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Abstract

We analyze a mathematical model that describes the interaction between an insulating rigid body and
an incompressible electrically conducting fluid, in which the body is located. The model as well as the
mathematical analysis involve the fields of fluid-structure interaction and of magnetohydrodynamics.
Our main result is the proof of the existence of a weak solution to the corresponding system of partial
differential equations. The proof relies on a use of a time discretization via the Rothe method to
decouple the system. This allows us to deal with test functions, depending on the position of the
moving body and therefore on the solution of the system, in the weak formulation of the induction
equation. The proof moreover makes use of the Brinkman penalization in order to cope with the
mechanical part of the problem.

1 Introduction

In this paper, we consider a system of partial differential equations describing the movement of an
insulating rigid body through an electrically conducting incompressible fluid. We prove the existence
of a weak solution to this system. The insulating solid interacts mechanically with the fluid, which
is why the studied problem falls into the broad class of fluid-structure interaction. Since the electri-
cally conducting fluid further interacts with electromagnetic fields, it also constitutes a problem of
magnetohydrodynamics. While a number of mathematical works can be found in both those classes,
a combination of the two seems to be missing. Possible applications we have in mind include the
interaction of both extra- and intracellular fluids with cell membranes in an organism. Even though
membranes of cells are rather deformable than rigid objects, the study of the rigid body case can serve
as a first step towards understanding the real-world situation.

Fluid-structure interaction describes any interaction between a moving fluid and a rigid or deformable
solid contained in the fluid or surrounding it. In our case, we deal with a rigid body moving inside of
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a viscous incompressible fluid, a situation, for which the existence theory of weak and strong solutions
has been studied by many authors. For an introduction to the problem of a fluid coupled with a rigid
body see [17, 39]. Let us mention that first results on the existence of weak solutions until the first
collision go back to the works of Conca, Starovoitov and Tucsnak [6], Desjardins and Esteban [9],
Gunzburger, Lee and Seregin [19], Hoffman and Starovoitov [25]. Further, the possibility of collisions
in case of weak solutions has been addressed for example in the work of [37], where the global-in-time
existence of a weak solution in two dimensions is shown, i.e. contacts between the bodies and the
boundary as well as between the bodies themselves are possible subject to the condition of vanishing
relative velocity and acceleration. For a global-in-time existence result for the three dimensional case
we refer to e.g. [14]. The latter result has also counterparts for the compressible situation with the
no-slip boundary condition [13] and with the Navier-slip boundary condition [32]. Finally, we also
want to mention existence results on strong solutions, see e.g. [18, 41, 43].

Magnetohydrodynamics stands for the interaction of electrically conducting fluids with electromagnetic
fields, see e.g. [5, 29]. This interplay is described mathematically by a coupling of the fluid equations
with the Maxwell system [30]. In this coupling, the resulting equations are further simplified subject
to certain physical assumptions, which is referred to as the magnetohydrodynamic approximation, c.f.
[8, 12] and which allows one to reduce the electromagnetic part of the system to a problem for only
the magnetic induction. In contrast to the fluid, in the present work, the rigid body is assumed to be
non-conducting and non-magnetic and hence is not influenced by electromagnetic fields, nonetheless
the electromagnetic trespass it. Thus, it may be viewed as vacuum from the electromagnetic point
of view. For a result giving the existence of weak solutions to the magnetohydrodynamic model for
an incompressible fluid we refer to [20]. A corresponding investigation of the compressible case can
be found in [38]. In [3], in addition to the electric conductivity, the fluid is assumed to be thermally
conductive. The combination of an insulating rigid but also immovable object with an electrically
conducting incompressible fluid has been considered in [22] in two and in [23] in three dimensions.
The model considered in the present work (see Section 1.1) is an extension of the model studied
in the latter two articles. The novelty lies in the fact that the solid in our model is not chosen as
a fixed but as a freely moving rigid object, which causes various mathematical problems outlined
below. In this article, we thus investigate the setting of a rigid solid which is neither electrically
conducting nor magnetic and which is moving in an incompressible electrically conducting fluid. In
particular, the electromagnetic fields influence indirectly the movement of the solid body through the
motion of the surrounding fluid. The setting we study can serve as a basis towards the study of more
sophisticated systems involving for example a compressible fluid, an electrically conducting magnetic
body or different types of boundary conditions.

