.1 Weak and classical solutions
In the following, we introduce the definition of weak solutions for the com-
pressible Navier-Stokes system (2.0.1 - 2.0.3) and we discuss the global-in-time
existence. In particular, we define the so-called bounded energy weak solution
(see [38], [48] and [86]) and we discuss the global-in-time existence. Then, we
discuss the global existence of the classical solution of the incompressible Euler
system (2.0.6). For the discussion on weak solutions we will consider an arbi-
trary open set Ω ⊂ R3.

The introduction of the bounded energy weak solution is motivated by the
following discussion. In [21] it was shown the existence of weak solutions to
the compressible Navier-Stokes equations on unbounded domain satisfying the
differential form of the energy inequality (and consequently the integral form)
for a barotropic fluid with finite mass. While the existence of weak solutions for
a fluid with infinite mass remains an open question. Weak solutions satisfying
the differential form of the energy inequality are usually termed finite energy
weak solutions (see [2], [45], [49], [62] and [86]), while weak solutions satisfying
the integral form of the energy inequality are usually termed bounded energy
weak solutions (see [38], [48] and [86]).

Because our analysis will be performed in the whole space R3 under the
condition that the mass of the fluid is infinite (see relation 2.0.5), we have to
use the integral form of the energy inequality and consequently to deal with
bounded energy weak solutions.

2.1.1 Bounded energy weak solutions
Multiplying (formally) the equation (2.0.2) by u and integrating by parts, we
deduce the energy inequality in its integral form

E(T ) + ε

ˆ T

0

ˆ
Ω

S (∇xu) : ∇xu dxdt ≤ E0 (2.1.1) ei

where the total energy E is given by the formula

E = E [%,u] (t) =
ˆ

Ω

1
2
% |u|2 +

H(%)
ε2

dx, (2.1.2) e

with E0 the initial energy, and

H(%) =
ˆ %

1

p (z)
z2

dz (2.1.3)

the Helmholtz free energy (see [41] and [86]).
Remark 5. Here and hereafter the Helmholtz free energy will have the following
form (see Novotný and Straškraba [86]):

H(%) =
1

γ − 1
(%γ − γ%+ γ − 1) .

The parameter γ is the adiabatic index or heat capacity ratio.
Now, we define the so-called bounded energy weak solution of the compress-

ible Navier-Stokes system (2.0.1 - 2.0.3) (see Feireisl, Novotný and Petzeltová
[48] and Novotný and Straškraba [86]).
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be Definition 6. (Bounded energy weak solution) Let Ω ⊂ R3 be an arbitrary
open set. We say that [%,u] is a bounded energy weak solution of the compress-
ible Navier-Stokes system (2.0.1 - 2.0.3) in the time-space cylinder (0, T ) × Ω
if

% ∈ L∞ ((0, T ) , Lγ
loc (Ω)) , % ≥ 0 a.e. in (0, T )× Ω,

H(%) ∈ L∞((0, T ) , L1(Ω)),

u ∈ L2

(
(0, T ) ,

(
D1,2

0 (Ω)
)3
)
, % |u|2 ∈ L∞

(
(0, T ) , L1(Ω)

)
.

The continuity equation (2.0.1) holds inD′((0, T )×Ω). The momentum equation
(2.0.2) holds in (D′((0, T )× Ω))3. The energy inequality (2.1.1) holds for a.a.
t ∈ (0, T ) with E defined by

E =
ˆ

Ω

1
2
|%u|2

%
1{x;%>0} +

H(%)
ε2

dx (2.1.4) e_r

and E0 defined by

E0 =
ˆ

Ω

1
2
|%0u0|2

%0
1{x;%0>0} +

H(%0)
ε2

dx. (2.1.5) e_r0

Remark 7. Here, the space D1,2
0 (Ω) is a completion of D(Ω), the space of smooth

functions compactly supported in Ω, with respect to the norm

‖u‖2D1,2
0 (Ω) =

ˆ
Ω

|∇u|2 dx.

Now, the following theorem concerns with the global-in-time existence of the
bounded energy weak solution (see [38] and [48]).

thm: 1 Theorem 8. (Global-in-time existence of bounded energy weak solution) Let
Ω ⊂ R3 be an arbitrary open set. Let the pressure p be given by a general
constitutive law satisfying

p ∈ C1 [0,∞) , p(0) = 0,
1
a
%γ−1 − b ≤ p′(%) ≤ a%γ−1 + b, for all % > 0

(2.1.6) pressure
with

a > 0, b ≥ 0, γ >
3
2
.

Let the initial data %0, u0 satisfy

%0 ∈ L1(Ω), H(%0) ∈ L1(Ω), %0 ≥ 0 a.e. in Ω,

%0u0 ∈
(
L1 (Ω)

)3 such that
|%0u0|2

%0
1{x;%0>0} ∈ L1 (Ω)
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and such that %0u0 = 0 whenever x ∈ {%0 = 0} . (2.1.7) id

Then the problem (2.0.1 - 2.0.3) admits at least one bounded energy weak solu-
tion [%,u] on (0, T )×Ω in the sense of Definition 6. Moreover [%,u] satisfy the
energy inequality (2.1.1).

Remark 9. The first existence result for problem (2.0.1 - 2.0.3) was obtained
by Lions [71] on condition that Ω ⊂ R3 is a domain with smooth and compact
boundary and that p(%) ≈ %γ with γ ≥ 9

5 . This result was relaxed to γ > 3
2 by

Feireisl, Novotný and Petzeltová [49] on condition that Ω is a bounded smooth
domain. Existence for certain classes of unbounded domains was shown in
Novotný and Straškraba [86] (see also Lions [71]).
Remark 10. The existence result in Feireisl [38] and Feireisl, Novotný and Pet-
zeltová [48] holds in the presence of the Coriolis force (see for example Feireisl
and Novotný [44] and Feireisl, Jin and Novotný [46] and reference therein).

2.1.2 Classical solutions
For the solvability of the system (2.0.6) with the initial data v(0) = v0, we
report the following result (see Takada [105]):

thm: 2 Theorem 11. Let s ∈ R satisfy s > 3
2 + 1. Then, for 0 < T < ∞ and

v0 ∈ W s,2
(
R3
)

satisfying divxv0 = 0, there exists a positive parameter Ω0 =
Ω0(s, T, ‖v0‖W s,2) such that if |ω| ≥ Ω0 then the system (2.0.6) possesses a
unique classical solution v satisfying

v ∈ C
(
[0, T ] ;W s,2(R3; R3)

)
,

∂tv ∈ C
(
[0, T ] ;W s−1,2(R3; R3)

)
,

∇Π ∈ C
(
[0, T ] ;W s,2(R3; R3)

)
. (2.1.8) reg

Remark 12. The global existence stated above was proved by Kho, Lee and
Takada [57] for the initial data in W s,2

(
R3
)

with s > 7/2.
Remark 13. Theorem 11 deals with inviscid flows in a rotating frame under the
condition of fast rotation. In terms of scale analysis (see Nazarenko [79]), if we
define by U and L the characteristic velocity and length scale of the fluid, we
can estimate the order of magnitude of the non-linear term and the rotational
term in the equation (2.0.6) as follows

v · ∇v ∼ O

(
U2

L

)
, (2.1.9) vel

v × ω ∼ O (ΩU) , (2.1.10) om

where

ω ∼ O (Ω) ∼ O

(
U

L

)
, (2.1.11) omega

with Ω characteristic angular velocity. Comparing (2.1.9) and (2.1.10), we have
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U

L
∼ Ω. (2.1.12) comp

Fast rotation implies

U

ΩL
� 1 (2.1.13) fast

and we can neglect the non-linear term in (2.0.6), obtaining

∂tv + v × ω +∇xΠ = 0, divxv = 0. (2.1.14) euler_lin

These are linear equations. In other words, fast rotation leads to averaging
mechanism that weakens the nonlinear effects. This of course prevents singu-
larity allowing the life span of the solution to extend (see Chemin, Desjardines,
Gallagher and Grenier [16] and references therein).

2.2 Acoustic waves
In the following, we introduce the acoustic system related to the equations
(2.0.1) and (2.0.2). Then, we briefly discuss the acoustic energy introducing
appropriate energy estimates. Finally, we discuss the decay of acoustic waves
in the limit of Mach number tends to zero introducing the dispersive estimate
mentioned before.

We assume the perturbation of the density of the first order and small com-
pared to the given ambient fluid density. Therefore, we can write the acoustic
system related to the equations (2.0.1) and (2.0.2) by the following linear rela-
tions (see Feireisl and Novotný [41], Feireisl, Nečasová and Sun [47] and Lighthill
[68, 69]):

ε∂ts+4Ψ = 0, ε∂t∇Ψ + a∇xs = 0, a = p′(1) > 0, (2.2.1) ac_1

with the initial data

s(0) = %
(1)
0 , ∇xΨ(0) = ∇xΨ0 = u0 − v0 (2.2.2) ac_2

where v0 = H[u0] and H denotes the Helmholtz projection into the space of
solenoidal functions and Ψ is a potential. Here, s is defined as the change
in density for a given ambient fluid density. In other words, the density per-
turbation. The sound velocity squared is represented by a. For more detail
physical discussion concerning acoustics, we refer to the book of Falkovich [33]
and Landau-Lifshitz [65].

2.2.1 Energy and dispersive estimates
The total change in energy of the fluid caused by the acoustic wave is given by
the integral

ˆ
R3

(
1
2
a |s|2 +

1
2
|∇xΨ|2

)
dx, (2.2.3) den_ac
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where the integrand may be regarded as the density of sound energy (see
Landau-Lifshitz [65]). It is easy to verify (see Landau-Lifshitz [65]) that the
density of sound energy is conserved in time, namely[ˆ

R3

(
1
2
a |s|2 +

1
2
|∇xΨ|2

)
(t, ·) dx

]t=T

t=0

= 0. (2.2.4) ac_en

In addition, we have the following energy estimates (see Feireisl and Novotný
[42])

‖∇xΨ(t, ·)‖W k,2(R3;R3) + ‖s (t, ·)‖W k,2(R3)

≤ c

(
‖∇xΨ0‖W k,2(R3;R3) +

∥∥∥%(1)
0

∥∥∥
W k,2(R3)

)
, k = 0, 1, ..., (2.2.5) en_est

for any t > 0. Instead, concerning the decay of the acoustic waves in the
incompressible limit, the following dispersive estimates hold

‖∇xΨ(t, ·)‖W k,p(R3;R3) + ‖s (t, ·)‖W k,p(R3)

≤ c(1 +
t

ε
)−( 1

q−
1
p )
(
‖∇xΨ0‖W k,q(R3;R3) +

∥∥∥%(1)
0

∥∥∥
W k,q(R3)

)
, (2.2.6) disp_est

2 ≤ p ≤ ∞,
1
p

+
1
q

= 1, k = 0, 1, ....

For the purpose of our analysis and the use of the estimates (2.2.5) and
(2.2.6), it is convenient to regularize the initial data (2.2.2) in the following way

%
(1)
0 = %

(1)
0,η = χη ?

(
ψη%

(1)
0

)
, ∇xΨ0 = ∇xΨ0,η = χη ? (ψη∇xΨ0) , η > 0,

(2.2.7) smooth
where {χη} is a family of regularizing kernels and ψη ∈ C∞0 (R3) are stan-
dards cut-off functions. Consequently, the acoustic system possesses a (unique)
smooth solution [s,Ψ] and the quantities ∇xΨ and s are compactly supported
in R3 (see Feireisl and Novotný [42]).

2.3 Convergence analysis
For the purpose of the convergence analysis, we introduce the relative energy
functional and the relative energy inequality associated to the system (2.0.1 -
2.0.3) already mentioned in the Introduction.

2.3.1 Relative energy inequality
The relative energy functional associated to the system (2.0.1 - 2.0.3) is given
by the following relation

E(%,u | r,U) =
ˆ

R3

[
1
2
% |(u−U)|2
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+
1
ε2

(H (%)−H ′ (r) (%− r)−H (r))
]

dx (2.3.1) entr_funct

along with the relative energy inequality

[E(%,u | r,U)]t=T
t=0

+ε
ˆ T

0

ˆ
R3
S (∇xu−∇xU) : (∇xu−∇xU) dxdt ≤

ˆ T

0

R(%,u, r,U)dt,

(2.3.2) entr_ineq
where the remainder R is expressed as follows

R(%,u, r,U) =
ˆ

R3
% (∂tU + u · ∇xU) · (U− u)dx

+ε
ˆ

R3
S(∇xU) : (∇xU−∇xu)dx

+
1
ε2

ˆ
R3

((r − %) ∂tH
′(r) +∇xH

′(r) · (rU− %u))dx

− 1
ε2

ˆ
R3

(p(%)− p(r))divxUdx.

+
ˆ

R3
(%u× ω) · (U− u) dx := I1 + ...+ I5 (2.3.3) rem

Here, r and U are sufficiently smooth functions such that

r > 0, r − 1 ∈ C∞c
(
[0, T ]× R3

)
, U ∈ C∞c

(
[0, T ]× R3; R3

)
. (2.3.4) test

It can be shown (see Feireisl, Jin and Novotný [45] for different type of do-
mains and boundary conditions) that any weak solution [%,u] to the compress-
ible Navier-Stokes system (2.0.1 - 2.0.3) satisfies the relative energy inequality
for any pair of sufficiently smooth test functions r, U as in (2.3.4). The partic-
ular choice of [r,U] will be clarified later.

2.3.2 Main results
The following theorem is the main result of this chapter.

thm: 3 Theorem 14. Let M > 0 be a constant. Let the pressure p satisfy

p ∈ C1 [0,∞) ∩ C3(0,∞), p(0) = 0,
1
a
%γ−1 − b ≤ p′(%) ≤ a%γ−1 + b, (2.3.5) pressure

for all % > 0, with

a > 0, b ≥ 0, γ >
3
2
.
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Let the initial data [%0,u0] for the Navier-Stokes system (2.0.1 - 2.0.3) be of the
following form

%(0) = %0,ε = 1 + ε%
(1)
0,ε, u(0) = u0,ε, (2.3.6) well data∥∥∥%(1)

0,ε

∥∥∥
L2∩L∞(R3)

+ ‖u0,ε‖L2(R3;R3) ≤M. (2.3.7) data bound

Let all the requirements of Theorem 11 be satisfied with the initial datum for
the Euler system v0 = H[u0]. Let [s,Ψ] be the solution of the acoustic system
(2.2.1) with the initial data (2.2.7). Then,

‖√% (u− v −∇Ψ) (t, ·)‖2L2(R3;R3)

+
∥∥∥∥%− 1

ε
(t, ·)− s(t, ·)

∥∥∥∥2

L2(R3)

+
∥∥∥∥%− 1
ε2/γ

(t, ·)− s(t, ·)
ε(2/γ)−1

∥∥∥∥γ

Lγ(R3)

≤ c

(
‖u0,ε − u0‖2L2(R3;R3) +

∥∥∥%(1)
0,ε − %

(1)
0

∥∥∥2

L2(R3)

)
, t ∈ [0, T ] , (2.3.8) th

for any weak solutions [%,u] of the compressible Navier-Stokes system (2.0.1 -
2.0.3).

pert Remark 15. The first relation in (2.3.6) refers to the first-order perturbation of
the density, namely ε%(1)

0,ε, respect to the ambient fluid density settled equal one.

A consequence of the above Theorem is the following Corollary.

cor: 4 Corollary 16. Let all the requirements of Theorem 14 be satisfied. Assume
that

%
(1)
0,ε → %

(1)
0 in L2(R3), u0,ε → u0 in L2(R3; R3) when ε→ 0.

Then

ess sup
t∈[0,T ]

‖√% (u− v) (t, ·)‖2L2(R3;R3) → 0 when ε→ 0,

ess sup
t∈[0,T ]

‖%− 1‖2L2(R3) → 0 when ε→ 0,

ess sup
t∈[0,T ]

‖%− 1‖γ
Lγ(R3) → 0 when ε→ 0,

for any weak solutions [%,u] of the compressible Navier-Stokes system (2.0.1 -
2.0.3) and [r,U] sufficiently smooth test functions.
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2.3.3 Convergence
The following discussion is devoted to the proof of Theorem 14. Here and
hereafter, the symbol c will denote a positive generic constant, independent by
ε, usually found in inequalities, that will not have the same value when used in
different parts in the analysis.

We start with the a priori bounds. In accordance with the energy inequality
(2.1.1), we have

ess sup
t∈[0,T ]

‖%(t, ·)‖Lγ∩L1(R3) ≤ c(M), (2.3.9) unif_bound0

ess sup
t∈[0,T ]

‖√%u(t, ·)‖L2(R3;R3) ≤ c(M). (2.3.10) unif_bound1

From (2.3.9) and (2.3.10), we obtain

‖%u(t, ·)‖Lq(R3;R3) = ‖√%√%u(t, ·)‖Lq(R3;R3)

≤ ‖√%(t, ·)‖L2γ(R3) ‖
√
%u(t, ·)‖L2(R3;R3) , (2.3.11) interp

with

q =
2γ
γ + 1

. (2.3.12) q

We conclude that

ess sup
t∈[0,T ]

‖%u(t, ·)‖Lq(R3;R3) ≤ c(M), q =
2γ
γ + 1

. (2.3.13) unif_bound2

Moreover, introducing (see Germain [51])

I(%, r) = H (%)−H ′ (r) (%− r)−H (r) , (2.3.14) I

we observe that the map % → I(%, r) is, for any fixed r > 0, a strictly convex
function on (0,∞) with global minimum equal to 0 at % = r, which grows at
infinity with the rate %γ . Consequently, the integral

´
R3 I (%, r) (t, x)dx in (2.3.2)

provides a control of (%− r) (t, ·) in L2 over the sets {x : |%− r| (t, x) < 1} and
in Lγ over the sets {x : |%− r| (t, x) ≥ 1}. So, for any r in a compact set (0,∞),
there holds

I(%, r) ≈ |%− r|2 1{|%−r|<1} + |%− r|γ 1{|%−r|≥1}, ∀% ≥ 0, (2.3.15) I_2

in the sense that I(%, r) gives an upper and lower bound in term of the right-hand
side quantity (see Bardos and Nguyen [2], Feireisl, Novotný and Sun [50] and
Sueur [104]). Indeed, is possible to show (see Bardos and Nguyen [2], Lemma
2.2) that for the quantity I(%, r) the following approximation holds

I(%, r) ≈ % (H ′(%)−H ′(r))− r (%− r)H ′′(r),

where the right-hand-side is of order |%− r|2 when |%− r| ≤ 1, and of order
|%− r|γ when |%− r| ≥ 1. Therefore, we have the following uniform bounds
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ess sup
t∈[0,T ]

∥∥[(%− 1) (t, ·)] 1{|%−1|<1}
∥∥

L2(R3)
≤ c(M)ε, (2.3.16) unif_bound3

ess sup
t∈[0,T ]

(∥∥[(%− 1) (t, ·)] 1{|%−1|≥1}
∥∥

Lγ(R3)

)
≤ c(M)ε2/γ , (2.3.17) unif_bound4

where we have set r = 1 and U = 0 in the relative energy inequality (2.3.2).
Now, the basic idea is to apply (2.3.2) to [r,U] = [1 + εs,v +∇xΨ]. The

particular choice of the test functions is motivate by the regularity of the solu-
tions of the Euler (2.0.6) and acoustic (2.2.1) system. In the following, η will
be fixed. For the initial data we have

[E(%,u | r,U)](0) =
ˆ

R3

1
2
%0,ε |u0,ε − u0|2 dx

+
ˆ

R3

1
ε2

[
H
(
1 + ε%

(1)
0,ε

)
− εH ′

(
1 + ε%

(1)
0

)(
%
(1)
0,ε − %

(1)
0

)
−H

(
1 + ε%

(1)
0

)]
dx,

(2.3.18) initial data conv
where u0 = H[u0] +∇Ψ0. Given (2.3.6) and (2.3.7), for the first term on the
right hand side of the equality (2.3.18), we have

ˆ
R3

1
2
%0,ε |u0,ε − u0|2 dx

≤
ˆ

R3

1
2

∣∣∣1 + ε%
(1)
0,ε

∣∣∣ |u0,ε − u0|2 dx

≤
ˆ

R3

1
2
|u0,ε − u0|2 dx+

ˆ
R3

1
2

∣∣∣ε%(1)
0,ε

∣∣∣ |u0,ε − u0|2 dx

≤
ˆ

R3

1
2
|u0,ε − u0|2 dx+ ε

∥∥∥%(1)
0,ε

∥∥∥
L∞(R3)

ˆ
R3

1
2
|u0,ε − u0|2 dx

≤ c(M) (1 + ε) ‖u0,ε − u0‖2L2(R3;R3) . (2.3.19) initial data conv1

For the second term on the right hand side of the equality (2.3.18), setting
a = 1 + ε%

(1)
0,ε and b = 1 + ε%

(1)
0 , and observing that

H(a) = H(b) +H ′(b)(a− b) +
1
2
H ′′(ξ)(a− b)2, ξ ∈ (a, b) ,

|H(a)−H ′(b)(a− b)−H(b)| ≤ c |a− b|2 ,

we have

ˆ
R3

1
ε2

[
H
(
1 + ε%

(1)
0,ε

)
− εH ′

(
1 + ε%

(1)
0

)(
%
(1)
0,ε − %

(1)
0

)
−H

(
1 + ε%

(1)
0

)]
dx

≤ c(M)
ˆ

R3

1
ε2

(∣∣∣ε(%(1)
0,ε − %

(1)
0

)∣∣∣2) dx
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≤ c(M)
∥∥∥%(1)

0,ε − %
(1)
0

∥∥∥2

L2(R3)
. (2.3.20) initial data conv2

Finally, we can conclude

[E(%,u | r,U)](0) ≤ c(M)[(1 + ε) ‖u0,ε − u0‖2L2(R3;R3) +
∥∥∥%(1)

0,ε − %
(1)
0

∥∥∥2

L2(R3)
].

