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Rayleigh—Bénard problem

Navier—Stokes—Fourier system

Oro + divx(ou) =0
Ot(ou) + dive(ou ® u) + Vip(o,9) = diveS(Viu) + oV« G
8f(ge(97 19)) + divx(ge(g7 79)“) + vXq(VX,ﬂ) = S : ]D)Xu - p(Q719)diVXu

Boundary conditions
Q="T>x(0,1)

ulxg=0 = uls=1 =0,
79|X3:0 = eB7 19‘)@:1 = eU~

S(¥, Dyu) = p(9) (qu + Viu— %divm]l) + n(¥)divyul

q(0, Vb)) = —k(9) V0




Long—time behavior

m Levinson dissipativity or bounded absorbing set. Any
global-in—time weak solution to the Navier—Stokes—Fourier system in
a domain with impermeable boundary endowed with the Dirichlet
boundary conditions for the temperature enters eventually a
bounded absorbing set.

m Asymptotic compactness. Any bounded family of global solutions
is precompact in a suitable topology of the trajectory space, whereas
any of its accumulation points represents a weak solution of the
same problem.




Weak solutions, |

Equation of continuity
00 + divk(pu) =0,
01b(0) + div(b(o)u) + ('(e)e — b(e) )div.u =0

for any b € C*(R), b’ € C(R)

Momentum equation

Ot (ou) + dive(ou @ u) + Vip = diviS(Viu) + oV G
Entropy inequality

- Vx¥
9

[S(]D)Xu) : Dyu — 3

S

0:(0s) + divx(osu) + divx (%) >

Gibbs’ law
¥Ds = De + pD (é)




Weak solutions, |1

Total energy balance

1 1
0. (Goluf + ee(e.) ) + aive | (Goluf + ee(e.0) ) u] + divi(pu) + diveg

=dive(S-u)+ oG- u

Ballistic energy
1, ., ~
E; = §Q|u| + oe — Yps

9> 0, 5\X3:o = Os, 5|X3:1 = 0Oy.

Ballistic energy boundary flux

Q~"—%Q'"\8Q=0




Weak solutions, 11l

~
Ballistic energy balance
%/ﬂ[ oluf? +Qe*19£)5}
0
+/ = [S : Dyu — }
Q 19
~ q ~
/ [gu ViG — osu-Ved — 3 Vxﬂ] dx
Q 19
for any ¥ € C'([o, T] x Q), ¥ > 0 satisfying the boundary conditions
J

m Compatibility [Chaudhuri—-EF 2021]. Smooth weak solutions are classical

solutions

m Weak-strong uniqueness [Chaudhuri—-EF 2021]. A weak solution
coincides with the strong solution as long as the latter exists



Bounded absorbing set

Bounded absorbing set [EF - A. Swierczewska-Gwiazda]

For any global-in—time weak solution (g, %, u) defined on a time interval
(T,00), there exists a constant £ that depends only on the boundary
data and the total mass of the fluid

I\/I:/de7
Q

ess lim sup/ E(o,9,u)(t,-) dx < £x, E(0,9,u) =
Q

t—o0

such that

olul® + oe(o, ¥)

N =

If, moreover,

ess lim sup/ E(o,%,u)(t, ) dx < & < oo,
Q

t—T+

then the convergence is uniform in &. Specifically, for any € > 0, there
exists a time T (g, &) such that

ess  sup / E(o,%,u)(t,") dx < Ex +&.
Q

t>T(e,E)




Asymptotic compactness, attractor

Attractor.

A= {(g7 S, m) ‘ (0, S, m) a weak solution of the Navier-Stokes—Fourier system

for any t € R, sup/ E(o,S,u)(t,-) dx < 500}7
Q

teR

Trajectory attractor [EF - A. Swierczewska-Gwiazda 2021]
Let M > 0, & be given. Let F[M, &] be a family of weak solutions to
the Rayleigh—Bénard problem for the Navier—Stokes—Fourier system on the
time interval (0, co) satisfying

T—0+

/ o0 dx = M, esslim sup/ E(o,S,m)(7,-) dx < &.
Q Q

We identify the set F[M, &) with a subset of the entire trajectories space
extending them by constant values for 7 < 0.

Then for any € > 0, there exists a time T (¢) such that

dr[(o,S,m)(-+T); A] < e for any (9, S,m) € F[M, E] and any T > T ().




Stationary statistical solutions

Stationary statistical solutions [EF - A. Swierczewska-Gwiazda 2021]
Let U C A be a non-empty time—shift invariant set, meaning

(0, S, m)elUd = (o,S,m)(-+ T)eU forany T € R.

Then there exists a stationary statistical solution V' supported by U/:
m V is a Borel probability measure, V € B(U);
m suppV C U, where the closure of a If is a compact invariant set;

m V is shift invariant, i.e., V[B] = V[B(- + T)] for any Borel set
BCTandany T € R.




Ergodic means
Phase space

H=W%(Q) x W Q) x W *(Q; R®).

Convergence of ergodic means [application of Birkhoff-Khinchin er-
godic theorem]

Let V be a stationary statistical solution and (g, S, m) the associated sta-
tionary process. Let F : H — R be a Borel measurable function such that

/T IF(0(0,-), 5(0, ), m(0, )| dV < co.

Then there exists a measurable function F,
F: (T, V) =R
such that

%/OTF(Q(t,~),5(t,-)7m(t7,))dt_>fas T2 oo

V—as. and in L'(T,V).




Scaled system

Mass conservation:

Momentum balance:
Ot (ou) + divk(ou ® u) +

Boundary conditions:

Oro + divi(pu) =0

1 .
?pr(g, ¥) | = diviS(9, Vxu) +

@B—@u%&‘g

~—oVxG




Limit system — Oberbeck—Boussinesq approximation

Incompressibility:
div,U =0

Momentum balance:
@(atu +uU- vxu) £ Vil = u(@) AU + 1V, G
Heat equation:
36,(3,9) (ate +U- vxe) — 5 9a(3,9)U - V<G = k(9)AxO
Boussinesq relation:

op(2.9) g, ., 9p(@.9)

Do 90 Vx© = 9V.G.

Nonlocal boundary conditions

Mg,9)

@\aﬂzgfﬁ

©dx, 0< A(g,9) <1
. (2.9) <