Our main result is the proof of the existence of weak solutions to the aforementioned model. In the
weak formulation of the system we consider test functions which depend on the position of the solid
body and therefore, since we work on a moving domain, also on the solution of the system itself. While
in problems restricted to the interaction between fluids and solids the choice of such test functions is
standard and the difficulties, which result from this choice, are well-investigated, this is not the case
for magnetohydrodynamical problems in moving domains.

In our specific scenario, for the mechanical part we can rely on the Brinkman penalization method
to overcome the problems arising from the test functions chosen in the momentum equation, c.f. (24)
below. This method, in which the rigid body is approximated by rigidly moving, but permeable objects
with vanishing permeability, has already been analyzed in detail in [4]. However, for the problem
resulting from the solution-dependent test functions in the induction equation, c.f. (25) below, no
such penalization method appears to be available, since it would require to approximate the non-
conducting solid by solids with vanishing conductivity, which does not seem to be possible. In order
to deal with this problem we thus decided to discretize the system in the time variable via the Rothe
method, c.f. [36, Section 8], and regularize it. Thereby the system is decoupled, which allows us
to first determine the position of the body at a specific discrete time and subsequently solve the
induction equation at that time by classical arguments. This procedure constitutes the main novelty
in our proof. Test functions which depend on the position of the non-conducting solid body are also
considered for example in the proofs of [22, Theorem 2.1] and [23, Theorem 2.3|, where the solid,



however, is immovable and hence the test functions do not cause any difficulties, since they are given
a priori. Moreover, our proof adopts various methods from [13], where the existence of weak solutions
for an interaction problem between a rigid body and a compressible fluid is shown. Even though a
different penalization method is applied there, we can still use several of the same arguments for the
limit passage in the approximate system in our proof. A detailed description of the idea of our proof
is given in Section 2.

The outline of the article is the following: In Section 1.1 the model is described. The corresponding
weak formulation together with the main result follows in Section 1.2. The proof of the main re-
sult extends across Sections 2—6: In Section 2 the approximation to the original system is presented,
to which the existence of a solution is shown in Section 3. Sections 4-6 deal with the limit passages
required to return to the original equations. Finally, in Appendix 7 some auxiliary results are discussed.

1.1 Model description

Let © < R? be a bounded domain occupied by a viscous nonhomogeneous incompressible fluid and a
rigid body, let T'> 0 and set Q = Q(T) := (0,T) x Q2. We denote the initial position of the rigid body
by S = S(0) € Q and we write S(t) < Q for its position at any time ¢ € [0, 7], the movement of which
can be expressed by means of some isometry. We further denote by F(t) := Q\S(¢) the domain filled
with the fluid at time ¢, see Figure 1. Correspondingly, we also divide @) into the solid time-space
domain

Q% :={(t,x)eQ: zeS(t)}.

and its fluid counterpart QF := Q\Qs, where @S denotes the closure of Q°. We use this splitting of
the domain to further split also any function f defined on @ into

_ [ffta)  for (t,2) € QT
ft.x) = {fs(t,x) for (t,z) e Q°

in order to distinguish between its fluid part f¥ and its solid part f° whenever it is necessary to
stress the difference. The motion of both the fluid and the body is then described by the velocity field
u: Q — R3, the density p: Q@ — R and, in case of the fluid, also by the pressure p = pf" : Q¥ — R.
The electromagnetic effects in the system are characterized in by the magnetic induction B : Q — R3,
the magnetic field H : Q — R3, the electric field E : Q — R? and the electric current j : Q — R3.
The evolution of the system is described by the following equations:

curlH = j+ J in QF, (1)

curlH =0 in Q°, (2)

0B + curlE =0 in @, (3)

divE =0  inQ°, (4)

divB =0 in Q, (5)