Now, we decompose I1 into
ˆ T

0

I1dt =
ˆ T

0

ˆ
R3
% [(∂tU + U · ∇xU) · (U− u)]dxdt

−
ˆ T

0

ˆ
R3
%∇xU · (U− u) · (U− u)dxdt. (2.3.21) conv

For the second term on the right hand side of (2.3.21), thanks to the Sobolev
imbedding theorem, the Minkowski inequality, (2.1.8) and the dispersive esti-
mate (2.2.6), we have

ˆ T

0

ˆ
R3
%∇xU · (U− u) · (U− u)dxdt

≤
ˆ T

0

ˆ
R3
% |∇xU| · |(U− u)|2 dxdt

≤
ˆ T

0

E
∥∥∇xv +∇2

xΨ
∥∥

L∞(R3;R3)
dt

≤
ˆ T

0

E ‖∇xv‖L∞(R3;R3) dt+
ˆ T

0

E
∥∥∇2

xΨ
∥∥

L∞(R3;R3)
dt

≤ c

ˆ T

0

Edt (2.3.22)

The first term on the right hand side of (2.3.21) can be rewritten as follows
ˆ T

0

ˆ
R3
% [(∂tU + U · ∇xU) · (U− u)]dxdt

=
ˆ T

0

ˆ
R3
%(U− u) · (∂tv + v · ∇xv) dxdt

+
ˆ T

0

ˆ
R3
%(U− u) · ∂t∇xΨdxdt

+
ˆ T

0

ˆ
R3
%(U− u)⊗∇xΨ : ∇xvdxdt

+
ˆ T

0

ˆ
R3
%(U− u)⊗ v : ∇2

xΨdxdt
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+
ˆ T

0

ˆ
R3
%(U− u) · ∇x |∇xΨ|2 dxdt. (2.3.23) conv3

In view of uniform bounds (2.3.13), (2.1.8) and dispersive estimate (2.2.6), the
last three integrals can be estimated as follows

ˆ T

0

ˆ
R3
%(U−u)⊗∇xΨ : ∇xvdxdt =

ˆ T

0

ˆ
R3
%(v+∇xΨ−u)⊗∇xΨ : ∇xvdxdt

=
ˆ T

0

ˆ
R3

(%v)⊗∇xΨ : ∇xvdxdt

+
ˆ T

0

ˆ
R3

(%∇xΨ)⊗∇xΨ : ∇xvdxdt

−
ˆ T

0

ˆ
R3

(%u)⊗∇xΨ : ∇xvdxdt

≤ c

ˆ T

0

‖%‖L1 ‖v‖L∞ ‖∇xΨ‖L∞ ‖∇xv‖L∞ dt

+c
ˆ T

0

‖%‖L1 ‖∇xΨ‖L∞ ‖∇xΨ‖L∞ ‖∇xv‖L∞ dt

+c
ˆ T

0

‖%u‖
L

2γ
γ+1

‖∇xΨ‖
L

2γ
γ−1

‖∇xv‖L∞ dt

≤ c(M)

[
ε (log (ε+ T )− log (ε)) +

(
ε− ε2

ε+ T

)
+

(
γ (ε+ T )

(
ε+T

ε

)−1/γ

γ − 1
− γε

γ − 1

)]
.

(2.3.24) 1th
Similarly to (2.3.24),

ˆ T

0

ˆ
R3
%(U− u)⊗ v : ∇2

xΨdxdt =
ˆ T

0

ˆ
R3
%(v +∇xΨ− u)⊗ v : ∇2

xΨdxdt

≤ c(M)

[
ε (log (ε+ T )− log (ε)) +

(
ε− ε2

ε+ T

)
+

(
γ (ε+ T )

(
ε+T

ε

)−1/γ

γ − 1
− γε

γ − 1

)]
(2.3.25) 2th

and

ˆ T

0

ˆ
R3
%(U− u) · ∇x |∇xΨ|2 dxdt =

ˆ T

0

ˆ
R3
%(v +∇xΨ− u) · ∇x |∇xΨ|2 dxdt

≤ c(M)

[(
ε− ε2

ε+ T

)
+

(
ε

2
− ε3

2 (ε+ T )2

)
+

(
γ (ε+ T )

(
ε+ T

ε

)−1/γ

− εγ

)]
.

(2.3.26) 3th
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Using (2.0.6), for the first term of (2.3.23), we have
ˆ T

0

ˆ
R3
%(U− u) · (∂tv + v · ∇xv) dxdt

= −
ˆ T

0

ˆ
R3
%(U− u) · ∇xΠdxdt−

ˆ T

0

ˆ
R3

(U− u) · (ω × %v) dxdt

=
ˆ T

0

ˆ
R3
%u·∇xΠdxdt−

ˆ T

0

ˆ
R3
%U·∇xΠdxdt−

ˆ T

0

ˆ
R3

(U−u)·(ω × %v) dxdt.

(2.3.27) conv4
Regarding the first integral on the right hand side of (2.3.27), as a consequence
of the estimate (2.3.13), we have

%u → w weakly-(*) in L∞
(
0, T ;L2γ/γ+1(R3; R3)

)
, (2.3.28) press_conv2

where w denotes the weak limit of the composition. Now, taking the limit in
the weak formulation of the continuity equation

ε

ˆ T

0

ˆ
R3

(
%− 1
ε

)
∂tϕdxdt+

ˆ T

0

ˆ
R3
%u∇xϕdxdt = 0 (2.3.29) weak_cont

for sufficiently smooth ϕ, thanks to the estimate (2.3.16) and (2.3.17), we deduce
that

ˆ T

0

ˆ
R3

w · ∇xϕdxdt = 0 (2.3.30) weak_cont_0

when ε→ 0. We may infer that
ˆ T

0

ˆ
R3
%u · ∇xΠdxdt→

ˆ T

0

ˆ
R3

w · ∇xΠdxdt = 0. (2.3.31) conv_0

For the second integral on the right hand side of (2.3.27), we have∣∣∣∣∣
ˆ T

0

ˆ
R3
%U · ∇xΠdxdt

∣∣∣∣∣ ≤
∣∣∣∣∣
ˆ T

0

ˆ
R3

(%− 1) ·U · ∇xΠdxdt

∣∣∣∣∣
+

∣∣∣∣∣
ˆ T

0

ˆ
R3

U · ∇xΠdxdt

∣∣∣∣∣ . (2.3.32) split

For the first integral on the right-hand side of (2.3.32), thanks to (2.1.8), the
estimate (2.2.6) and the uniform bounds (2.3.16) and (2.3.17), we have

ˆ T

0

ˆ
R3

(%− 1) ·U · ∇xΠdxdt

≤ cε

ˆ T

0

∥∥∥∥[%− 1
ε

]
1{|%−1|<1}

∥∥∥∥
L2(R3)

· ‖v +∇xΨ‖L2(R3;R3) · ‖∇xΠ‖L∞(R3;R3) dt
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≤ cε

ˆ T

0

∥∥∥∥[%− 1
ε

]
1{|%−1|<1}

∥∥∥∥
L2(R3)

· ‖v‖L2(R3;R3) · ‖∇xΠ‖L∞(R3;R3) dt

+cε
ˆ T

0

∥∥∥∥[%− 1
ε

]
1{|%−1|<1}

∥∥∥∥
L2(R3)

·‖∇xΨ‖L2(R3;R3)·‖∇xΠ‖L∞(R3;R3) dt ≤ c(M)ε

(2.3.33) press_conv2-1
and

ˆ T

0

ˆ
R3

(%− 1) ·U · ∇xΠdxdt

≤ c

ˆ T

0

∥∥[%− 1]1{|%−1|≥1}
∥∥

Lγ(R3)
· ‖(v +∇xΨ) · ∇xΠ‖

L
γ

γ−1 (R3;R3)
dt

≤ c

ˆ T

0

∥∥[%− 1]1{|%−1|≥1}
∥∥

Lγ(R3)
· ‖v · ∇xΠ‖

L
γ

γ−1 (R3;R3)
dt

+c
ˆ T

0

∥∥[%− 1]1{|%−1|≥1}
∥∥

Lγ(R3)
· ‖∇xΨ · ∇xΠ‖

L
γ

γ−1 (R3;R3)
dt. (2.3.34) press_conv2-2

Thanks to the following interpolation inequalities

‖∇xΨ · ∇xΠ‖
L

γ
γ−1 (R3;R3)

≤ ‖∇xΨ · ∇xΠ‖
γ−1

γ

L1(R3;R3) ‖∇xΨ · ∇xΠ‖1−
γ−1

γ

L∞(R3;R3)

≤ ‖∇xΨ‖
γ−1

γ

L2(R3;R3) ‖∇xΠ‖
γ−1

γ

L2(R3;R3) ‖∇xΨ · ∇xΠ‖1/γ
L∞(R3;R3)

≤ c(M) ‖∇xΨ · ∇xΠ‖1/γ
L∞(R3;R3) ≤ c(M) ‖∇xΨ‖1/γ

L∞(R3;R3) · ‖∇xΠ‖1/γ
L∞(R3;R3)

≤ c(M) ‖∇xΨ‖1/γ
L∞(R3;R3) , (2.3.35) int_1

‖v · ∇xΠ‖
L

γ
γ−1 (R3;R3)

≤ ‖v · ∇xΠ‖
γ−1

γ

L1(R3;R3) ‖v · ∇xΠ‖1−
γ−1

γ

L∞(R3;R3)

≤ ‖v‖
γ−1

γ

L2(R3;R3) ‖∇xΠ‖
γ−1

γ

L2(R3;R3) ‖v · ∇xΠ‖1/γ
L∞(R3;R3)

≤ c ‖v · ∇xΠ‖1/γ
L∞(R3;R3) ≤ c ‖v‖1/γ

L∞(R3;R3) · ‖∇xΠ‖1/γ
L∞(R3;R3) ≤ c, (2.3.36) int_2

and the estimate (2.2.6), for the integral in (2.3.34) we have,
ˆ T

0

∥∥[%− 1]1{|%−1|≥1}
∥∥

Lγ(R3)
· ‖v · ∇xΠ‖

L
γ

γ−1 (R3;R3)
dt
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+
ˆ T

0

∥∥[%− 1]1{|%−1|≥1}
∥∥

Lγ(R3)
· ‖∇xΨ · ∇xΠ‖

L
γ

γ−1 (R3;R3)
dt

≤ c(M)ε2/γ + c(M)ε2/γ

ˆ T

0

‖∇xΨ‖1/γ
L∞(R3;R3) dt

≤ c(M)ε2/γ + c(M)ε2/γ

(
γ (ε+ T )

(
ε+T

ε

)−1/γ

γ − 1
− γε

γ − 1

)
. (2.3.37) press_conv2-3

For the second integral on the right-hand side of (2.3.32), we have

ˆ T

0

ˆ
R3

U·∇xΠdxdt =
ˆ T

0

ˆ
R3

v·∇xΠdxdt+
ˆ T

0

ˆ
R3
∇xΨ·∇xΠdxdt. (2.3.38) press_conv2-4

Performing integration by parts in the first term on the right-hand side of
(2.3.38), we have

ˆ T

0

ˆ
R3

divxv ·Πdxdt = 0

thanks to incompressibility condition divxv = 0. For the second term on the
right-hand side of (2.3.38) using integration by parts and the acoustic equation
(2.2.1), we have

ˆ T

0

ˆ
R3
∇xΨ · ∇xΠdxdt = −

ˆ T

0

ˆ
R3
4Ψ ·Πdxdt

= ε

ˆ T

0

ˆ
R3
∂ts ·Πdxdt

= ε

[ˆ
R3
s ·Πdx

]t=T

t=0

− ε

ˆ T

0

ˆ
R3
s · ∂tΠdxdt, (2.3.39) phi_p

that it goes to zero for ε→ 0. For the second term of (2.3.23), we have
ˆ T

0

ˆ
R3
%(U− u) · ∂t∇xΨdxdt

= −
ˆ T

0

ˆ
R3
%u · ∂t∇xΨdxdt+

ˆ T

0

ˆ
R3
%v · ∂t∇xΨdxdt

+
1
2

ˆ T

0

ˆ
R3
%∂t |∇xΨ|2 dxdt, (2.3.40) u_phi_1

where
ˆ T

0

ˆ
R3
%v · ∂t∇xΨdxdt
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=
ˆ T

0

ˆ
R3

(%− 1)v · ∂t∇xΨdxdt+
ˆ T

0

ˆ
R3

v · ∂t∇xΨdxdt. (2.3.41) u_phi_2

We use the acoustic equation (2.2.1) to rewrite the first term above as follows
ˆ T

0

ˆ
R3

(%− 1)v · ∂t∇xΨdxdt

= −a
ˆ T

0

ˆ
R3

%− 1
ε

v · ∇xsdxdt, (2.3.42) s_phi

where, thanks to (2.1.8), (2.2.6), (2.3.16) and (2.3.17), we have
ˆ T

0

ˆ
R3

%− 1
ε

v · ∇xsdxdt

≤
ˆ T

0

∥∥∥∥[%− 1
ε

]
1{|%−1|<1}

∥∥∥∥
L2(R3)

‖v‖L2(R3;R3) ‖∇xs‖L∞(R3;R3) dt

≤ c(M)ε (log (ε+ T )− log (ε)) (2.3.43) s_rho_v

and
ˆ T

0

ˆ
R3

%− 1
ε

v · ∇xsdxdt

≤
ˆ T

0

∥∥∥∥[%− 1
ε

]
1{|%−1|≥1}

∥∥∥∥
Lγ(R3)

‖v‖
L

γ
γ−1 (R3;R3)

‖∇xs‖L∞(R3;R3) dt

≤ c(M)ε
2
γ (log(ε+ T )− log(ε)) , (2.3.44) vs

where we used the following interpolation inequality for v

‖v‖
L

γ
γ−1 (R3;R3)

≤ ‖v‖
γ−1

γ

L1(R3;R3) ‖v‖
1− γ−1

γ

L∞(R3;R3)

≤ ‖v‖
γ−1

γ

L2(R3;R3) ‖v‖
γ−1

γ

L2(R3;R3) ‖v‖
1/γ
L∞(R3;R3) ≤ c.

For the second term in (2.3.41), performing integration by parts, we have
ˆ T

0

ˆ
R3

divxv · ∂tΨdxdt = 0 (2.3.45) div_phi

thanks to incompressibility condition, divxv = 0. Regarding I2, we have

ˆ T

0

I2dt ≤
ε

2

ˆ T

0

ˆ
R3

(S(∇xU)− S(∇xu)) : (∇xU−∇xu)dxdt

+cε
ˆ T

0

ˆ
R3
|S(∇xU)|2 dxdt, (2.3.46) diss
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where we used the Young inequality and the following Korn inequality

ˆ
R3
|∇xU−∇xu|2 dx ≤ c

ˆ
R3

(S(∇xU)− S(∇xu)) : (∇xU−∇xu) dx.

The first term on the right-hand side of (2.3.46) can be absorbed by the second
term on the left-hand side in the relation (2.3.2). For the second term on the
right-hand side of (2.3.46), in view of (2.1.8) and (2.2.5), we have

cε

ˆ T

0

ˆ
R3
|S(∇xU)|2 dxdt ≤ c(M)ε. (2.3.47) diss3

Regarding the terms I3 and I4 we deal with the following analysis. First, we
have

ˆ
R3
∇xH

′(r) · rUdx = −
ˆ

R3
p(r)divxUdx (2.3.48) grad_H

that it will cancel with its counterpart in I4. Next,

1
ε2

ˆ T

0

ˆ
R3
∇xH

′(r) · (%u) dxdt =
1
ε

ˆ T

0

ˆ
R3
H ′′(r)∇xs · (%u) dxdt

=
ˆ T

0

ˆ
R3

H ′′(1 + εs)−H ′′(1)
ε

∇xs · (%u) dxdt+
1
ε

ˆ T

0

ˆ
R3
p′(1)∇xs · (%u) dxdt.

(2.3.49) grad_H_p
Observing that

H ′′(1 + εs)−H ′′(1)
ε

= H ′′′(ξ)s, ξ ∈ (1, 1 + εs) ,

∣∣∣∣H ′′(1 + εs)−H ′′(1)
ε

∣∣∣∣ ≤ cs,

the first term on the right-hand side of (2.3.49) can be estimated in the following
way

ˆ T

0

ˆ
R3

H ′′(1 + εs)−H ′′(1)
ε

∇xs · (%u) dxdt

≤ c

ˆ T

0

‖s‖L∞ ‖∇xs‖
L

2γ
γ−1 (R3;R3)

‖%u‖
L

2γ
γ+1 (R3;R3)

dt

≤ c(M)

(
γ (ε+ T )

(
ε+ T

ε

)−1/γ

− εγ

)
. (2.3.50) H3

For the second integral on the right-hand side, using the acoustic equation
(2.2.1), we get

1
ε

ˆ T

0

ˆ
R3
p′(1)∇xs · (%u)dxdt
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= −
ˆ T

0

ˆ
R3

(%u) · ∂t∇xΨdxdt (2.3.51) ps

that it will cancel with its counterpart in (2.3.40). Now, we write

1
ε2

ˆ T

0

ˆ
R3

[(r − %) ∂tH
′(r)− p(%)divxU]dxdt

=
1
ε

ˆ T

0

ˆ
R3

(r − %)H ′′(r)∂tsdxdt

− 1
ε2

ˆ T

0

ˆ
R3
p(%)4Ψdxdt

=
ˆ T

0

ˆ
R3

(1− %)
ε

H ′′(r)∂tsdxdt+
ˆ T

0

ˆ
R3
sH ′′(r)∂tsdxdt

− 1
ε2

ˆ T

0

ˆ
R3
p(%)4Ψdxdt. (2.3.52) oth

The last term on the right-hand side can be split as follows

− 1
ε2

ˆ T

0

ˆ
R3
p(%)4Ψdxdt

= − 1
ε2

ˆ T

0

ˆ
R3

[p(%)− p(1)]4Ψdxdt

− 1
ε2

ˆ T

0

ˆ
R3
p(1)4Ψdxdt. (2.3.53) oth_1

Using integration by parts, we have

− 1
ε2

ˆ T

0

ˆ
R3
∇xp(1)∇xΨdxdt = 0. (2.3.54) oth_2

Now, we have

− 1
ε2

ˆ T

0

ˆ
R3

[p(%)− p(1)]4Ψdxdt

= −
ˆ T

0

ˆ
R3

[p(%)− p′(1)(%− 1)− p(1)]
ε2

4Ψdxdt

−
ˆ T

0

ˆ
R3

p′(1)(%− 1)
ε2

4Ψdxdt. (2.3.55) oth_3

Then, the following estimates hold

∣∣∣∣∣
ˆ T

0

ˆ
R3

[p(%)− p′(1)(%− 1)− p(1)]
ε2

4Ψdxdt

∣∣∣∣∣ ≤ c

ˆ T

0

E ‖4Ψ‖L∞(R3;R3) dt.