Vou=0, dp+u-Vp=0 inQ" (6)

Or(pu) + div(pu ® u) + Vp = 2vdivD (u) + pg + ;curlB x B in QF, (7)

miV(t) = df pu dx = f [2vD (u) — pId] - n do —I—J pg dz, te[0,T] (8)
dt dt J5(1) 5(1) 5(t)

%(J(t)w(t)) = jtf p(r—X)xudr

S(t)

:J (x—X)X[QVD(u)—pId]nda—f-f plx—X)xgdx, tel0,T] 9)
P (1)



supplemented by the relations

, . of>0 inQF,
j=oc(F+uxB) inQ, J_{asz() in Q. (10)
B = uH, pw>0 inQ (11)
and completed by the boundary and interface conditions
B(t)-n=0 on 09, BE(t)=B%(t) =0 on dS(t), (12)
E(t) xn=0 on dQ, (B (t) — ES(t)) xn =0 on aS(t), (13)
u(t) =0 on 09, uf'(t) —u®(t) =0 on 0S(t). (14)

The electromagnetic part (1)—(5) of the system is the reduced Maxwell system, c.f. [22], [23], while
the mechanical part (6)—(9) consists of the balance of mass and momentum for the fluid and solid
respectively, c.f. for example [14]. More precisely, in the Maxwell system we first have Ampere’s law
(1). We remark that, as in [22] and [23], this equation contains an additional source term .J, which does
not pose any further mathematical difficulties. On the non-conducting solid Ampere’s law reduces to
the condition (2). The system further contains the Maxwell-Faraday equation (3), Gauss’s law (4)
and Gauss’s law for magnetism (5). We remark that, as in [22] and [23], these equations were here
adjusted to the case that the solid is an insulator and further simplified by the magnetohydrodynamic
approximation under some physical assumptions. A physical reasoning for the simplifications carried
out due to the magnetohydrodynamic approximation can be found for example in [27, 28]. The
reduced Maxwell system is supplemented by the relations (10), (11) and the boundary and interface
conditions (12), (13). The equation (10) is known as Ohm’s law in which the piecewise constant
coefficient o stands for the electrical conductivity, vanishing inside of insulators. It determines the
effect of the fluid motion on the electromagnetic quantities. The constitutive relation (11) relates the
magnetic induction to the magnetic field, see [26, Section 5.8]. In our case we want to point out that,
in contrast to o, the magnetic permeability p is chosen as a constant value on the whole domain Q.
As the magnetic permeability depends on the material, this is in general not physically accurate but a
simplification required for the continuity of B across the interface stated in (12). The latter condition
is needed to ensure that B is an element of some Sobolev space on @, c.f. (21) below. The remaining
conditions stated in (12) and (13) are standard.

Turning now to the mechanical part of the above system, we can identify the equations (6) and (7) as
the incompressible Navier-Stokes equations made up of the continuity equation and incompressibility
condition (6) and the momentum equation (7). In contrast to the purely mechanical case, (7) contains,
in addition to the given external force g, a forcing term icurlB x B - a reduced form of the Lorentz
force - resulting from the electromagnetic interaction. Moreover, the operator D denotes the symmetric
part of the gradient,

1 1
D(u) ::§Vu + i(Vu)T.

and v > 0 is the viscosity coefficient. The relations (8) and (9) represent the balance of linear and
angular momentum of the rigid body respectively. Indeed, since the body is rigid, its movement is
characterized by its translational velocity V and its rotational velocity w; the overall velocity of the
rigid body is determined as

u(t,z) = V(t) +w(t) x (x — X(t)) on Q°.