(2.3.56) oth_4
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Now, we have

1
2

ˆ T

0

ˆ
R3
%∂t |∇xΨ|2 dxdt

=
1
2

ˆ T

0

ˆ
R3

(%− 1) ∂t |∇xΨ|2 dxdt+
1
2

ˆ T

0

ˆ
R3
∂t |∇xΨ|2 dxdt

=
1
2

ˆ T

0

ˆ
R3

(%− 1) ∂t |∇xΨ|2 dxdt+
[
1
2

ˆ
R3
|∇xΨ|2 dx

]t=T

t=0

, (2.3.57) phi

where, using (2.2.1) in the first term on the right-hand side, we have

ε

2

ˆ T

0

ˆ
R3

(%− 1)
ε

∂t |∇xΨ|2 dxdt = a

ˆ T

0

ˆ
R3

(%− 1)
ε

∇xΨ · ∇xsdxdt. (2.3.58) phi_dec

Now, using (2.2.6), (2.3.16) and (2.3.17) in (2.3.58), we have
ˆ T

0

ˆ
R3

(%− 1)
ε

∇xΨ · ∇xsdxdt

≤
ˆ T

0

∥∥∥∥[ (%− 1)
ε

]
1{|%−1|<1}

∥∥∥∥
L2(R3)

‖∇xΨ‖L2(R3) ‖∇xs‖L∞(R3) dt

≤ c(M)ε (log(ε+ T )− log(ε)) (2.3.59) rho_phi

and
ˆ T

0

ˆ
R3

(%− 1)
ε

∇xΨ · ∇xsdxdt

≤
ˆ T

0

∥∥∥∥[ (%− 1)
ε

]
1{|%−1|≥1}

∥∥∥∥
Lγ(R3)

‖∇xΨ‖
L

γ
γ−1 (R3)

‖∇xs‖L∞(R3) dt

≤ c(M)ε2/γ

(
γ

(
ε+ T

ε

)−1/γ

− γ

)
, (2.3.60) rho_phi_2

where we have used the following interpolation inequality for ∇xΨ

‖∇xΨ‖
L

γ
γ−1 (R3;R3)

≤ ‖∇xΨ‖
γ−1

γ

L1(R3;R3) ‖∇xΨ‖1−
γ−1

γ

L∞(R3;R3)

≤ ‖∇xΨ‖
γ−1

γ

L2(R3;R3) ‖∇xΨ‖
γ−1

γ

L2(R3;R3) ‖∇xΨ‖1/γ
L∞(R3;R3) ≤ c(M) ‖∇xΨ‖1/γ

L∞(R3;R3) .

Now, collecting the remained terms, we write
ˆ T

0

ˆ
R3

(1− %)
ε

H ′′(r)∂tsdxdt+
ˆ T

0

ˆ
R3
sH ′′(r)∂tsdxdt
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−
ˆ T

0

ˆ
R3

p′(1)(%− 1)
ε2

4Ψdxdt. (2.3.61) p1

For the first integrals in (2.3.61), it is possible to show (see Feireisl, Nečasová
and Sun [47]) that ∣∣∣∣∣

ˆ T

0

ˆ
R3

(1− %)
ε

H ′′(r)∂tsdxdt

∣∣∣∣∣
≤
ˆ T

0

ˆ
R3

(%− 1)
ε2

p′(1)4Ψdxdt+ c(M)
ˆ T

0

E ‖4Ψ‖L∞(R3;R3) dt, (2.3.62) p2

where the first term on the right hand side of the inequality it will cancel with
its counterpart in (2.3.61). While, for the second integral in (2.3.61), we have

∣∣∣∣∣
ˆ T

0

ˆ
R3
sH ′′(r)∂tsdxdt

∣∣∣∣∣ ≤ p′(1)
[
1
2

ˆ
R3
s2dx

]t=T

t=0

+c(M)
ˆ T

0

E ‖4Ψ‖L∞(R3;R3) dt.

(2.3.63) p4
From (2.3.56), (2.3.62), (2.3.63) we need to estimate the following term

ˆ T

0

E ‖4Ψ‖L∞(R3;R3) dt ≤ c(M)
ˆ T

0

Edt. (2.3.64) p4’

Finally, regarding I5, we have

ˆ T

0

ˆ
R3

(%u× ω) · (v − u) dxdt−
ˆ T

0

ˆ
R3

(%v × ω) · (v − u)dxdt

=
ˆ T

0

ˆ
R3

(%u× ω) · vdxdt+
ˆ T

0

ˆ
R3

(%v × ω) · udxdt

=
ˆ T

0

ˆ
R3

(%u× ω) · vdxdt−
ˆ T

0

ˆ
R3

(%u× ω) · vdxdt = 0 (2.3.65) rot1

and, thanks to (2.1.8), (2.2.6), (2.3.9) and (2.3.13), we have
ˆ T

0

ˆ
R3

(%u× ω) · ∇xΨdxdt

≤
ˆ T

0

‖%u‖
L

2γ
γ+1 (R3;R3)

‖∇xΨ‖
L

2γ
γ−1 (R3;R3)

dt

≤ c(M)

(
γ (ε+ T )

(
ε+T

ε

)−1/γ

γ − 1
− γε

γ − 1

)
(2.3.66) rot2

and
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ˆ T

0

ˆ
R3

(%v × ω) · ∇xΨdxdt

≤
ˆ T

0

‖%‖Lγ(R3) ‖v‖
γ

γ−1

L∞(R3;R3) ‖∇xΨ‖L∞(R3;R3) dt

≤ c(M)ε (log(ε+ T )− log(ε)) . (2.3.67) rot3

Combining the previous estimates and letting ε→ 0 we can rewrite (2.3.2) as

[E(%,u | r,U)](T ) ≤ [E(%,u | r,U)](0) + c(M)
ˆ T

0

Edt (2.3.68) gronwall

In virtue of the integral form of the Gronwall inequality, we have

[E(%,u | r,U)](T ) ≤ ([E(%,u | r,U)](0))
(
1 + c(M)Tec(M)T

)
for t ∈ [0, T ] ,

(2.3.69) proof
where the quantity

(
1 + c(M)Tec(M)T

)
is bounded for fixed t ∈ [0, T ]. Theorem

14 is proved and, consequently, Corollary 16.

2.4 Conclusions
The problem we faced above has focused on the inviscid incompressible limit
for a compressible barotropic fluid in a "fast" rotating frame. The problem was
analyzed in the whole space R3. However, a possible extension for a fluid in a
bounded domain can give light to the interesting analysis of the formation of the
boundary layers. Moreover, it is not excluded that the "fast" rotating frame can
develop a particular phenomenology in the fluid that can be of some interest,
from the mathematical view point, in the analysis of other kind of models in
bounded domains or in the whole space.
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Chapter 3

Dimension reduction for
compressible heat conducting
fluids

We consider the scaled compressible Navier-Stokes-Fourier-Poisson system de-
scribing the motion of an heat conducting fluid in a rotating frame confined in
a straight layer Ωε = ω× (0, ε) where ω is a two-dimensional domain and in the
presence of the gravity force already mentioned in Introduction. The continuity
equation reads

∂t%+ divε (%u) = 0, (3.0.1) cont_eps

the momentum equation is

∂t (%u) + divε (%u⊗ u) + %u× χ +∇εp(%, ϑ)

= divεS (ϑ,∇εu) + ε−2β%∇εφ+ %∇ε |x× χ|2 , (3.0.2) NSFP

with the stress tensor given by the following relation

S (ϑ,∇εu) = µ (ϑ)
(
∇εu +∇t

εu−
2
3
divεuI

)
+ η (ϑ)divεuI. (3.0.3) St

The entropy equation is

∂t (%s (%, ϑ)) + divε (%s (%, ϑ)u) + divε

(
q (ϑ,∇εϑ)

ϑ

)

=
1
ϑ

(
S (ϑ,∇εu) : ∇εu−

q (ϑ,∇εϑ) · ∇εϑ

ϑ

)
, (3.0.4) s

with

q = −κ (ϑ)∇εϑ. (3.0.5) flux

The gravitational force is given by the following relation
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∇εφ (t, x) = ε

ˆ
Ωε

α%(t, ξ)
(x1 − ξ1, x2 − ξ2, ε (x3 − ξ3))(
|xh − ξh|2 + ε2 |x3 − ξ3|2

)3/2
dξ

+
ˆ

R3
(1− α) g(y)

(x1 − y1, x2 − y2, ε (x3 − y3))(
|xh − yh|2 + ε2 |x3 − y3|2

)3/2
dy

= εαΦ1 + (1− α)Φ2. (3.0.6) phi_grav

The system (3.0.1) - (3.0.4) is completed with the initial conditions

% (x, 0) = %0 (x) , u (x, 0) = u0 (x) , ϑ (x, 0) = ϑ0 (x) , x ∈ Ω (3.0.7) ic

and the boundary conditions

u|∂ω×(0,1) = 0, (3.0.8) b1

u · n|ω×{0,1} = 0, [S · n]× n|ω×{0,1} = 0, (3.0.9) b2

∇ϑ · n|ω×{0,1} = 0. (3.0.10) b3

q · n|∂Ω = 0. (3.0.11) flu

Remark 17. The first condition in (3.0.9) can be written as

u3 = 0 on ω × {0, 1} .

Remark 18. We consider the no-slip boundary condition holds on the boundary
ω × (0, 1) (on the lateral part of the domain) and the slip boundary condition
on the other parts of the boundary ω × {0, 1} (the top and the bottom part of
the layer).

Remark 19. We would like to emphasize that we imposed a slip condition on
the boundary ω×{0, ε} in order to avoid difficulties in passing to the dimension
reduction limit.

As already mentioned in the Introduction, we will consider two cases: β =
1/2 and β = 0. In the first case we will take α = 1, assuming only the self-
gravitation. In the second case, we will take α = 0, assuming only the gravita-
tional force due to external effects.

We want to show that the weak solution of the Navier-Stokes-Fourier-Poisson
system converges to the classical solution of the corresponding two-dimensional
system in which the continuity equation reads

∂tr + divh (rw) = 0, (3.0.12) cont_t

the momentum equation is

r∂tw + rw · ∇hw +∇hp(r,Θ) + r (w × χ)
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= divhS(Θ,∇hw) + r∇hφh + r∇h |x× χ|2 , (3.0.13) mom_t

with the stress tensor given by the following relation

Sh (Θ,∇hw) = µ
(
∇hw +∇t

hw − divhw
)

+
(
η +

µ

3

)
divhwIh. (3.0.14) Sh

where Ih is the unit tensor in R2×2 in the domain (0, T ) × ω. The entropy
equation is

r∂ts+ rw · ∇hs+ divh

(
qh(Θ,∇hΘ)

Θ

)

=
1
Θ

(
Sh (Θ,∇hw) : ∇hw − qh(Θ,∇hΘ) · ∇hΘ

Θ

)
, (3.0.15) s_t

with

qh(Θ,∇hΘ) = −κ (Θ)∇hΘ. (3.0.16) qh

Above,

φh(t, xh) = G

ˆ
ω

r(t, yh)
|xh − yh|

dyh for α = 1 (3.0.17) grav_t_1

and
φh(t, xh) = G

ˆ
R3

g(y)√
|xh − yh|2 + y2

3

dy for α = 0. (3.0.18) grav_t_2

Moreover, qh · n|∂ω×(0,T ) = 0 and w|∂ω×(0,T ) = 0.

3.1 Thermodynamics
The physical properties of heat conduction flows are reflected through various
relations which are expressed as typically non-linear functions relating the pres-
sure p (%, ϑ), the internal energy e(%, ϑ), the entropy s (%, ϑ) to the macroscopic
variables %, u and ϑ. The following discussion is based on the general existence
theory for the Navier-Stokes-Fourier system developed in [41].

According with the fundamental principles of thermodynamics, the internal
energy e is related to the pressure p and the entropy s through Gibbs’ relation

ϑDs = De+ pD

(
1
%

)
, (3.1.1) Gibbs

where D denotes the differential with respect to the state variables %, ϑ. We
consider the pressure p and the internal energy e in the form

p (%, ϑ) = p1 (%, ϑ) +
a

3
ϑ4, (3.1.2) p

e (%, ϑ) = e1 (%, ϑ) +
a

3
ϑ4

%
(3.1.3) ie

where
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p1 (%, ϑ) = (γ − 1) %e (%, ϑ) (3.1.4) p_1

with γ > 1. The component a
3ϑ

4 represents the effect of "equilibrium" radi-
ation pressure (see [28] for the motivations). Gibbs’ equation (3.1.1) can be
equivalently written in the form of Maxwell’s relation as follows

∂e (%, ϑ)
∂%

=
1
%2

(
p (%, ϑ)− ϑ

∂p (%, ϑ)
∂ϑ

)
. (3.1.5) Maxwell

It follows, under some regularity assumptions on the functions p1 and e1,
that

p1 (%, ϑ) = ϑ
γ

γ−1P

(
%

ϑ
1

γ−1

)
(3.1.6) p_1_m

where P : [0,∞) → [0,∞) is a given function with the following properties

P ∈ C1 ([0,∞)) ∩ C2 ((0,∞)) , P (0) = 0, P ′ (Z) > 0 for all Z ≥ 0,
(3.1.7) P

0 <
γP (Z)− P ′ (Z)Z

Z
≤ c <∞ for all Z > 0, lim

Z→∞

P (Z)
Zγ

= p∞ > 0.

(3.1.8) P_1
Condition (3.1.8) reflects the fact that the specific heat at constant volume
is strictly positive and uniformly bounded. Recalling the Maxwell’s relation
(3.1.5), for the internal energy we have

e1 (%, ϑ) =
1

γ − 1
ϑ

γ
γ−1

%
P

(
%

ϑ
1

γ−1

)
. (3.1.9) e_1

Due to the form of the pressure and the internal energy, the entropy is given by

s (%, ϑ) = s1 (%, ϑ) +
4
3
a
ϑ3

%
, (3.1.10) s_m

with

s1 (%, ϑ) = M

(
%

ϑ
1

γ−1

)
, M ′ (Z) = − 1

γ − 1
γP (Z)− P ′ (Z)Z

Z2
< 0,

lim
Z→∞

M (Z) = 0. (3.1.11) s_1

Note, that it is possible to show that

s1 (%, ϑ) ≤ c (1 + |ln %|) (3.1.12) s_2

in the set % ∈ (0,∞), ϑ ∈ (0, 1), and

s1 (%, ϑ) ≤ c (1 + |ln %|+ lnϑ) (3.1.13) s_3

in the set % ∈ (0,∞), ϑ ∈ (1,∞).
The coefficients µ, η and κ are continuously differentiable functions of the

temperature, such that
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0 < c1 (1 + ϑ) ≤ µ (ϑ) , µ′ (ϑ) < c2, 0 ≤ η (ϑ) ≤ c3 (1 + ϑ) , (3.1.14) mu_nu

0 < c4
(
1 + ϑ3

)
≤ κ (ϑ) ≤ c5

(
1 + ϑ3

)
(3.1.15) kappa

for any ϑ > 0. For the sake of the simplicity, we consider the particular case

µ (ϑ) = µ0 + µ1ϑ, µ0, µ1 > 0, η ≡ 0 (3.1.16) mu

and
κ (ϑ) = κ0 + κ2ϑ

2 + κ3ϑ
3, κi > 0, i = 0, 2, 3. (3.1.17) kappa_1

3.2 Weak and classical solutions
In the following, we introduce the definition of weak solutions for the compress-
ible Navier-Stokes-Fourier-Poisson system (3.0.1) - (3.0.4) and we discuss the
global in time existence. Then, we discuss the global existence of the classical
solution of the two-dimensional heat conducting system (3.0.12) - (3.0.18).

3.2.1 Weak solutions
To present the weak formulation, we consider the functional space

W 1,2
0,n

(
Ω; R3

)
=
{
u ∈W 1,2

(
Ω; R3

)
; u · n|ω×{0,1} = 0, u|∂ω×(0,1) = 0

}
.

NSFP_weak_sol_def Definition 20. (Weak solution) We say that [%,u, ϑ] is a weak solution of the
system (3.0.1) - (3.0.4) if

% ≥ 0, ϑ > 0, a.e. in (0, T )× Ω,

% ∈ Cweak ((0, T ) , Lγ (Ω)) , %u ∈ Cweak

(
(0, T ) , L

2γ
γ+1

(
Ω; R3

))
,

u ∈ L2
(
(0, T ) ,W 1,2

0,n

(
Ω; R3

))
,

ϑ ∈ L∞
(
(0, T ) , L4 (Ω)

)
∩ L2

(
(0, T ) ,W 1,2 (Ω)

)
,

and if [%,u, ϑ] satisfy the following integral identities:

ˆ T

0

ˆ
Ω

(%+ b (%)) ∂tϕ+ (%+ b (%))u · ∇εϕ+ (b (%)− b′ (%) %) divεuϕ dxdt

= −
ˆ

Ω

(%0 + b (%0))ϕ (0, ·) dx (3.2.1) weak_continuity

for any ϕ ∈ C∞c
(
[0, T )× Ω

)
and b ∈ C∞ ([0,∞)) , b′ ∈ C∞c ([0,∞)), where

(3.2.1) includes as well the initial condition % (x, 0) = %0 (x);
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ˆ T

0

ˆ
Ω

%u · ∂tϕ + (%u⊗ u) : ∇εϕ + (%u× χ) ·ϕ + p (%, ϑ)divεϕ dxdt

−
ˆ T

0

ˆ
Ω

S (ϑ,∇εu) : ∇εϕ− ε−2β%∇εφ ·ϕ− %∇ε |x× χ|2 ·ϕ dxdt

= −
ˆ

Ω

%0u0 ·ϕ (0, ·) dx (3.2.2) weak_mom

for any ϕ ∈ C∞c
(
[0, T )× Ω; R3

)
, ϕ|[0,T ]×∂ω×(0,1) = 0, ϕ3|[0,T ]×∂ω×{0,1} = 0,

where (3.2.2) includes as well the initial condition %u (x, 0) = %0u0 (x);
ˆ T

0

ˆ
Ω

%s (%, ϑ) ∂tϕ+ %s (%, ϑ)u · ∇εϕ+
q (ϑ,∇εϑ)

ϑ
· ∇εϕ dxdt

≤ −
ˆ

Ω

%0s (%0, ϑ0)ϕ (0, ·) dx

−
ˆ T

0

ˆ
Ω

1
ϑ

(
S (ϑ,∇εu) : ∇εu−

q (ϑ,∇εϑ) · ∇εϑ

ϑ

)
ϕ dxdt (3.2.3) weak_s

for any ϕ ∈ C∞c
(
[0, T )× Ω

)
, ϕ ≥ 0; together with the total energy balance

ˆ
Ω

(
1
2
% |u|2 + %e(%, ϑ)

)
(t, ·) dx

=
ˆ

Ω

(
1

2%0
|%0u0|2 + %0e(%0, ϑ0)

)
dx+

ˆ T

0

ˆ
Ω

%Φj · u + %∇ε |x× χ|2 · u dxdt

(3.2.4) teb
with j = 1, 2, and the integral representation of the gravitational force (3.0.6).

weak_ren Remark 21. In the weak formulation above, we replace the weak formulation of
the continuity equation (3.0.1) with its (weak) renormalized version in the sense
of DiPerna and Lions [23].

Remark 22. The concept of weak solution to the Navier-Stokes-Fourier system
based on the Second Law of thermodynamic presented above was introduce in
[27]. In order to compensate the lack of information resulting from the entropy
inequality, the system is supplemented by the total energy balance. Under these
circumstances, it can be show (see [41]) that any weak solution of (3.0.1) - (3.0.4)
that is sufficiently smooth satisfies the entropy equality (3.0.4).

Remark 23. Concerning the weak formulation introduced above, there are at
least two alternative ways by which to replace the entropy balance (3.0.4),
namely the total energy balance

∂t

(
1
2
% |u|2 + %e (%, ϑ)

)
+divε

[(
1
2
% |u|2 + %e (%, ϑ) + p (%, ϑ)

)
u
]
+divεq (ϑ,∇εϑ)
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= divε [S (ϑ,∇εu)u] (3.2.5) tee

or by the internal energy balance

∂t (%e (%, ϑ)) + divε (%e (%, ϑ)u) + divεq (ϑ,∇εϑ)

= S (ϑ,∇εu) : ∇εu− divεp (%, ϑ)u. (3.2.6) ieb

Although relations (3.2.5) and (3.2.6) are equivalent to (3.0.4) for classical so-
lutions, this is, in general, not the case in the framework of weak solutions.
Moreover, as mentioned in [43], it is precisely the entropy balance (3.0.4) that
gives rise, in combination with the total energy balance, to the relative energy
inequality yielding the weak-strong uniqueness property and the convergence we
are asking for.

It should also be noted that the term S (ϑ,∇εu)u in the total energy balance
(3.2.5) is not controlled on the (hypothetical) vacuum zones of vanishing density.
Replacing (3.2.5) by the internal energy equation (3.2.6), dividing (3.2.6) on
1/ϑ and using Maxwell’s relation (3.1.5), we may rewrite (3.2.6) as the entropy
equation (3.0.4) we already introduced in the beginning of the chapter.

The next Theorem concerns with the global-in-time existence of weak solu-
tions for the Navier-Stokes-Fourier-Poisson system (3.0.1) - (3.0.4).

NSFP_existence Theorem 24. Let E0 and S0 be non-negative constants. Suppose the ther-
modynamic functions p, e, s satisfy relations (3.1.2) - (3.1.11), the transport
coefficients µ, η, κ comply with (3.1.16) - (3.1.17). Let γ > 3/2 if α = 0 or
γ > 12/7 if α = 1. Let g be such that g ∈ Lp

(
R3
)

for p = 1 if γ > 6 and
p = 6γ/ (7γ − 6) for 3/2 < γ ≤ 6. Suppose the initial data satisfy

ˆ
Ω

(
1
2
% |u|2 + %e(%, ϑ)

)
(0, ·) dx ≡

ˆ
Ω

(
1

2%0
|%0u0|2 + %0e(%0, ϑ0)

)
dx ≤ E0,

ˆ
Ω

%s(%, ϑ) (0, ·) dx ≡
ˆ

Ω

%0s(%0, ϑ0)dx ≥ S0. (3.2.7) idata

Then, the system (3.0.1) - (3.0.4) with boundary conditions (3.0.8) - (3.0.10)
admits at least one weak solution in the sense of Definition 20.

Proof. The existence of weak solutions to the above problem can be deduced
from the works of Feireisl et al. [29], [35], [40] and [45]. In fact, we fix ε > 0, we
construct a weak solution in Ωε and then we rescale the solution.

3.2.2 Classical solutions
The next Theorem concerns with the existence of classical solution for the two-
dimensional heat conducting system (3.0.12) - (3.0.18). From classical results of
Matsumura and Nishida [76], we know that the target system admits a unique
global strong solution provided the initial data are close to a stationary solution.
Another possible result is the existence of local-in-time smooth solution (see for
example Tani [106]). More precisely
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2D_existence Theorem 25. Let E be a given positive constant. Suppose that p ∈ C2
(
(0,∞)2

)
,

µ, η, κ ∈ C1 (0,∞) and that

r0 ∈W 2,2 (ω) , inf
ω
r0 > 0, w0 ∈W 3,2

(
ω; R2

)
∩W 1,2

0

(
ω; R2

)
,

Θ0 ∈W 3,2 (ω) , inf
ω

Θ0 > 0. (3.2.8) cond

Moreover, assume that the following condition holds

1
r0

(
∇hp (r0,Θ0) + r0 (w0 × χ)− divhS(Θ0,∇hw0)− r0∇hφh − r0∇h |x× χ|2

)∣∣∣∣
∂ω

= 0.

(3.2.9) compt
Then:

1) (Local solution) There exists a positive parameter T∗, such that [r,w,Θ] is
the unique classical solution to the problem (3.0.12) - (3.0.18) with the boundary
conditions

w|∂ω = 0, (3.2.10) bc_w

∂Θ
∂n

∣∣∣∣
∂ω

= 0 (3.2.11) bc_th

and the initial conditions [r0,w0,Θ0] in (0, T )× ω for any T < T∗ such that

r ∈ C
(
[0, T ] ;W 3,2 (ω)

)
∩ C1

(
[0, T ] ;W 2,2 (ω)

)
, (3.2.12) r_0

w ∈ C
(
[0, T ] ;W 3,2

(
ω; R2

))
∩ C1

(
[0, T ] ;W 1,2

(
ω; R2

))
, (3.2.13) w_0

Θ ∈ C
(
[0, T ] ;W 3,2 (ω)

)
∩ C1

(
[0, T ] ;W 1,2 (ω)

)
. (3.2.14) th_0

2) (Global solution) Let [r0,w0,Θ0] and χ be such that for a sufficiently
small ε > 0 ∥∥r0 − r,w0,Θ0 −Θ

∥∥
3,2

+ |χ| ≤ ε, (3.2.15) comptt

where
[
r,0,Θ

]
is a stationary solution to (3.0.12) - (3.0.18) with the boundary

condition

∂Θ
∂n

∣∣∣∣
∂ω

= 0. (3.2.16) bc_bar

Then, for any T∗ < +∞ there exists a global unique strong solution to to (3.0.12)
- (3.0.18) with the boundary condition (3.2.10) - (3.2.11) and the initial condi-
tions [r0,w0,Θ0] in the class (3.2.12) - (3.2.14).

Proof. It follows from [76, Theorem 1.1] and [106] with slight modifications due
to the rotation and the self-gravitation.
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3.3 Convergence analysis
For the purpose of the convergence analysis, we introduce the relative energy
functional and the relative energy inequality associated to the system (3.0.1) -
(3.0.4) already mentioned in the Introduction.

3.3.1 Relative energy inequality
The relative energy functional associated to the Navier-Stokes-Fourier-Poisson
system (3.0.1) - (3.0.4) is given by the following relation

I(%,u, ϑ | r̃, w̃, Θ̃) =
ˆ

Ω

(
1
2
% |u− w̃|2 + E(%, ϑ | r̃, Θ̃)

)
(t, ·)dx (3.3.1) I_en_fun

where for the Helmholtz potential

HeΘ(%, ϑ) = %e(%, ϑ)− Θ̃%s(%, ϑ) (3.3.2) Hpot

we have

E(%, ϑ | r̃, Θ̃) = HeΘ(%, ϑ)− ∂%HeΘ(r̃, Θ̃)(%− r̃)−HeΘ(r̃, Θ̃). (3.3.3) EH

While, the relative energy inequality reads as follows[
I(%,u, ϑ | r̃, w̃, Θ̃)

]t=T

t=0

+
ˆ T

0

ˆ
Ω

Θ̃
ϑ

(
S(ϑ,∇εu) : ∇εu−

q(ϑ,∇εϑ) · ∇εϑ

ϑ

)
dxdt

≤
ˆ T

0

R(%,u, ϑ, r̃, w̃, Θ̃)dt (3.3.4) entr_ineq_1

where the reminder R is expressed as follows

R(%,u, ϑ, r̃, w̃, Θ̃)

=
ˆ

Ω

% (u− w̃) · ∇εw̃ · (w̃ − u) dx

+
ˆ

Ω

%
(
s(%, ϑ)− s(r̃, Θ̃)

)
· (w̃ − u) · ∇εΘ̃dx

+
ˆ

Ω

% (∂tw̃ + w̃ · ∇εw̃) · (w̃ − u)dx

−
ˆ

Ω

%
(
s(%, ϑ)− s(r̃, Θ̃)

)
∂tΘ̃dx

−
ˆ

Ω

%
(
s(%, ϑ)− s(r̃, Θ̃)

)
w̃ · ∇εΘ̃dx

+
ˆ

Ω

((
1− %

r̃

)
∂tp(r̃, Θ̃)− %

r̃
u · ∇εp(r̃, Θ̃)

)
dx
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+
ˆ

Ω

% (χ× u) · (w̃ − u)− %∇ε |χ× x|2 · (w̃ − u) dx

−
ˆ

Ω

(
ε−2β%∇εφ · (w̃ − u) +

q(ϑ,∇εϑ) · ∇εΘ̃
ϑ

)
dx

−
ˆ

Ω

p(%, ϑ)divεw̃ + S(ϑ,∇εu) : ∇εw̃dx := I1 + ...+ I11. (3.3.5) rem_1

Here, r̃, w̃ and Θ̃ are sufficiently smooth functions. Moreover, r̃ and Θ̃ are
bounded below away from zero in [0, T ]×Ω, w̃|∂ω×(0,1) = 0 and w̃3|ω×{0,1} = 0.
The particular choice of r̃, w̃ and Θ̃ will be clarified later.
Remark 26. Any weak solution of the Navier-Stokes-Fourier-Poisson system
(3.0.1) - (3.0.4) satisfies the relative energy inequality (3.3.4).

3.3.2 Main results
Our main result reads

main_result Theorem 27. Suppose that the thermodynamic functions p, e and s satisfy the
hypothesis (3.1.2) - (3.1.11), the transport coefficients µ, λ and κ comply with
(3.1.15) and (3.1.16) and the stress tensor is given by (1.1.25). Let [r0,w0,Θ0]
satisfy assumptions of Theorem 25 and let T∗ > 0 be the time interval of exis-
tence of the strong solution to problem (3.0.12) - (3.0.14).

Let
• either Fr = 1, β = 0, α = 0, γ > 3/2 and g ∈ Lp

(
R3
)

with p = 1 for
γ > 6 and p = 6γ/ (7γ − 6) for γ ∈ (3/2, 6], and

ˆ
R3

g(y)y3(√
|xh − yh|2 + y2

3

)3 dx = 0 (3.3.6) G

for all xh ∈ ω.
• or Fr =

√
ε β = 1/2, α = 1 and γ ≥ 12/5.

Let [%,u, ϑ] be a sequence of weak solutions to the three-dimensional com-
pressible Navier-Stokes-Fourier-Poisson system (3.0.12) - (3.0.14) with (3.0.6),
emanating from initial data [%0,u0, ϑ0].

Suppose that
[I(%0,u0, ϑ0 | r0,w0,Θ0)] → 0. (3.3.7) I_0

Then,

[I(%,u, ϑ | r,w,Θ)] (t) → 0, when ε→ 0 for t ∈ [0, T ] , (3.3.8) I_conv

u → w strongly in L2
(
0, T ;W 1,2

(
Ω; R3

))
, (3.3.9) u_conv

ϑ→ Θ strongly in L2
(
0, T ;W 1,2 (Ω)

)
, (3.3.10) teta_conv

log ϑ→ log Θ strongly in L2
(
0, T ;W 1,2 (Ω)

)
, (3.3.11) log_teta_conv

where the triple [r,w,Θ] satisfies the two-dimensional Navier-Stokes-Fourier-
Poisson system (3.0.12) - (3.0.14) with the boundary conditions (3.0.8) and
(3.0.10) on the time interval [0, T ] for any 0 < T < T∗
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Remark 28. For β = 0 we may also include the self-gravitation of the fluid.
However, passing with ε → 0, this term tends to zero. Therefore we do not
consider here as it would lead to an additional restriction to γ.

Remark 29. Condition (3.3.6) is the necessary condition for the validity of the
two-dimensional system, as it means that the gravitational force in the x3-
direction in ω is zero.

Remark 30. From (3.3.8) it follows

%→ r in Cweak ([0, T ] ;Lγ (Ω)) , %→ r a.a. in (0, T )× Ω.

Remark 31. For α = 1 and β = 1/2, we assume more stronger assumptions then
in Theorem 24 since we need a priori estimates independent of ε.

As a consequence, we have the following Corollary.

Corollary 32. Suppose that the thermodynamics functions p, e and s satisfy hy-
pothesis (3.1.2) - (3.1.11), that the coefficients µ, λ and κ comply with (3.1.16)
and (3.1.17) and the stress tensor is given by (1.1.25).

Assume that [%0,u0, ϑ0], %0 ≥ 0, ϑ0 ≥ 0 satisfy
ˆ 1

0

%0 (x) dx3 → r0 weakly in L1 (ω) ,

ˆ 1

0

%0u0 (x) dx3 → w0 weakly in L1
(
ω; R2

)
,

ˆ 1

0

Θ0 (x) dx3 → Θ0 weakly in L1 (ω) ,

where [r0,w0,Θ0] belong to the regularity class (3.2.8), and
ˆ

Ω

(
1
2
%0 |u0|2 + %0e (%0, ϑ0)

)
dx→

ˆ
ω

(
1
2
r0 |w0|2 + r0e (r0,Θ0)

)
dxh.

Let [%,u, ϑ] be a sequence of weak solution to the three-dimensional compress-
ible Navier-Stokes-Fourier-Poisson system (3.0.1) - (3.0.7) emanating from the
initial data [%0,u0, ϑ0]. Then (3.3.8) - (3.3.11) holds.

3.3.3 Convergence
The following discussion is devoted to the proof of Theorem 27. Here and
hereafter, the symbol C will denote a positive generic constant, independent by
ε, usually found in inequalities, that will not have the same value when used in
different parts in the analysis.

We start with the a priori bounds. It is easy to verify that

S (ϑ,∇εv) : ∇εv =
(
η (ϑ)− 2

3
µ (ϑ)

)
|divεv|2 + µ (ϑ)

(
|∇εv|2 +∇εv : ∇t

εv
)

(3.3.12) Sv
for any v ∈W 1,2

(
Ω; R3

)
. As for any v ∈W 1,2

0,n

(
Ω; R3

)
,

ˆ
Ω

∇εv : ∇t
εvdx =

ˆ
Ω

(divεv)2 dx
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we have ˆ
Ω

S (ϑ,∇εv) : ∇εvdx ≥ C ‖v‖2W 1,2(Ω;R3) , (3.3.13) Sv_1

ˆ
Ω

1
ϑ
S (ϑ,∇εv) : ∇εvdx ≥ C ‖v‖2W 1,2(Ω;R3) , (3.3.14) Sv_2

provided µ fulfills (3.1.16), η ≡ 0, ε ≤ 1 and ϑ > 0 in (0, T )× Ω. Moreover, we
have ˆ

Ω

Sh (Θ,∇hw) : ∇hwdx ≥ C ‖w‖2W 1,2(ω;R2) , (3.3.15) Svh

ˆ
Ω

1
Θ
Sh (Θ,∇hw) : ∇hwdx ≥ C ‖w‖2W 1,2(ω;R2) , (3.3.16) Svh_1

and the Poincaré inequality in the form

‖w‖L2(ω;R2) ≤ C ‖∇hw‖L2(ω;R2×2) (3.3.17) Poinc

for any w ∈W 1,2
0

(
ω; R2

)
and Θ > 0 in (0, T )× ω.

Due to the energy equality (3.2.4) combined with the entropy inequality
(3.2.3) and the inequality (3.3.14), we have the following estimates for [%,u, ϑ]

‖%‖L∞(0,T ;Lγ(Ω)) + ‖√%u‖L∞(0,T ;L2(Ω;R3)) + ‖u‖L2(0,T ;W 1,2(Ω;R3))

+ ‖ϑ‖L2(0,T ;L2(Ω;R3)) + ‖ϑ‖L∞(0,T ;L4(Ω)) + ‖ϑ‖L3(0,T ;L9(Ω)) ≤ C (3.3.18) B

with the constant C independent by ε. These estimates hold if γ ≥ 12/5 (if
α = 1) or under the assumptions on g from Theorem 27 (if α = 0), for any
γ ≥ 3/2. The limit on γ comes from the gravitational potential, as∥∥∥∥∥∥∥

ˆ
Ω

% (y) (x1 − y1, x2 − y2, ε (x3 − y3))(√
(xh − yh) + ε2 (x3 − y3)

)3 dy

∥∥∥∥∥∥∥
Lp(Ω;R3)

≤ C ‖%‖Lp(Ω)

for 1 < p <∞, with C independent of ε. Thus

∣∣∣∣∣
ˆ T

0

ˆ
Ω

%Φ2 · udxdt

∣∣∣∣∣ ≤ ‖%‖L∞(0,T ;Lγ(Ω)) ‖u‖L2(0,T ;L6(Ω;R3)) ‖Φ2‖
L∞

�
0,T ;L

6γ
5γ−6 (Ω)

�

≤ ‖%‖2L∞(0,T ;Lγ(Ω)) ‖u‖L2(0,T ;L6(Ω;R3)) (3.3.19) PHI2

if γ ≥ 12/5. On the other hand,∣∣∣∣∣
ˆ T

0

ˆ
Ω

%Φ1 · udxdt

∣∣∣∣∣ ≤ ‖%‖L∞(0,T ;Lγ(Ω)) ‖u‖L2(0,T ;L6(Ω;R3)) ‖Φ1‖
L∞

�
0,T ;L

6γ
5γ−6 (Ω)

�

≤ ‖%‖L∞(0,T ;Lγ(Ω)) ‖u‖L2(0,T ;L6(Ω;R3)) ‖g‖Lp(R3) (3.3.20)

with p from Theorem 27, as∥∥∥∥∥∥∥
ˆ

R3

g (y) (x1 − y1, x2 − y2, ε (x3 − y3))(√
(xh − yh) + ε2 (x3 − y3)

)3 dy

∥∥∥∥∥∥∥
L

6γ
5γ−6 (Ω;R3)

≤ C ‖g‖Lp(Ω) (3.3.21)
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where we used the embedding W 1,p ↪→ L
6γ

5γ−6 .
Following [41], it is convenient to introduce the set of essential values Oess ⊂

(0,∞)2,

Oess =
{
(%, ϑ) ∈ R2 ; %/2 < % < 2%, ϑ/2 < ϑ < 2ϑ

}
(3.3.22)

and the residual setO_ess
Ores = (0,∞)2 ∩ Oc

ess. (3.3.23)

We next define the essential and residual set of points as followsO_res

Mess ⊂ (0, T )× Ω, (3.3.24) M_ess

Mess = {(x, t) ∈ (0, T )× Ω ; (% (x, t) , ϑ (x, t)) ∈ Oess} , (3.3.25) M_ess_d

Mres = ((0, T )× Ω) ∩ (Mess)
c
. (3.3.26) M_res

Finally, each measurable function g can be decomposed as

g = [g]ess + [g]res (3.3.27) g

and we set
[g]ess = g1Mess

, [g]res = g1Mres
= g − [g]ess . (3.3.28) gg

Now, we need to investigate the structural properties of the Helmholtz func-
tion. More precisely, we would like to show that the quantity (3.3.3) is non-
negative and strictly coercive, attaining its global minimum zero at

(
%, ϑ
)
. The

structural properties of the Helmholtz function follow as

lemma_H Lemma 1. Let Hϑ(%, ϑ) be the Helmholtz function defined in (3.3.2) and % > 0,
ϑ be constants. Let Oess, Ores be the sets of essential and residual values in
(3.3.3) and (3.3.3). Then, there exists ci = ci(%, ϑ), i = 1, ..., 4, such that

c1

(
|%− %|2 +

∣∣ϑ− ϑ
∣∣2) ≤ Hϑ(%, ϑ)− ∂%Hϑ(%, ϑ)(%− %)−Hϑ(%, ϑ)

≤ c2

(
|%− %|2 +

∣∣ϑ− ϑ
∣∣2) (3.3.29) H_ess

for all (%, ϑ) ∈ Oess

Hϑ(%, ϑ)− ∂%Hϑ(r, ϑ)(%− %)−Hϑ(%, ϑ)

≥ inf
(r,Θ)∈∂Oess

Hϑ(r,Θ)− ∂%Hϑ(%, ϑ)(r − %)−Hϑ(%, ϑ) = c3
(
%, ϑ
)
> 0 (3.3.30) H_res_1

for all (%, ϑ) ∈ Ores

Hϑ(%, ϑ)− ∂%Hϑ(%, ϑ)(%− %)−Hϑ(%, ϑ) ≥ c4 (%e (%, ϑ) + % |s (%, ϑ)|) (3.3.31)

for all (%, ϑ) ∈ Ores

Proof. See [41] Lemma 5.1.

As a consequence we have the following lemma
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Lemma_H_1 Lemma 2. There exists a constant C = C
(
%, %, ϑ, ϑ

)
> 0 such that for all

% ∈ [0,∞), r ∈
[
%/2, 2%

]
, ϑ ∈ (0,∞) and Θ ∈

[
ϑ/2, 2ϑ

]
E(%, ϑ | r,Θ)(t, ·)

≥ C
(
1Oess

+ %γ1Ores
+ ϑ41Ores

+ (%− r) 1Oess
+ (ϑ−Θ) 1Oess

)
(3.3.32)

The lemma yields the lower bound of the relative energy functional

I(%,u, ϑ | r,w,Θ)

≥ C

ˆ
Ω

(
% |u−w|2 + 1res + [%γ ]res + [%− r]2ess + [ϑ]4ess + [ϑ−Θ]2ess

)
dx

(3.3.33)
Now, the basic idea is to apply (3.3.4) to

[
r̃, w̃, Θ̃

]
= [r,w,Θ]. We assume

that [r,w,Θ], w = (w, 0), is such that [r,w,Θ] solves the two-dimensional
Navier-Stokes-Fourier-Poisson system (3.0.12) - (3.0.14) in (0, T )× ω. In order
to integrate over Ω, we assume that the functions defined only on ω are extended
being constant in x3 for 0 ≤ x3 ≤ 1. Moreover, we write w instead of w
when we need to use a vector field with three components. Finally, we denote
% = inf(0,T )×Ω r, % = sup(0,T )×Ω r, ϑ = inf(0,T )×Ω Θ, ϑ = sup(0,T )×Ω Θ and use
these numbers in order to define the essential and residual sets defined above.

Now, we have

I1 =
ˆ

Ω

% (u−w) · ∇εw · (w − u) dx ≤ CD(t)I(%,u, ϑ | r,w,Θ) (3.3.34) I1

with
D(t) = ‖∇hw‖L∞(Ω;R2×2) ∈ L

1 (0, T ) .

Next
I2 =

ˆ
Ω

% (s (%, ϑ)− s (r,Θ)) (w − u) · ∇εΘdx

≤ ‖∇hΘ‖L∞(Ω;R2)

·
[
2%
ˆ

Ω

|[s (%, ϑ)− s (r,Θ)]ess| · |w − u|dx+
ˆ

Ω

|[s (%, ϑ)− s (r,Θ)]res| · |w − u|dx
]

(3.3.35) I2
Lemma 2 together with the properties of entropy (3.1.12) and (3.1.13) yields
ˆ

Ω

|[s (%, ϑ)− s (r,Θ)]ess|·|w − u|dx ≤ δ ‖w − u‖2L2(Ω;R3)+C(δ)
ˆ

Ω

E(%, ϑ | r,Θ)dx

for δ > 0, and ˆ
Ω

|[s (%, ϑ)− s (r,Θ)]res| · |w − u|dx

≤ δ ‖w − u‖2L6(Ω;R3) + C(δ) ‖[s (%, ϑ)− s (r,Θ)]res‖
2
L6/5(Ω)

.

Using again the properties of the entropy (3.1.12) and (3.1.13) together with
the fact that the mapping t→

´
Ω
E(%, ϑ | r,Θ)dx ∈ L∞ (0, T ), we conclude that

‖[s (%, ϑ)− s (r,Θ)]res‖
2
L6/5(Ω) ≤ C

ˆ
Ω

E(%, ϑ | r,Θ)dx.
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Finally, we end up with

I2 ≤ δ ‖w − u‖2W 1,2
0 (Ω;R3) + C (δ; r,w,Θ)

ˆ
Ω

E(%, ϑ | r,Θ)dx.

Next, using the fact that [r,w,Θ] solve the two-dimensional Navier-Stokes-
Fourier-Poisson system, we have

I3 =
ˆ

Ω

% (∂tw + w · ∇hw) · (u−w) dx = I3,1 + I3,2,

where
I3,1 =

ˆ
Ω

%

r
(w − u) · (divεS (Θ,∇εw)−∇εp (r,Θ))dx,

I3,2 =
ˆ

Ω

% (w − u) ·
(
− (χ×w) +∇ε |χ× x|2 +∇hφh

)
dx =

3∑
i=1

Ki.

We write

I3,1 =
ˆ

Ω

%− r

r
(w − u) · (divεS (Θ,∇εw)−∇εp (r,Θ))dx

+I3,1 =
ˆ

Ω

(w − u) · (divεS (Θ,∇εw)−∇εp (r,Θ))dx.

Similarly to I2, we have∣∣∣∣ˆ
Ω

%− r

r
(w − u) · (divεS (Θ,∇εw)−∇εp (r,Θ))dx

∣∣∣∣
≤ C (δ; r,w,Θ) ‖[%− r]ess‖

2
L2(Ω) + δ ‖w − u‖2L2(Ω;R3)

+C (δ; r,w,Θ)
(
‖[%]res‖

2
L6/5(Ω) + ‖[1]res‖

2
L6/5(Ω)

)
+ δ ‖w − u‖2L6(Ω;R3) .

Integrating by parts the second integral of I3,1, we have
ˆ

Ω

(w − u) · (divεS (Θ,∇εw)−∇εp (r,Θ))dx

= −
ˆ

Ω

(S (Θ,∇εw) : ∇ε (w − u)− p (r,Θ) · divε (w − u))dx.

We conclude

I3,1 ≤
ˆ

Ω

(p (r,Θ) · divh (w − u)− S (Θ,∇εw) : ∇ε (w − u))dx+δ ‖w − u‖2W 1,2
0 (Ω;R3)

+C (δ; r,w,Θ)
ˆ

Ω

E(%, ϑ | r,Θ)dx

for any δ > 0. The terms K1 - K3 will be treated below in combination with I7
and I9. Now,

I4 = −
ˆ

Ω

% (s (%, ϑ)− s (r,Θ)) ∂tΘdx
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= −
ˆ

Ω

(%− r) (s (%, ϑ)− s (r,Θ)) ∂tΘdx−
ˆ

Ω

r (s (%, ϑ)− s (r,Θ)) ∂tΘdx.

For the first term above, we have

−
ˆ

Ω

(%− r) (s (%, ϑ)− s (r,Θ)) ∂tΘdx

= −
ˆ

Ω

(%− r) [s (%, ϑ)− s (r,Θ)]ess ∂tΘdx−
ˆ

Ω

(%− r) [s (%, ϑ)− s (r,Θ)]res ∂tΘdx

≤ C (δ; r,w,Θ)
ˆ

Ω

E(%, ϑ | r,Θ)dx.

Now,

−
ˆ

Ω

r (s (%, ϑ)− s (r,Θ)) ∂tΘdx

= −
ˆ

Ω

r (s (%, ϑ)− s (r,Θ)− ∂%s (r,Θ) (%− r)− ∂ϑs (r,Θ) (ϑ−Θ)) ∂tΘdx

−
ˆ

Ω

r (∂%s (r,Θ) (%− r) + ∂ϑs (r,Θ) (ϑ−Θ)) ∂tΘdx,

and in analogy as before, we end up with

I4 ≤ C (δ; r,w,Θ)
ˆ

Ω

E(%, ϑ | r,Θ)dx

−
ˆ

Ω

r (∂%s (r,Θ) (%− r) + ∂ϑs (r,Θ) (ϑ−Θ)) ∂tΘdx.

For I5 we use the same procedure as for I4, obtaining

I5 = −
ˆ

Ω

% (s (%, ϑ)− s (r,Θ))w · ∇hΘdx

≤ C (δ; r,w,Θ)
ˆ

Ω

E(%, ϑ | r,Θ)dx

−
ˆ

Ω

r (∂%s (r,Θ) (%− r) + ∂ϑs (r,Θ) (ϑ−Θ))w · ∇hΘdx.

Moreover,

I6 =
ˆ

Ω

((
1− %

r

)
∂tp (r,Θ)− %

r
u · ∇εp (r,Θ)

)
dx

=
ˆ

Ω

(
1− %

r

)
(∂tp (r,Θ) + w · ∇hp (r,Θ)) dx+

ˆ
Ω

p (r,Θ)divεudx

+
ˆ

Ω

(
1− %

r

)
∇εp (r,Θ) · (u−w) dx.

Using the same argument as for I2, we have∣∣∣∣ˆ
Ω

(
1− %

r

)
∇εp (r,Θ) · (u−w) dx

∣∣∣∣
≤ δ ‖w − u‖2W 1,2

0 (Ω;R3) + C (δ; r,w,Θ)
ˆ

Ω

E(%, ϑ | r,Θ)dx
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for any δ > 0. We end with

I6 ≤
ˆ

Ω

(
1− %

r

)
(∂tp (r,Θ) + w · ∇hp (r,Θ)) dx+

ˆ
Ω

p (r,Θ)divεudx

δ ‖w − u‖2W 1,2
0 (Ω;R3) + C (δ; r,w,Θ)

ˆ
Ω

E(%, ϑ | r,Θ)dx.

Finally, we have I7+K1 = 0 and I8+K2 = 0. We consider now the gravitational
potential. We start with the case α = 0. We assumedˆ

R3

g(y)y3(√
|xh − yh|2 + y2

3

)3 dy = 0. (3.3.36) g_3

Therefore, we have to show that

lim
ε→0+

ˆ
Ω

r (w − u) ·
ˆ

R3
g(y)

 (xh − yh,−y3)(√
|xh − yh|2 + y2

3

)3 −
(xh − yh, εx3 − y3)(√

|xh − yh|2 + (εx3 − y3)
2

)3

 dy

dx = 0.

(3.3.37) lim1
First, due to the estimates above, it is enough to verify

lim
ε→0+

ˆ
R3
g(y)

 (xh − yh,−y3)(√
|xh − yh|2 + y2

3

)3 −
(xh − yh, εx3 − y3)(√

|xh − yh|2 + (εx3 − y3)
2

)3

 dy = 0

for all xh ∈ ω, x3 ∈ (0, 1) and g ∈ C∞c
(
R3
)
. As

lim
ε→0+

 (xh − yh,−y3)(√
|xh − yh|2 + y2

3

)3 −
(xh − yh, εx3 − y3)(√

|xh − yh|2 + (εx3 − y3)
2

)3

 dy = 0

for almost all (xh, x3) ∈ Ω, (yh, y3) ∈ R3, and∣∣∣∣∣∣∣∣∣
(xh − yh, εx3 − y3)(√

|xh − yh|2 + (εx3 − y3)
2

)3

∣∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣ 1√

|xh − yh|2 + (εx3 − y3)
2

∣∣∣∣∣∣ ∈ L1
loc

(
R3
)
,

for all ε ∈ [0, 1]. The Lebesgue dominated converge theorem yields the require
identity (3.3.37). For the case α = 1, we have to show that

ˆ
Ω

% (w − u)·


ˆ

Ω

% (t, y) (xh − yh, ε (x3 − y3))(√
|xh − yh|2 + ε2 (x3 − y3)

2

)3 dy +∇ε

ˆ
ω

r (t, yh)
|xh − yh|

dyh

dx
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≤ δ ‖w − u‖L6(Ω;R3) + c (δ; r,w,Θ)
ˆ

Ω

I (%, r;ϑ,Θ)dx+Hε, (3.3.38) lim2

where Hε = O (ε). The derivative of the integral over ω with respect to x3 is
zero. For γ ≥ 12/5, as in (3.3.18), we have to verify

lim
ε→0+

ˆ
Ω

rw·


ˆ

Ω

r (t, yh)
(
xh − yh, ε

2 (x3 − y3)
)(√

|xh − yh|2 + ε2 (x3 − y3)
2

)3 dy +∇ε

ˆ
ω

r (t, yh)
|xh − yh|

dyh

dx = 0.

Again, it is enough to show

lim
ε→0+


ˆ

Ω

r (t, yh)
(
xh − yh, ε

2 (x3 − y3)
)(√

|xh − yh|2 + ε2 (x3 − y3)
2

)3 dy +∇ε

ˆ
ω

r (t, yh)
|xh − yh|

dyh

dx = 0.

First, we note that

∇ε

ˆ
ω

r (t, yh)
|xh − yh|

dyh = −p.v.
ˆ

ω

r (t, yh) (xh − yh)

|xh − yh|3/2
dyh,

where p.v. denotes the integral in the principal value sense. Therefore, we have
to verify that

lim
ε→0+

ˆ
Ω

εr (t, yh) (x3 − y3)(√
|xh − yh|2 + ε2 (x3 − y3)

2

)3 dy = 0 (3.3.39) lim3

and

lim
ε→0+

ˆ
Ω

εr (t, yh) (xh − yh)(√
|xh − yh|2 + ε2 (x3 − y3)

2

)3 dy = p.v.
ˆ

ω

r (t, yh) (xh − yh)

|xh − yh|3/2
dyh.

(3.3.40) lim4
Let us fix x0 ∈ ω,4 > 0, sufficiently small, and denoteB4 (x0) = {x ∈ ω; |x− x0| < ∆}
and C4 (x0) = {x ∈ Ω; |xh − x0| < ∆, 0 < x3 < 1}. We consider (3.3.39). Let
us fix δ > 0. Then, there exists ∆ > 0 such that for any 0 < ε ≤ 1 and
0 < x3 < 1, we have∣∣∣∣∣∣∣∣∣

ˆ
C4(x0)

εr (t, yh) (x3 − y3)(√
|x0 − yh|2 + ε2 (x3 − y3)

2

)3 dy

∣∣∣∣∣∣∣∣∣ < δ

and for this 4 > 0 there exists ε0 > 0 such that for any 0 < ε ≤ ε0∣∣∣∣∣∣∣∣∣
ˆ

Ω/C4(x0)

εr (t, yh) (x3 − y3)(√
|x0 − yh|2 + ε2 (x3 − y3)

2

)3 dy

∣∣∣∣∣∣∣∣∣ < δ,
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whence (3.3.39). We consider (3.3.40). Since (xh − yh) /
(
|xh − yh|3

)
is a sin-

gular integral kernel in the sense of the Calderon-Zygmund theory, for a fixed
x0 ∈ ω, 0 < x3 < 1 and δ > 0, there exists ∆ > 0 such that∣∣∣∣∣∣∣∣∣

ˆ
C4(x0)

r (t, yh) (x0 − yh)(√
|x0 − yh|2 + ε2 (x3 − y3)

2

)3 dy

∣∣∣∣∣∣∣∣∣ < δ

and ∣∣∣∣∣p.v.
ˆ

B4(x0)

r (t, yh) (xh − yh)
|xh − yh|3

dyh

∣∣∣∣∣ < δ.

For this ∆ > 0, using that

1(√
|x0 − yh|2 + ε2 (x3 − y3)

2

)3 −
1

|x0 − yh|3
→ 0 as ε→ 0

for any yh ∈ ω, 0 < x3, y3 < 1, except x0 = yh, there exists ε0 > 0 such that for
any 0 < ε ≤ ε0∣∣∣∣∣∣∣∣∣
ˆ

Ω/C4(x0)

εr (t, yh) (xh − yh)(√
|xh − yh|2 + ε2 (x3 − y3)

2

)3 dy − p.v.
ˆ

ω/B4(x0)

r (t, yh) (xh − yh)
|xh − yh|3

dyh

∣∣∣∣∣∣∣∣∣ < δ,

whence (3.3.40). In conclusion, we have

I9 +K3 ≤ δ ‖w − u‖2L6(Ω;R3) + C (δ; r,w,Θ)
ˆ

Ω

E(%, ϑ | r,Θ)dx+Hε.

Plugging all the previous estimates in (3.3.4), we obtain
ˆ

Ω

(
1
2
% |u−w|2 + E(%, ϑ | r,Θ)

)
(t, ·) dx

+
ˆ T

0

ˆ
Ω

(
Θ
ϑ
S (ϑ,∇εu) : ∇εu− S (Θ,∇εw) : (∇εu−∇εw)− S (ϑ,∇εu) : ∇εw

)
dxdt

+
ˆ T

0

ˆ
Ω

(
q (ϑ,∇εϑ) · ∇εΘ

ϑ
− Θ
ϑ

q (ϑ,∇εϑ) · ∇εϑ

ϑ

)
dxdt

≤
ˆ

Ω

(
1
2
%0 |u0 −w (0, ·)|2 + E(%0, ϑ0 | r (0, ·) ,Θ(0, ·))

)
dx+Hε

+
ˆ T

0

[
δ ‖w − u‖2W 1,2

0 (Ω;R3) + C (δ; r,w,Θ)
ˆ

Ω

(
1
2
% |u−w|2 + E(%, ϑ | r,Θ)

)
dx
]

dt

+
ˆ T

0

ˆ
Ω

(p (r,Θ)− p (%, ϑ))divhwdxdt
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+
ˆ T

0

ˆ
Ω

(
1− %

r

)
(∂tp (r,Θ) + w · ∇hp (r,Θ))dxdt

−
ˆ T

0

ˆ
Ω

r (∂%s (r,Θ) (%− r) + ∂ϑs (r,Θ) (ϑ−Θ)) (∂tΘ + w · ∇hΘ)dxdt.

Using the Maxwell (3.1.5), the Gibbs (3.1.1) relations and the continuity equa-
tion (3.0.12), we write
ˆ

Ω

(p (r,Θ)− p (%, ϑ))divhwdx+
ˆ

Ω

(
1− %

r

)
(∂tp (r,Θ) + w · ∇hp (r,Θ))dx

−
ˆ T

0

ˆ
Ω

r (∂%s (r,Θ) (%− r) + ∂ϑs (r,Θ) (ϑ−Θ)) (∂tΘ + w · ∇hΘ)dxdt

=
ˆ

Ω

(p (r,Θ)− p (%, ϑ))divhwdx+ r (Θ− ϑ) ∂ϑs (r,Θ) (∂tΘ + w · ∇hΘ)dxdt

−
ˆ

Ω

(r − %) ∂%p (r,Θ)divhwdx.

Using the same identities as above and the entropy balance (3.0.15), the second
term on the right-hand side can be rewritten as follows

ˆ
Ω

r (Θ− ϑ) ∂ϑs (r,Θ) (∂tΘ + w · ∇hΘ)dx

=
ˆ

Ω

r (Θ− ϑ) (∂ts (r,Θ) + w · ∇hs (r,Θ))dx−
ˆ

Ω

(Θ− ϑ) ∂ϑp (r,Θ)divhwdx

=
ˆ

Ω

(Θ− ϑ)
[

1
Θ

(
Sh (Θ,∇hw) : ∇hw − qh (Θ,∇hΘ) · ∇hΘ

Θ

)
− divh

(
qh (Θ,∇hΘ)

Θ

)]
dx

−
ˆ

Ω

(Θ− ϑ) ∂ϑp (r,Θ)divhwdx.

Observing that∣∣∣∣ˆ
Ω

(p (r,Θ)− p (%, ϑ) + ∂%p (r,Θ) (%− r) + ∂ϑp (r,Θ) (ϑ−Θ))divhwdx
∣∣∣∣

≤ ‖divhw‖L∞(Ω)

ˆ
Ω

E(%, ϑ | r,Θ)dx,

we reduce to ˆ
Ω

(
1
2
% |u−w|2 + E(%, ϑ | r,Θ)

)
(t, ·) dx

+
ˆ T

0

ˆ
Ω

(
Θ
ϑ
S (ϑ,∇εu) : ∇εu− S (Θ,∇εw) : (∇εu−∇εw)− S (ϑ,∇εu) : ∇εw

)
dxdt

+
ˆ T

0

ˆ
Ω

Θ− ϑ

ϑ
Sh (Θ,∇hw) : ∇hwdxdt

+
ˆ T

0

ˆ
Ω

(
q (ϑ,∇εϑ) · ∇εΘ

ϑ
− Θ
ϑ

q (ϑ,∇εϑ) · ∇εϑ

ϑ

)
dxdt
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+
ˆ T

0

ˆ
Ω

(
(Θ− ϑ)

qh (Θ,∇hΘ) · ∇hΘ
Θ2

+
q (Θ,∇εΘ) · ∇ε (ϑ−Θ)

Θ

)
dxdt

≤
ˆ

Ω

(
1
2
%0 |u0 −w (0, ·)|2 + E(%0, ϑ0 | r (0, ·) ,Θ(0, ·))

)
dx+Hε

+
ˆ T

0

[
δ ‖w − u‖2W 1,2

0 (Ω;R3) + C (δ; r,w,Θ)
ˆ

Ω

(
1
2
% |u−w|2 + E(%, ϑ | r,Θ)

)
dx
]

dt.

(3.3.41) rel_f
Now, following the discussion in [43], we study the terms in the left-hand side
in order to show that the terms containing ∇εu and ∇εϑ are strong enough to
control the W 1,2-norm of the velocity. In accordance with hypothesis (3.1.16)
we write

S (ϑ,∇εu) = S0 (ϑ,∇εu) + S1 (ϑ,∇εu)

where
S0 (ϑ,∇εu) = µ0

(
∇εu + (∇εu)T − 2

3
divεuI

)
,

S1 (ϑ,∇εu) = µ1ϑ

(
∇εu + (∇εu)T − 2

3
divεuI

)
.

Then

Θ
ϑ
S1 (ϑ,∇εu) : ∇εu− S1 (Θ,∇εw) : (∇εu−∇εw)− S1 (ϑ,∇εu) : ∇εw

+
(
ϑ−Θ

Θ
S1

h (Θ,∇hw) : ∇hw
)

= Θ
(
S1 (ϑ,∇εu)

ϑ
− S1 (Θ,∇εw)

Θ

)
: (∇εu−∇εw)

+ (Θ− ϑ)
(
S1 (ϑ,∇εu)

ϑ
− S1 (Θ,∇εw)

Θ

)
: ∇εw.

Using the Korn inequality in the first term and the splitting in essential and
residual sets for the second one, we obtain∣∣∣∣(Θ− ϑ)

(
S1 (ϑ,∇εu)

ϑ
− S1 (Θ,∇εw)

Θ

)
: ∇εw

∣∣∣∣
≤ δ ‖w − u‖2W 1,2

0 (Ω;R3) + C (δ)
ˆ

Ω

E(%, ϑ | r,Θ)dx.

Now, for 0 < Θ ≤ ϑ, we have

Θ
ϑ

(
S0 (∇εu)− S0 (∇εw)

)
: (∇εu−∇εw)+Θ

(
1
ϑ
− 1

Θ

)
S0 (∇εw) : (∇εu−∇εw)

+
ϑ−Θ
ϑ

(
S0 (∇εw)− S0 (∇εu)

)
: ∇εw

≤ Θ
ϑ
S0 (∇εu) : ∇εu− S0 (∇εw) : (∇εu−∇εw) + S0 (∇εu) : ∇εw
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+
ϑ−Θ
ϑ

S0
h (∇hw) : ∇hw.

As (1/ϑ) ≤ (1/Θ), the term on the left-hand side of the inequality can be
controlled on the right-hand side by

δ ‖w − u‖2W 1,2
0 (Ω;R3) + C (δ)

ˆ
Ω

E(%, ϑ | r,Θ)dx.

Now, for 0 < ϑ ≤ Θ, we have(
S0 (∇εu)− S0 (∇εw)

)
: (∇εu−∇εw)+

Θ− ϑ

ϑ

(
S0 (∇εu) : ∇εu− S0

h (∇hw) : ∇hw
)

≤ Θ
ϑ
S0 (∇εu) : ∇εu− S0 (∇εw) : (∇εu−∇εw)− S0 (∇εu) : ∇εw

+
ϑ−Θ
ϑ

S0
h (∇hw) : ∇hw

As ∇εu → S0 (∇εu) : ∇εu is convex, we have

Θ− ϑ

ϑ

(
S0 (∇εu) : ∇εu− S0

h (∇hw) : ∇hw
)
≥ Θ− ϑ

ϑ
S0 (∇εw) : (∇εu−∇εw) .

This term can be controlled on the right-hand side by

δ ‖w − u‖2W 1,2
0 (Ω;R3) + C (δ)

ˆ
Ω

E(%, ϑ | r,Θ)dx.

Summing up, we have
ˆ

Ω

(
1
2
% |u−w|2 + E(%, ϑ | r,Θ)

)
(t, ·) dx+ +k1

ˆ T

0

ˆ
Ω

|∇εu−∇εw|2 dxdt

+
ˆ T

0

ˆ
Ω

(
q (ϑ,∇εϑ) · ∇εΘ

ϑ
− Θ
ϑ

q (ϑ,∇εϑ) · ∇εϑ

ϑ

)
dxdt

+
ˆ T

0

ˆ
Ω

(
(Θ− ϑ)

qh (Θ,∇hΘ) · ∇hΘ
Θ2

+
q (Θ,∇εΘ) · ∇ε (ϑ−Θ)

Θ

)
dxdt

≤
ˆ

Ω

(
1
2
%0 |u0 −w (0, ·)|2 + E(%0, ϑ0 | r (0, ·) ,Θ(0, ·))

)
dx+Hε

+
ˆ T

0

[
δ ‖w − u‖2W 1,2

0 (Ω;R3) + C (δ; r,w,Θ)
ˆ

Ω

(
1
2
% |u−w|2 + E(%, ϑ | r,Θ)

)
dx
]

dt

(3.3.42) rel_f1
For the remaining terms, the procedure is exactly as in [43]. We end up with
ˆ

Ω

(
1
2
% |u−w|2 + E(%, ϑ | r,Θ)

)
(t, ·) dx+ k1

ˆ T

0

ˆ
Ω

|∇εu−∇εw|2 dxdt

k2

ˆ T

0

ˆ
Ω

|∇εϑ−∇εΘ|2 dxdt+ k3

ˆ T

0

ˆ
Ω

|∇ε log ϑ−∇ε log Θ|2 dxdt

≤
ˆ

Ω

(
1
2
%0 |u0 −w (0, ·)|2 + E(%0, ϑ0 | r (0, ·) ,Θ(0, ·))

)
dx+Hε

k4

ˆ T

0

ˆ
Ω

(
1
2
% |u−w|2 + E(%, ϑ | r,Θ)

)
dxdt. (3.3.43) rel_fin

The positive constants kj depends on (r,w,Θ) through the norms involved in
Theorem 27 and Hε → 0 as ε→ 0. The Gronwall lemma finishes the proof.
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3.4 Conclusions
The problem we faced above has focused on the dimension reduction limit for
a compressible heat conducting fluid in which the analysis on the gravity force
has played the main role. We believe that the strategy used, or its analogue,
could be applied for other kind of models describing systems in which the dy-
namics is essentially two-dimensional due to the predominance of gravitational
effects. Moreover, further extensions of the above problem are not excluded.
For example, fluids where the magnetic field is taken into account.
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Chapter 4

Global regularity for
incompressible fluids

We consider the incompressible Navier-Stokes equations in whole space R3

∂tu + u · ∇xu− µ∆xu +∇xp = f , divxu = 0. (4.0.1) NS

The shear viscosity coefficient µ is assumed to be constant and without loss
of generality we put µ = 1. Moreover, we put f ≡ 0 for simplicity.

In the following we will discuss some preliminary results necessary for our
analysis. In particular, we will introduce the the anisotropic Lebesgue spaces
as key tool of our analysis and the so-called Troisi inequality, proving several
Lemmas.

4.1 Preliminary results
First, we define the anisotropic Lebesgue spaces.

D:D1 Definition 33. Let p̄ = (p1, p2, p3), pi ∈ [1,∞], i = 1, 3. We say that a function
f belongs to Lp̄ if f is measurable on R3 and the following norm is finite:

||f ||Lp̄ ≡
∥∥∥∥∥∥∥‖f‖L

p1
1

∥∥∥
L

p2
2

∥∥∥∥
L

p3
3

:=

ˆ
R

(ˆ
R

(ˆ
R
|f(x1, x2, x3)|p1 dx1

) p2
p1

dx2

) p3
p2

dx3


1

p3

.

Second, we introduce the Troisi inequality, which has been proved in [110].

L:L1 Lemma 3. (Troisi inequality) Suppose that r, p1, p2, p3 ∈ (1,∞) and

1 +
3
r

=
3∑

i=1

1
pi
.
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Then there exists a constant c > 0 such that for every f ∈ L2 ∩ C∞

‖f‖r ≤ c
3∏

i=1

‖∂if‖1/3
pi

. (4.1.1) eq:e76

Now, the following inequality generalizes the Troisi inequality.

L:L2 Lemma 4. (Generalized Troisi inequality) Let r ∈ (1,∞). Suppose that α ∈
(1,∞), γ1, γ2, γ3 ∈ (0, 1) and γ1 + γ2 + γ3 = 1. Let the following conditions be
satisfied:

(α− 1) r
αγ1r − α+ 1

> 1, (4.1.2) eq:e70

r

αγ2r − 1
> 1, (4.1.3) eq:e71

r

αγ3r − 1
> 1, (4.1.4) eq:e72

(α− 1) r
αγ3r − 1

> 1. (4.1.5) eq:e73

Then there exists a constant c > 0 such that for every f ∈ L2 ∩ C∞

‖u‖r ≤ ‖∂1u‖
α−1
α+1

r

r−αγ1r
α−1 +1

‖∂2u‖
1

α+1
r

r−αγ2r+1

∥∥∥∥‖∂3u‖
L

r
r−αγ3r+1
23

∥∥∥∥ 1
α+1

L
r

αr−r−αγ3r+1
1

. (4.1.6) eq:e75

Remark 34. Let r ∈ (3/2,∞), p1, p2, p3 ∈ (1,∞), 1 + 3/r =
∑3

i=1 1/pi. Then,
putting in the previous lemma α = 2, γi = (pir+ pi − r)/(2pir), the conditions
(4.1.2) - (4.1.5) are satisfied and (4.1.6) yields (4.1.1). So, for r ∈ (3/2,∞) the
Troisi inequality can be viewed as a special case of Lemma 4.

Proof. By the use of the density argument we can suppose that f ∈ C∞0 (R3).
Define

f(x1, x2) = sup
x3

|u(x1, x2, x3)|γ3 ,

g(x1, x3) = sup
x2

|u(x1, x2, x3)|γ2 ,

h(x2, x3) = sup
x1

|u(x1, x2, x3)|γ1 .

Then (ˆ
R
|u(x1, x2, x3)|r dx3

) 1
r

≤
(ˆ

R
frgrhrdx3

) 1
r

≤ f(x1, x2)
(ˆ

R
gr(x1, x3)hr(x2, x3)dx3

) 1
r

≤ f(x1, x2)
(ˆ

R
gαr(x1, x3)dx3

) 1
αr
(ˆ

R
h

αr
α−1 (x2, x3)dx3

)α−1
αr

.

It follows that (ˆ
R2
|u(x1, x2, x3)|r dx2dx3

) 1
r
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≤
(ˆ

R
gαr(x1, x3)dx3

) 1
αr

(ˆ
R
fr(x1, x2)

(ˆ
R
h

αr
α−1 (x2, x3)dx3

)α−1
α

dx2

) 1
r

≤
(ˆ

R
gαr(x1, x3)dx3

) 1
αr
(ˆ

R
fαr(x1, x2)dx2

) 1
αr
(ˆ

R2
h

αr
α−1 (x2, x3)dx2dx3

)α−1
αr

and (ˆ
|u(x)|r dx

) 1
r

≤
(ˆ

R2
h

αr
α−1 (x2, x3)dx2dx3

)α−1
αr

·

(ˆ
R

(ˆ
R
gαr(x1, x3)dx3

) 1
α
(ˆ

R
fαr(x1, x2)dx2

) 1
α

dx1

) 1
r

≤
(ˆ

R2
h

αr
α−1 (x2, x3)dx2dx3

)α−1
αr
(ˆ

R2
gαr(x1, x3)dx1dx3

) 1
αr

·

(ˆ
R

(ˆ
R
fαr(x1, x2)dx2

) 1
α−1

dx1

)α−1
αr

. (4.1.7) eq:e77

Now, we will estimate all three terms on the right hand side of (4.1.7). We have(ˆ
R2
gαr(x1, x3)dx1dx3

) 1
αr

≤
(ˆ

R2
sup
x2

|u(x1, x2, x3)|αγ2r
dx1dx3

) 1
αr

≤ C

(ˆ
|u(x1, x2, x3)|αγ2r−1 |∂2u(x1, x2, x3)| dx

) 1
αr

≤ C ‖u‖
αγ2r−1

αr
r ‖∂2u‖

1
αr

r
r−αγ2r+1

. (4.1.8) eq:e78

Above we used the condition (4.1.3). Analogically, using (4.1.2), we obtain(ˆ
R2
h

αr
α−1 (x2, x3)dx2dx3

)α−1
αr

≤ C ‖u‖
αγ1r−α+1

αr
r ‖∂1u‖

α−1
αr

r

r−αγ1r
α−1 +1

. (4.1.9) eq:e79

At last, using (4.1.4) and (4.1.5) we get(ˆ
R

(ˆ
R
fαr(x1, x2)dx2

) 1
α−1

dx1

)α−1
αr

≤

(ˆ
R

(ˆ
R

sup
x3

|u(x1, x2, x3)|αγ3r
dx2

) 1
α−1

dx1

)α−1
αr

≤ C

(ˆ
R

(ˆ
R2
|u(x1, x2, x3)|αγ3r−1 |∂3u(x1, x2, x3)| dx2dx3

) 1
α−1

dx1

)α−1
αr
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≤ C

(ˆ
R

(ˆ
R2
|u(x1, x2, x3)|r dx2dx3

)αγ3r−1
(α−1)r

(ˆ
R2
|∂3u(x1, x2, x3)|

r
r−αγ3r+1 dx2dx3

) r−αγ3r+1
(α−1)r

dx1

)α−1
αr

≤ C ‖u‖
αγ3r−1

αr
r

(ˆ
R

(ˆ
R2
|∂3u(x1, x2, x3)|

r
r−αγ3r+1 dx2dx3

) r−αγ3r+1
(α−1)r−αγ3r+1

dx1

) (α−1)r−αγ3r+1
αr2

and (ˆ
R

(ˆ
R
fαr(x1, x2)dx2

) 1
α−1

dx1

)α−1
αr

≤ C ‖u‖
αγ3r−1

αr
r

∥∥∥∥‖∂3u‖
L

r
r−αγ3r+1
23

∥∥∥∥ 1
αr

L
r

(α−1)r−αγ3r+1
1

. (4.1.10) eq:e80

It follows from (4.1.7) - (4.1.10) that

‖u‖r ≤ ‖u‖
αγ2r−1

αr +
αγ1r−α+1

αr +
αγ3r−1

αr
r

×‖∂1u‖
α−1
αr

r
r− α

α−1 γ1r+1
‖∂2u‖

1
αr

r
r−αγ2r+1

∥∥∥∥‖∂3u‖
L

r
r−αγ3r+1
23

∥∥∥∥ 1
αr

L
r

(α−1)r−αγ3r+1
1

and (4.1.6) follows immediately.

The following key lemma is a slight generalization of Lemma 2.2 from [114].
We use here the Fourier transform, which is defined in a standard way, namely
f̂(ξ) =

´
Rd e

−ix·ξf(x)dx, x, ξ ∈ Rd, d ∈ N.

L:L3 Lemma 5. Let p, q, r ∈ [2,∞) and 1/p+1/q+1/r−1/2 ≥ 0. Then there exists
a constant c such that for every f ∈ L2 ∩ C∞∥∥∥∥∥∥∥‖f‖Lp

1

∥∥∥
Lq

2

∥∥∥∥
Lr

3

≤ c ‖∂3f‖
r−2
2r

2 ‖∂2f‖
q−2
2q

2 ‖∂1f‖
p−2
2p

2 ‖f‖
1
r + 1

q + 1
p−

1
2

2 .

Proof. By the use of the density argument we can suppose that f ∈ C∞0 (R3). At
first, let us remind a well known definition of the homogeneous Sobolev spaces.
Let s ∈ R, d ∈ N. Then

Ḣs(Rd) ≡ Ḣs :=

{
f ∈ S′; f̂ ∈ L1

loc and ‖f‖Ḣs :=
(ˆ

|ξ|2s
∣∣∣f̂ (ξ)

∣∣∣2 dξ) 1
2

<∞

}
,

where S′ denotes the space of the tempered distributions on Rd. It is well known
that

Ḣs ↪→ L
2d

d−2s ; s ∈
[
0,
d

2

)
; d ∈ N. (4.1.11) eq:e26

Define
F1f(ξ1, x2, x3) :=

ˆ
e−iξ1x1f(x1, x2, x3)dx1

and analogically Fj for j = 2, 3. Define further the operator Λs
1, s ∈ R in the

following way
F1(Λs

1f)(ξ1, x2, x3) := |ξ1|s F1f(ξ1, x2, x3)
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and again analogically we can define Λs
j for j = 2, 3. Clearly, using (4.1.11) for

d = 1 and the Plancherel theorem we have

‖f‖Lp
1
≤
∥∥∥∥Λ p−2

2p

1 f

∥∥∥∥
L2

1

. (4.1.12) eq:e31

So combining (4.1.12) and the Minkowski inequality

∥∥∥∥∥∥∥‖f‖Lp
1

∥∥∥
Lq

2

∥∥∥∥
Lr

3

≤

∥∥∥∥∥∥
∥∥∥∥∥
∥∥∥∥Λ p−2

2p

1 f

∥∥∥∥
L2

1

∥∥∥∥∥
Lq

2

∥∥∥∥∥∥
Lr

3

≤

∥∥∥∥∥∥
∥∥∥∥∥
∥∥∥∥Λ p−2

2p

1 f

∥∥∥∥
Lq

2

∥∥∥∥∥
L2

1

∥∥∥∥∥∥
Lr

3

≤

∥∥∥∥∥
∥∥∥∥Λ q−2

2q

2

(
Λ

p−2
2p

1 f
)∥∥∥∥

L2
12

∥∥∥∥∥
Lr

3

≤

∥∥∥∥∥
∥∥∥∥Λ q−2

2q

2

(
Λ

p−2
2p

1 f
)∥∥∥∥

Lr
3

∥∥∥∥∥
L2

12

≤
∥∥∥∥Λ r−2

2r
3

(
Λ

q−2
2q

2

(
Λ

p−2
2p

1 f
))∥∥∥∥

2

.

(4.1.13) eq:e101
Let F denotes the Fourier transform Ff(ξ) =

´
e−ix·ξf(x)dx. Using the Fubini

theorem and the definition of the operators Fj and Λs
j , j = 1, 2, 3, we have

F
(
Λ

r−2
2r

3

(
Λ

q−2
2q

2

(
Λ

p−2
2p

1 f
)))

(ξ)

=
ˆ
e−ix1ξ1

ˆ
e−ix2ξ2

ˆ
e−ix3ξ3Λ

r−2
2r

3

(
Λ

q−2
2q

2

(
Λ

p−2
2p

1 f
))

(x1, x2, x3)dx3dx2dx1

=
ˆ
e−ix1ξ1

ˆ
e−ix2ξ2F3

(
Λ

r−2
2r

3

(
Λ

q−2
2q

2

(
Λ

p−2
2p

1 f
)))

(x1, x2, ξ3)dx2dx1

= |ξ3|
r−2
2r

ˆ
e−ix1ξ1

ˆ
e−ix2ξ2F3

(
Λ

q−2
2q

2

(
Λ

p−2
2p

1 f
))

(x1, x2, ξ3)dx2dx1

= |ξ3|
r−2
2r

ˆ
e−ix1ξ1

ˆ
e−ix2ξ2

ˆ
e−ix3ξ3Λ

q−2
2q

2

(
Λ

p−2
2p

1 f
)
(x1, x2, x3)dx3dx2dx1

= |ξ3|
r−2
2r

ˆ
e−ix3ξ3

ˆ
e−ix1ξ1

ˆ
e−ix2ξ2Λ

q−2
2q

2

(
Λ

p−2
2p

1 f
)
(x1, x2, x3)dx2dx1dx3

= |ξ3|
r−2
2r

ˆ
e−ix3ξ3

ˆ
e−ix1ξ1F2

(
Λ

q−2
2q

2

(
Λ

p−2
2p

1 f
))

(x1, ξ2, x3)dx1dx3

= |ξ3|
r−2
2r |ξ2|

q−2
2q

ˆ
e−ix3ξ3

ˆ
e−ix1ξ1F2

(
Λ

p−2
2p

1 f
)
(x1, ξ2, x3)dx1dx3

= |ξ3|
r−2
2r |ξ2|

q−2
2q

ˆ
e−ix3ξ3

ˆ
e−ix1ξ1

ˆ
e−ix2ξ2Λ

p−2
2p

1 f(x1, x2, x3)dx2dx1dx3

= |ξ3|
r−2
2r |ξ2|

q−2
2q

ˆ
e−ix3ξ3

ˆ
e−ix2ξ2

ˆ
e−ix1ξ1Λ

p−2
2p

1 f(x1, x2, x3)dx1dx2dx3

= |ξ3|
r−2
2r |ξ2|

q−2
2q

ˆ
e−ix3ξ3

ˆ
e−ix2ξ2F1

(
Λ

p−2
2p

1 f
)
(ξ1, x2, x3)dx2dx3

= |ξ3|
r−2
2r |ξ2|

q−2
2q |ξ1|

p−2
2p

ˆ
e−ix3ξ3

ˆ
e−ix2ξ2F1f(ξ1, x2, x3)dx2dx3

= |ξ3|
r−2
2r |ξ2|

q−2
2q |ξ1|

p−2
2p

ˆ
e−ix3ξ3

ˆ
e−ix2ξ2

ˆ
e−ix1ξ1f(x1, x2, x3)dx1dx2dx3
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= |ξ3|
r−2
2r |ξ2|

q−2
2q |ξ1|

p−2
2p Ff(ξ).

So using the last equality together with the Plancherel theorem we can continue
with (4.1.13) and complete the proof∥∥∥∥∥∥∥‖f‖Lp

1

∥∥∥
Lq

2

∥∥∥∥
Lr

3

≤
( ˆ

|ξ3|
r−2

r |ξ2|
q−2

q |ξ1|
p−2

p |Ff(ξ)|2dξ
) 1

2

=
(ˆ

|ξ3|
r−2

r |Ff(ξ)|
r−2

r |ξ2|
q−2

q |Ff(ξ)|
q−2

q |ξ1|
p−2

p |Ff(ξ)|
p−2

p |Ff(ξ)|2(
1
r + 1

q + 1
p )−1dξ

) 1
2

≤ ‖∂3f‖
r−2
2r

2 ‖∂2f‖
q−2
2q

2 ‖∂1f‖
p−2
2p

2 ‖f‖
1
r + 1

q + 1
p−

1
2

2 .

4.2 State of art and main results
In the following we will sum up the present state of art concerning our analysis.
Then, we will present our main results.

4.2.1 State of art
Let us sum up the present state of the art. The best result concerning u3 has
been proved in [117], Theorem 1. The regularity of a solution on (0, T ] is ensured
if u3 ∈ Lβ(0, T ;Lp), where

2
β

+
3
p
≤ 3

4
+

1
2p
, p ∈

(10
3
,∞
]
. (4.2.1) eq:e56

The condition (4.2.1) is not optimal for any p.
The results for ∇u3 are optimal for p ∈ (3/2, 2]. The solution is regular on

(0, T ] if ∇u3 ∈ Lβ(0, T ;Lp), where

2
β

+
3
p
≤ 2, p ∈

(3
2
,
9
5

]
, see [15] (4.2.2) eq:e19

2
β

+
3
p
≤ 2, p ∈

(9
5
, 2
)
, see [14] (4.2.3) eq:e40

2
β

+
3
p
≤ 2, p = 2, see [111] (4.2.4) eq:e20

2
β

+
3
p
≤ 59

30
, p ∈

(
2,

30
13

]
, see [101] (4.2.5) eq:e21

2
β

+
3
p
≤ 7

4
+

1
2p
, p ∈

(30
13
, 3
)
, see [101] (4.2.6) eq:e116

2
β

+
3
p
≤ 7

4
+

1
2p
, p ∈

[
3,

10
3

)
, see [116] (4.2.7) eq:e22

2
β

+
3
p
≤ 7

4
+

1
2p
, p ∈

[10
3
,∞
)
, see [100]. (4.2.8) eq:e23

R:R1 Remark 35. In fact in [14] the authors proved the following result: if moreover
the vorticity∇×u0 ∈ L3/2 then Leray solutions satisfying u3 ∈ Lq(0, T ; Ḣ1/2+2/q),
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q ∈ (4, 6), are regular on (0, T ]. It is obvious that (4.2.3) follows as a direct con-
sequence, namely if ∇u3 ∈ Lq(0, T ;Lp), where 2/q + 3/p = 2 and p ∈ (9/5, 2)
and q ∈ (4, 6), then ∇u3 ∈ Lq(0, T ; Ḣ2/q−1/2) and u3 ∈ Lq(0, T ; Ḣ2/q+1/2). Ap-
plying the criterion from [14] gives the regularity of u. The criterion from [15]
is the extension of the result from [14] for q ∈ (4,∞) and it implies immediately
(4.2.2).

Concerning ∇2u3 the following result has been proved in [115]. The regu-
larity of u is ensured on (0, T ] provided

∂1∂3u3, ∂2∂3u3 ∈ Lβ(0, T ;Lp),
2
β

+
3
p
≤ 2 +

1
p
, p ∈ (1,∞).

An almost regular result is so achieved for p → 1+. It is also noteworthy that
the condition is imposed here only on two items of the Hessian tensor.

4.2.2 Main results
We now present the main results. The following Theorem 36 is a slight gener-
alization of a result from [114]. It is interesting that for p1 → 2+, p2 → 2+, the
criterion is almost optimal.

T:T1 Theorem 36. Let u = (u1, u2, u3) be a weak solution to (4.0.1) correspond-
ing to the initial condition u0 ∈ W 1,2

σ which satisfies the energy inequality.
Suppose that p1, p2, p3 ∈ (2,∞], 3/(4p1) + 3/(4p2) + 1/p3 ≤ 3/4, β ∈ (2,∞],
p = (p1, p2, p3) and

u3 ∈ Lβ
(
0, T ;Lp

)
.

Then the condition
2
β

+
1
p1

+
1
p2

+
1
p3

=
3
4

+
1

4p1
+

1
4p2

(4.2.9) eq:e50

ensures the regularity of u on (0, T ].

Putting p1 = p2 = p3 = p in Theorem 36, (4.2.9) reduces to (4.2.1) with one
slight improvement, the value p = 10/3 is now allowed. So Theorem 36 can also
be understood as a generalization of the above mentioned result from [117].

rem_ani Remark 37. The result from Theorem 36 formulated in the framework of the
anisotropic Lebesgue spaces is almost optimal which is not the case for the
corresponding result formulated in the framework of the standard Lebesgue
spaces (see the result from [117], Theorem 1).

The following Theorem 38 improves the above mentioned result from [101]
(see (4.2.5)). It is due to the fact that while the proof from [101] has been based
on the Troisi inequality, the proof of Theorem 38 uses a generalized version of
the Troisi inequality using the anisotropic Lebesgue spaces (see Lemma 4).

T:T2 Theorem 38. Let u = (u1, u2, u3) be a weak solution to (4.0.1) corresponding
to the initial condition u0 ∈W 1,2

σ which satisfies the energy inequality. Suppose
that β ∈ (2,∞) and

∇u3 ∈ Lβ (0, T ;Lp) ,

where
2
β

+
3
p
<

75
38
, p ∈

(
2,

38
17

)
(4.2.10) eq:e81
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and
2
β

+
3
p
<

7
4

+
1
2p
, p ∈

[38
17
,∞
)
. (4.2.11) eq:e82

Then u is regular on (0, T ].

Moreover, we have the following Theorem

T:T3 Theorem 39. Let u = (u1, u2, u3) be a weak solution to (4.0.1) corresponding
to the initial condition u0 ∈W 1,2

σ which satisfies the energy inequality. Suppose
that

∇u3 ∈ Lβ
(
0, T ;Lp

)
(4.2.12) eq:e61

where
p = (p1, p2, p3) , pi ∈ (1,∞] , i = 1, 2, 3, β ∈ (1,∞] .

Suppose that there exist numbers qi, ri ∈ [2,∞), i = 1, 2, 3 such that

1
pi

+
1
qi

+
1
ri

= 1, i = 1, 2, 3, (4.2.13) eq:e51

3
4q1

+
3

4q2
+

1
q3
≥ 1

2
, (4.2.14) eq:e52

3∑
i=1

1
ri
≥ 1

2
. (4.2.15) eq:e53

Then the condition

2
β

+
3∑

i=1

1
pi

= 2− 1
4q1

− 1
4q2

(4.2.16) eq:e54

ensures the regularity of u on (0, T ].

The following Theorem 40 is a consequence of Theorem 39.

T:T4 Theorem 40. Let u = (u1, u2, u3) be a weak solution to (4.0.1) corresponding
to the initial condition u0 ∈W 1,2

σ which satisfies the energy inequality. Suppose
that

∇u3 ∈ Lβ
(
0, T ;Lp

)
,

where

p = (p1, p2, p3) , p1, p2 ∈ (1,∞] , p3 ∈ [2,∞] , β ∈ (1,∞] .

Suppose further that if p1, p2 ∈ (2,∞] then

2
β

+
3∑

i=1

1
pi
≤ 7

4
+

1
4

( 1
p1

+
1
p2

)
(4.2.17) eq:e55

and if at least one of the numbers p1 and p2 is not in (2,∞] then

2
β

+
3∑

i=1

1
pi
<

7
4

+
1
4

( 1
max(p1, 2)

+
1

max(p2, 2)

)
.

Then u is regular on (0, T ].
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Putting in Theorem 40 p1 = p2 = p3 ∈ (2,∞], we obtain the following Corol-
lary 41. It further improves the above mentioned result from [101] (see (4.2.5)).
This improvement is better than the one from Theorem 38 due to the use of
the term

´
|∇u3| |∇u| |∇hu| dx instead of

´
|∇u3| |u| |∇∇hu| dx (see the proofs

of Theorems 38 and 39), which enables us to use more fully the potential of the
anisotropic Lebesgue spaces.

C:C1 Corollary 41. Let u = (u1, u2, u3) be a weak solution to (4.0.1) corresponding
to the initial condition u0 ∈W 1,2

σ which satisfies the energy inequality. Suppose
that

∇u3 ∈ Lβ (0, T ;Lp) ,

where
2
β

+
3
p
≤ 7

4
+

1
2p
, p ∈ (2,∞).

Then u is regular on (0, T ].

The following theorem deals with criteria where conditions are imposed on
∇2u3. Unlike the result from [115], we impose conditions on all items of the
Hessian tensor, but unlike [115] we get almost optimal result for a wide range
of p.

T:T5 Theorem 42. Let u = (u1, u2, u3) be a weak solution to (4.0.1) corresponding
to the initial condition u0 ∈W 1,2

σ which satisfies the energy inequality. Suppose
that β ∈ (1,∞), p ∈ (1, 3) and

∇2u3 ∈ Lβ (0, T ;Lp) .

If, moreover,
2
β

+
3
p
< 3, p ∈ (1, 3/2] (4.2.18) eq:e97

or
2
β

+
3
p

=
5
2

+
3
4p
, p ∈ (3/2, 3), (4.2.19) eq:e98

then u is regular on (0, T ].

4.3 Proofs of main results
In the following, we prove the main results.

4.3.1 Proof of Theorem 36
Proof. Let T ∗ = sup{τ > 0;u is regular on (0, τ)}. Since u0 ∈ W 1,2

σ , u is
regular on some positive time interval and T ∗ is either equal to infinity (in which
case the proof is finished) or it is a positive number and u is regular on (0, T ∗),
that is ∇u ∈ L∞loc([0, T

∗);L2). It is sufficient to prove that T ∗ > T . We proceed
by contradiction and suppose that T ∗ ≤ T . We take ε > 0 sufficiently small
(it will be specified later) and fix T1 ∈ (0, T ∗) such that ||∇u||L2(T1,T∗;L2) < ε.
Taking arbitrarily T2 ∈ (T1, T

∗) the proof will be finished if we show that
||∇u(T2)||2 ≤ C < ∞, where C is independent of T2. Actually, the standard
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extension argument then shows that the regularity of u can be extended beyond
T ∗ and it contradicts the definition of T ∗.

As in [116] we define

J(T2)2 = sup
τ∈(T1,T2)

||∇hu(τ)||22 +
ˆ T2

T1

||∇∇hu(t)||22 dt

and

L(T2)2 = sup
τ∈(T1,T2)

||∂3u(τ)||22 +
ˆ T2

T1

||∇∂3u(t)||22 dt,

where ∇hu = (∂1u, ∂2u). As was discussed in the first paragraph of this proof,
it now suffices to show that J(T2)2 + L(T2)2 ≤ C <∞ uniformly in T2.

To estimate L(T2) let us fix an arbitrary τ ∈ (T1, T
∗), multiply (4.0.1) by

−∂33u and integrate over R3 and (T1, τ). We obtain

1
2
||∂3u(τ)||22 +

ˆ τ

T1

||∇∂3u(t)||22 dt =
1
2
||∂3u(T1)||22 +

ˆ τ

T1

ˆ
uj∂juk∂

2
33uk dx dt.

(4.3.1) eq:e92
Using integration by parts and the continuity equation, we get

ˆ
uj∂juk∂

2
33ukdx

= −
ˆ
∂3uj∂juk∂3ukdx−

ˆ
uj∂

2
j3uk∂3ukdx = −

ˆ
∂3uj∂juk∂3ukdx

=
2∑

j=1

3∑
k=1

ˆ
uk

(
∂2
3juj∂3uk + ∂2

j3uk∂3uj

)
dx+

3∑
k=1

ˆ
(∂1u1 + ∂2u2) ∂3uk∂3ukdx

=
2∑

j=1

3∑
k=1

ˆ
uk

(
∂2
3juj∂3uk + ∂2

j3uk∂3uj

)
dx

−
3∑

k=1

2
ˆ (

u1∂3uk∂
2
31uk + u2∂3uk∂

2
32uk

)
dx

≤ c

ˆ
|u| |∂3u| |∇∇hu| dx

≤ c ‖∂1u‖1/3
2 ‖∂2u‖1/3

2 ‖∂3u‖1/3
2 ‖∂3u‖1/2

2 ‖∂1∂3u‖1/6
2 ‖∂2∂3u‖1/6

2 ‖∂3∂3u‖1/6
2 ‖∇∇hu‖2

≤ c‖∇hu‖
2
3
2 ‖∂3u‖1/3

2 ‖∂3u‖1/2
2 ‖∇∇hu‖

4
3
2 ‖∂3∇u‖

1
6
2 ,

where we have also used the Hölder inequality, the interpolation inequality and
the Troisi inequality (see Lemma 3). So

ˆ τ

T1

ˆ
uj∂juk∂

2
33uk dx dt

≤ c

ˆ τ

T1

‖∇hu‖
2
3
2 ‖∂3u‖1/3

2 ‖∂3u‖1/2
2 ‖∇∇hu‖

4
3
2 ‖∂3∇u‖

1
6
2 dt
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≤ c‖∇hu‖
2
3
L∞(T1,τ ;L2)‖∂3u‖

1
3
L∞(T1,τ ;L2)‖∂3u‖

1
2
L2(T1,τ ;L2)‖∇∇hu‖

4
3
L2(T1,τ ;L2)‖∂3∇u‖

1
6
L2(T1,τ ;L2)

≤ cJ(τ)2L(τ)
1
2 .

Consequently, the last inequality and (4.3.1) yield

1
2
||∂3u(τ)||22+

ˆ τ

T1

||∇∂3u(t)||22 dt ≤
1
2
||∂3u(T1)||22+cJ(τ)2L(τ)

1
2 , τ ∈ (T1, T

∗).

So specially, ˆ T2

T1

||∇∂3u(t)||22 dt ≤ c+ cJ(T2)2L(T2)
1
2

and due to the fact that J and L are increasing in T2

sup
τ∈(T1,T2)

1
2
||∂3u(τ)||22 ≤ c+ cJ(T2)2L(T2)

1
2 .

So it follows from the definition of J(T2) and L(T2) that

L(T2)2 ≤ c+ cJ(T2)2L(T2)1/2

and consequently
L(T2) ≤ c+ cJ(T2)4/3. (4.3.2) eq:e95

The constant c is independent of T2. It is worthwhile to notice that the estimate
of L(T2) is general and it does not require any additional conditions on u.

To estimate J(T2) we multiply (4.0.1) by −∆hu = −
∑2

j=1 ∂
2
jju. We get

1
2
||∇hu(T2)||22+

ˆ T2

T1

||∇∇hu(t)||22 dt =
1
2
||∇hu(T1)||22+

ˆ T2

T1

ˆ
uj∂juk∆huk dx dt.

(4.3.3) eq:e93
It is possible to show in a standard way (see, for example [117], proof of Theorem
1 and [61], Lemma 2.2) that

ˆ
uj∂juk∆hukdx ≤ c

ˆ
|u3| |∇u| |∇∇hu| dx.

So it follows from (4.3.3) that

J(T2)2 ≤ c+ c

ˆ T2

T1

ˆ
|u3| |∇u| |∇∇hu| dxdt.

Lemma 5 now yields the following estimate
ˆ
|u3| |∇u| |∇∇hu| dx

≤
∥∥∥∥∥∥∥‖u3‖L

p3
3

∥∥∥
L

p2
2

∥∥∥∥
L

p1
1

∥∥∥∥∥∥∥‖∇u‖
L

2p3/(p3−2)
3

∥∥∥
L

2p2/(p2−2)
2

∥∥∥∥
L

2p1/(p1−2)
1

‖∇∇hu‖2

≤
∥∥∥∥∥∥∥‖u3‖L

p3
3

∥∥∥
L

p2
2

∥∥∥∥
L

p1
1

‖∂1∇u‖
1

p1
2 ‖∂2∇u‖

1
p2
2 ‖∂3∇u‖

1
p3
2 ‖∇u‖

1−
�

1
p1

+ 1
p2

+ 1
p3

�
2 ‖∇∇hu‖2
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≤
∥∥∥∥∥∥∥‖u3‖L

p3
3

∥∥∥
L

p2
2

∥∥∥∥
L

p1
1

‖∂3∇u‖
1

p3
2 ‖∂3u‖

1−
�

1
p1

+ 1
p2

+ 1
p3

�
2 ‖∇∇hu‖

1+ 1
p1

+ 1
p2

2

+
∥∥∥∥∥∥∥‖u3‖L

p3
3

∥∥∥
L

p2
2

∥∥∥∥
L

p1
1

‖∂3∇u‖
1

p3
2 ‖∇hu‖

1−
�

1
p1

+ 1
p2

+ 1
p3

�
2 ‖∇∇hu‖

1+ 1
p1

+ 1
p2

2 = A+B.

We now use (4.2.9) and the Hölder inequality gives

ˆ T2

T1

Adt

≤
ˆ T2

T1

∥∥∥∥∥∥∥‖u3‖L
p3
3

∥∥∥
L

p2
2

∥∥∥∥
L

p1
1

‖∂3u‖
3
4−

3
4p1

− 3
4p2

− 1
p3

2 ‖∇u‖
1
4−

1
4p1

− 1
4p2

2 ‖∇∇hu‖
1+ 1

p1
+ 1

p2
2 ‖∂3∇u‖

1
p3
2 dt

≤ ||u3||Lβ(T1,T2;Lp̄)||∂3u||
3
4−

3
4p1

− 3
4p2

− 1
p3

L∞(T1,T2;L2) ||∇u||
1
4−

1
4p1

− 1
4p2

L2(T1,T2;L2)||∇∇hu||
1+ 1

p1
+ 1

p2
L2(T1,T2;L2)||∂3∇u||

1
p3
L2(T1,T2;L2)

≤ cε
1
4−

1
4p1

− 1
4p2 L(T2)

3
4−

3
4p1

− 3
4p2 J(T2)

1+ 1
p1

+ 1
p2

≤ c+ cε
1
4−

1
4p1

− 1
4p2 J(T2)2.

For the last inequality we used (4.3.2). In the same way

ˆ T2

T1

Bdt ≤ cε
1
4−

1
4p1

− 1
4p2 L(T2)

1
p3 J(T2)

7
4+ 1

4p1
+ 1

4p2
− 1

p3

≤ cε
1
4−

1
4p1

− 1
4p2 J(T2)

7
4+ 1

4p1
+ 1

4p2
+ 1

3p3 ≤ c+ cε
1
4−

1
4p1

− 1
4p2 J(T2)2.

We can conclude that

J(T2)2 ≤ c+ cε
1
4−

1
4p1

− 1
4p2 J(T2)2. (4.3.4) eq:e96

Choosing now ε sufficiently small, we can derive from (4.3.2) and (4.3.4) that
J(T2) + L(T2) is bounded independently of T2 ∈ (T1, T

∗) and the proof follows
immediately.

4.3.2 Proof of Theorem 38
Proof. We proceed exactly in the same way as in the proof of Theorem 36 up
to the condition (4.3.3). It has been proved in [116] that

ˆ
uj∂juk∆hukdx ≤ c

ˆ
|∇u3| |∇hu|2 dx+ c

ˆ
|∇u3| |u| |∇∇hu| dx.

So it follows from (4.3.3) that

J(T2)2 ≤ c+ c

ˆ T2

T1

ˆ
|∇u3| |∇hu|2 dxdt+ c

ˆ T2

T1

ˆ
|∇u3| |u| |∇∇hu| dxdt.

(4.3.5) eq:e102
It is possible to prove easily (see also [116]) that

ˆ T2

T1

ˆ
|∇u3| |∇hu|2 dxdt ≤ cεJ(T2)2. (4.3.6) eq:e104
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Further,
ˆ T2

T1

ˆ
|∇u3| |u| |∇∇hu| dxdt ≤

ˆ T2

T1

‖∇u3‖p ‖u‖r ‖∇∇hu‖2 dt, (4.3.7) eq:e105

where r = 2p/(p− 2).
We will now estimate the right hand side of (4.3.7). Suppose that the num-

bers α, γ1, γ2, γ3 satisfy all conditions from Lemma 4. Suppose further that the
following conditions are satisfied:

r

r − αγ1r
α−1 + 1

∈ [2, 6] , (4.3.8) eq:e84

r

r − αγ2r + 1
∈ [2, 6] , (4.3.9) eq:e85

r

r − αγ3r + 1
∈ [2,∞) , (4.3.10) eq:e86

r

αr − r − αγ3r + 1
∈ [2,∞) , (4.3.11) eq:e87

r + αr − 3αγ3r + 3
r

≥ 1
2
, (4.3.12) eq:e88

γ3 ≤
3αr + 2r + 10

10αr
, (4.3.13) eq:e89

γ3 <
αr + 2
2αr

. (4.3.14) eq:e90

By the use of Lemma 5 and (4.3.8) - (4.3.11) we have immediately the following
three inequalities:

‖∂2u‖ r
r−αγ2r+1

≤ ‖∇∂2u‖
3(2γ2αr−r−2)

2r
2 ‖∂2u‖

5r−6αγ2r+6
2r

2 , (4.3.15) eq:e106

‖∂1u‖ r
r− α

α−1 γ1r+1
≤ ‖∇∂1u‖

3(2αγ1r−αr−2α+r+2)
2r(α−1)

2 ‖∂1u‖
5αr−5r−6αγ1r+6α−6

2(α−1)r

2 (4.3.16) eq:e107

and ∥∥∥∥‖∂3u‖
L

r
r−αγ3r+1
23

∥∥∥∥
L

r
αr−r−αγ3r+1
1

≤ ‖∂2∂3u‖
2γ3αr−r−2

2r
2 ‖∂3∂3u‖

2γ3αr−r−2
2r

2 ‖∂1∂3u‖
3r−2αr+2αγ3r−2

2r
2 ‖∂3u‖

2αr+r−6αγ3r+6
2r

2 .
(4.3.17) eq:e108

Consequently, assuming that

1
β

+
αr − 2αγ3r + 2

8r (α+ 1)
+

3αr − 2αγ3r − 6α+ 4r − 4
4r(α+ 1)

+
2αγ3r − r − 2

4r(α+ 1)
= 1,

(4.3.18) eq:e91
it follows from Lemma 4, the inequalities (4.3.15) - (4.3.17) and by the use of
the Hölder inequality that

ˆ T2

T1

‖∇u3‖p ‖u‖r ‖∇∇hu‖2 dt
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≤
ˆ T2

T1

‖∇u3‖p ‖∇hu‖
−αr+6α+6αγ3r

2r(α+1)
2 ‖∂3u‖

3αr+2r−10αγ3r+10
4r(α+1)

2

· ‖∂3u‖
αr+2−2αγ3r

4r(α+1)
2 ‖∇∇hu‖

3αr−2αγ3r−6α+4r−4
2r(α+1)

2 ‖∂3∇u‖
2αγ3r−r−2

2r(α+1)
2 dt

≤ ‖∇u3‖Lβ(T1,T2;Lp) ‖∇hu‖
−αr+6α+6αγ3r

2r(α+1)

L∞(T1,T2;L2) ‖∂3u‖
3αr+2r−10αγ3r+10

4r(α+1)

L∞(T1,T2;L2)

· ‖∂3u‖
αr+2−2αγ3r

4r(α+1)

L2(T1,T2;L2) ‖∇∇hu‖
3αr−2αγ3r−6α+4r−4

2r(α+1)

L2(T1,T2;L2) ‖∂3∇u‖
2αγ3r−r−2

2r(α+1)

L2(T1,T2;L2)

≤ Cε
αr+2−2αγ3r

4r(α+1) J(T2)
2αr+4αγ3r+4r−4

2r(α+1) L(T2)
3αr−6αγ3r+6

4r(α+1)

≤ Cε
αr+2−2αγ3r

4r(α+1) J(T2)2.

So it follows from the last inequality and (4.3.5), (4.3.6) and (4.3.7) that

J(T2)2 ≤ c+ cεJ(T2)2 + cε
αr+2−2αγ3r

4r(α+1) J(T2)2.

We can conclude in the same way as in the proof of Theorem 36 that u is regular
on (0, T ].

Notice that the condition (4.3.18) is equivalent to the following condition:

2
β

+
3
p

=
7
4

+
αγ3

2(α+ 1)
+

1
2p(α+ 1)

.

Thus, to complete the proof we will now discuss the following problem. Denote
f(α, γ3) = αγ3

2(α+1)+
1

2p(α+1) . We want to find maximum (respectively supremum)
of f on the set of all α, γ1, γ2, γ3 such that α ∈ (1,∞); γ1, γ2, γ3 ∈ (0, 1); γ1 +
γ2 + γ3 = 1 which satisfy conditions (4.1.2) - (4.1.5) and (4.3.8) - (4.3.14). The
analysis of this problem leads, for example, to the following choice of α, γ1, γ2, γ3.
Let ε > 0 be sufficiently small. If, firstly, r ∈ (19,∞) (which means that
s ∈ (2, 38/17)), we take

α =
12
7
− ε,

γ1 =
5
24

+
5

12r
+

5ε
12− 7ε

,

γ2 =
3
8
− 1
r
,

γ3 =
5
12

+
7

12r
− 5ε

12− 7ε
.

It is possible to verify that α ∈ (1,∞), γ1, γ2, γ3 ∈ (0, 1), γ1 + γ2 + γ3 = 1
and all conditions (4.1.2) - (4.1.5) and (4.3.8) - (4.3.14) are satisfied. Moreover,
f(α, γ3) = 17

76 − ε (3113p− 1862) /(912p(19− 7ε)). So, the solution is regular if
(4.2.10) is satisfied.

Secondly, let r ∈ [10, 19] (which means that p ∈ [38/17, 5/2]). We put

α =
2r − 2
r + 2

,

γ1 =
r2 − 2r − 8
4r(r − 1)

+
ε (r + 2)
r − 1

,
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γ2 =
(r + 2)2

4r(r − 1)
,

γ3 =
r − 2
2r

− ε(r + 2)
r − 1

.

Again, the conditions (4.1.2) - (4.1.5) and (4.3.8) - (4.3.14) are satisfied, f(α, γ3) =
1/(2p) − 2ε(p − 1)/(3p) and so the regularity of solution under the condition
(4.2.11) for p ∈ [38/17, 5/2] is proved. For p > 5/2 this fact has been proved in
[100]. The proof of Theorem 38 is complete.

4.3.3 Proof of Theorem 39
Proof. We proceed exactly in the same way as in the proof of Theorem 36 up
to the condition (4.3.3). It is possible to show (see [117], proof of Theorem 2)
that ˆ

uj∂juk∆hukdx ≤ c

ˆ
|∇u3| |∇u| |∇hu| dx.

So it follows from (4.3.3) that

J(T2)2 ≤ c+ c

ˆ T2

T1

ˆ
|∇u3| |∇u| |∇hu| dxdt. (4.3.19) eq:e103

Using (4.2.13) and the Hölder inequality and then (4.2.14) and (4.2.15) and
Lemma 5 we can estimate the right hand side of (4.3.19):

ˆ
|∇u3| |∇u| |∇hu|

≤
∥∥∥∥∥∥∥‖∇u3‖L

p3
3

∥∥∥
L

p2
2

∥∥∥∥
L

p1
1

∥∥∥∥∥∥∥‖∇u‖L
q3
3

∥∥∥
L

q2
2

∥∥∥∥
L

q1
1

∥∥∥∥∥∥∥‖∇hu‖L
r3
3

∥∥∥
L

r2
2

∥∥∥∥
L

r1
1

≤
∥∥∥∥∥∥∥‖∇u3‖L

p3
3

∥∥∥
L

p2
2

∥∥∥∥
L

p1
1

‖∂1∇u‖(q1−2)/(2q1)
2 ‖∂2∇u‖(q2−2)/(2q2)

2

· ‖∂3∇u‖(q3−2)/(2q3)
2 ‖∇u‖

1
q1

+ 1
q2

+ 1
q3
− 1

2

2 ‖∂1∇hu‖(r1−2)/(2r1)
2

· ‖∂2∇hu‖(r2−2)/(2r2)
2 ‖∂3∇hu‖(r3−2)/(2r3)

2 ‖∇hu‖
1

r1
+ 1

r2
+ 1

r3
− 1

2

2 .

So we get using (4.2.14)

J(T2)2 ≤
ˆ T3

T1

∥∥∥∥∥∥∥‖∇u3‖L
p3
3

∥∥∥
L

p2
2

∥∥∥∥
L

p1
1

‖∇hu‖
1

r1
+ 1

r2
+ 1

r3
− 1

2

2

· ‖∇u‖
�

3
4q1

+ 3
4q2

+ 1
q3
− 1

2

�
2 ‖∇u‖

1
4q1

+ 1
4q2

2 ‖∇∇hu‖
5
2−

1
q1
− 1

q2
− 1

r1
− 1

r2
− 1

r3
2 ‖∂3∇u‖

1
2−

1
q3

2 dt

and by the use of the Hölder inequality and (4.2.13) and (4.2.16) we have

J(T2)2 ≤ ‖∇u3‖Lβ(T1,T2;Lp) ‖∇hu‖
1

r1
+ 1

r2
+ 1

r3
− 1

2

L∞(T1,T2;L2) ‖∇u‖
3

4q1
+ 3

4q2
+ 1

q3
− 1

2

L∞(T1,T2;L2)

· ‖∇u‖
1

q1
+ 1

q2
L2(T1,T2;L2) ‖∇∇hu‖

5
2−

1
q1
− 1

q2
− 1

r1
− 1

r2
− 1

r3
L2(T1,T2;L2) ‖∂3∇u‖

1
2−

1
q3

L2(T1,T2;L2) .
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Using now the choice of T1, the definition of J(T2) and L(T2) and the fact that
L(T2) ≤ J(T2)4/3 we finally obtain

J(T2)2 ≤ cε
1

q1
+ 1

q2 J(T2)
1

r1
+ 1

r2
+ 1

r3
− 1

2+ 5
2−

1
q1
− 1

q2
− 1

r1
− 1

r2
− 1

r3 L(T2)
3

4q1
+ 3

4q2
+ 1

q3
− 1

2+ 1
2−

1
q3

≤ cε
1

q1
+ 1

q2 J(T2)
2− 1

q1
− 1

q2
+ 4

3

�
3

4q1
+ 3

4q2

�
= cε

1
q1

+ 1
q2 J(T2)2.

Choosing ε sufficiently small we get that J(T2) and consequently L(T2) are
bounded independently of T2 and the proof is complete.

4.3.4 Proof of Theorem 40
Proof. Theorem 40 follows immediately from Theorem 39. Supposing that as-
sumptions in Theorem 40 are satisfied and moreover p1, p2 ∈ (2,∞] then we
proceed in the following way: if moreover p3 ∈ (2,∞], we put

qi =
2pi

pi − 2
, i = 1, 2, q3 = 2

and
r1 = r2 = 2, r3 =

2p3

p3 − 2
.

If p3 = 2, then we choose ε ∈ (0, 1/4) such that

3
4

( 1
p1

+
1
p2

)
− 1

4
≤ 1

2 + ε

and put

qi =
2pi

pi − 2
, i = 1, 2, q3 = 2 + ε,

r1 = r2 = 2, r3 =
4 + 2ε
ε

.

It is possible to verify that in both cases all the conditions (4.2.12)-(4.2.15) are
satisfied. Moreover, the veracity of (4.2.16) follows immediately from (4.2.17)
and the choice of q1 and q2. So using Theorem 39 we get the regularity of u.

If we suppose that p3 ∈ (2,∞] and p1, p2 ∈ (1, 2] then by a possible decrease
of β we can suppose without loss of generality that

0 < 2−
( 2
β

+
1
p1

+
1
p2

+
1
p2

)
< min

( 2
3β
,
p1 − 1
2p1

,
p2 − 1
2p2

,
1
4

)
.

Putting

ε = 2−
( 2
β

+
1
p1

+
1
p2

+
1
p2

)
and

q1 = q2 =
1
2ε
, q3 = 2,

ri =
pi

pi − 2εpi − 1
, i = 1, 2, r3 =

2p3

p3 − 2
,

we can again verify all the conditions (4.2.12)-(4.2.16) and complete the proof
by the use of Theorem 39. We proceed analogically in the remaining cases.
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4.3.5 Proof of Theorem 42
Proof. We proceed in the same way as in the the proof of Theorem 39 up to the
condition (4.3.19). Let q1, q2 ∈ [2,∞) and

1
q1

+
1
q2

=
3p− 3

2p
.

Then by the Hölder inequality
ˆ
∇u3∇u∇hudx ≤

∥∥∥‖∇u3‖L∞3

∥∥∥
L

2p/(3−p)
12
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3

∥∥∥
L

q1
12
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3
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L

q2
12

.

Further, ∥∥∥‖∇u3‖L∞3

∥∥∥
L

2p/(3−p)
12

≤
( ˆ

|∇u3|
3p−3
3−p |∂3∇u3|dx

) 3−p
2p

≤ ||∇u3||
3p−3
2p
3p

3−p

||∂3∇u3||
3−p
2p

p ≤ c||∇2u3||p

and using also Lemma 5, we have
ˆ
∇u3∇u∇hudx ≤ c||∇2u3||p||∇u||

2
q1
2 ||∂1∇u||

q1−2
2q1

2

·||∂2∇u||
q1−2
2q1

2 ||∇hu||
2

q2
2 ||∂1∇hu||

q2−2
2q2

2 ||∂2∇hu||
q2−2
2q2

2

and ˆ T2

T1

ˆ
∇u3∇u∇hudxdt

≤ c

ˆ T2

T1

||∇2u3||p||∇u||
3

2q1
2 ||∇u||

1
2q1
2 ||∇hu||

2
q2
2 ||∇∇hu||

3−p
p

2 dt.

Firstly, assuming that (4.2.18) holds, we can choose q1 and q2 in such a way
that 1/q1 = 1 − 2/(3β) − 1/p and 1/q2 = 1/2 + 2/(3β) − 1/(2p). Let 1/y =
5(3− 2/β − 3/p)/12. Then we can estimate by the use of the Hölder inequality
ˆ T2

T1

ˆ
∇u3∇u∇hudxdt ≤ c(T2 − T1)y||∇2u3||Lβ(0,T ;Lp)||∂3u||

3
2q1
L∞(0,T ;L2)

·||∇u||
1

2q1
L2(0,T ;L2)||∇hu||

2
q2
L∞(0,T ;L2)||∇∇hu||

3−p
p

L2(0,T ;L2)

≤ cε
1

2q1 J(T2)
2

q2
+ 3−p

p L(T2)
3

2q1 = cε
1

2q1 J(T2)2.

Secondly, let (4.2.19) hold. Then we simply put q2 = 2 and q1 = 2p/(2p− 3)
and estimate

ˆ T2

T1

ˆ
∇u3∇u∇hudxdt ≤ ||∇2u3||Lβ(0,T ;Lp)||∂3u||

3
2q1
L∞(0,T ;L2)

·||∇u||
1

2q1
L2(0,T ;L2)||∇hu||

2
q2
L∞(0,T ;L2)||∇∇hu||

3−p
p

L2(0,T ;L2) ≤ cε
1

2q1 J(T2)2.

As in the proof of Theorem 36 we can now conclude that J(T2) + L(T2) is
estimated from above independently of T2 and the proof is complete.
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4.4 Conclusions
The global regularity problem we faced above has focused on the use of the
anisotropic Lebesgue space framework, thanks to which results in literature
have been improved (see Theorems 38 - 42). We believe that the tool could
be useful to improve other results in the literature concerning, for example,
other kind of models. Moreover, we would like to mention that since different
generalizations of the Troisi inequality can also be derived, it is not excluded
that some of these generalizations could lead to an even stronger criteria.
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