The further notation in (8

~—

and (9),

m :=j p(t,x) de, X(t):= e - p(t,x)x dx,
5(t) mJs()
J(t)a-b:= L(t) pt,z)[ax (x—X)] [bx (x—X(t))] de, a,beR3,



represent the mass, the center of mass and the inertia tensor of the rigid body respectively, while n
denotes the outer unit normal vector on 02 and dS(t). The right-hand sides of (8) and (9) show that
the movement of the rigid body is driven by the volume force g and the Cauchy stress 2vD(u) — pld,
acting upon the interface of the body and the fluid via the integral over d5(¢) in (8) and (9). Moreover,
the fluid-structure interaction is incorporated in the second equation in (14). This relation, known as
no-slip condition, imposes continuity of the velocity field across the interface between fluid and solid.
Together with the no-slip boundary condition on 02, i.e. the first equation in (14), this represents a
standard set of boundary and transition conditions assumed commonly for the interaction between
fluids and rigid bodies, c.f. for example [14], [37].

Q

+ positive charges

Figure 1: An insulating rigid body with domain S(¢) inside of an incompressible electrically conducting
fluid with domain F(t).

1.2 Weak formulation and main result

In order to define a weak formulation and state the main result, we first introduce some more notation.
We use the standard Lebesgue-, Sobolev- and Bochner spaces and in addition the spaces

1
V'(Q) = Hgf/ (Q) forr=0, Vo (92) := {v € Hdrfl (Q): v|pa = 0} for r > 2

where Hglz(Q) denotes the space of functions in H™2(Q2) which are in addition divergence-free. By S
we denote a subset of €2 such that

S is open, bounded and connected, S # ¢, |0S| = 0 and dist (.S, 0€2) > 0. (15)

In the following we will describe the position of the rigid body through the use of a characteristic
function. More precisely, for a function x : R? — {0, 1} we write

S(x):={zeR®: x(z) =1}
and if x(t) = x(t,-) is a characteristic function for all ¢ € [0,T], we write
QS(X,T) = {(t,m) € [0,T] x R? : x(t,x) = 1} = {(t,a:) € [0,T] x R3: x¢€ S(X(t))}.

We further introduce the space of test functions

T(x,T) := {¢ eD([0,T) x Q) : divg =0, D(¢) =0 on an open neighbourhood of @S(X,T)} ,

meaning that for any ¢ € T(QS(X, T)) there is 0 > 0 such that

D(¢) =0 in {(t,x) e Q(T) : dist ((t,x),@S(X,T)) < a}. (16)



Similarly, we define
Y(x,T):= {b €D ([0,T) x Q) :curl b=0 on an open neighbourhood of @S(X,T)} . (17)

We can now introduce the notion of weak solutions to (6)—(13) in the following way:

Definition 1.1. Let T > 0, let Bo,ug € L?>(Q;R3) with divug = div By = 0 and let pg € L®(2;R).
Let further S < Q satisfy (15) and let xo € L*(Q;R) denote the characteristic function of S. Then
the set of functions {x, p,u, B} is called a weak solution of the problem (6)—(13) on [0,T], if

x e C([0,T]; L7 (;R)) V1i<p<oo, (18)
peC([0,T]; LV (R)) VI<p<oo, (19)
we L% (0,T; L% (% R%)) (L0, T5 Vi (Q), D(u) =0 ae. in Q%(x,T), (20)
BelL® (O,T; L? (Q;R3)) ﬂL2(0,T; VHQ), curlB =0 ae inQ°(x,T), B-n=0 ondQ,
(21)
and
T
—f f X0:Odzdt — f x00(0, x) =f J xu) - VO dzxdt, (22)
0 Jo
T
—L JQ pOypdxdt — jQ pot(0,z) dz =j0 fQ(pu) -V dxdt, (23)

— JOT JQ pu - 0rp dwdt — JQ poug - $(0, ) dr = LT JQ (pru®u) : Vo —2vD(u) : Vo

1
+pg- ¢+ — (CurlB x B) - ¢ dxdt, (24)

f JB Otb dxdt — JBO (0,2) dm—f J [—curlB+u><B+ J] curlb dxdt (25)

for all©®, ¥ e D([0,T) x Q), ¢ € T(x,T) and be Y (x,T).
We can now state our main result:

Theorem 1.1. Let T > 0, Q < R? be a simply connected bounded domain. Let further xo, po,
ug, Bo and S be as in Definition 1.1 and assume 09, 0S to be of class C?(\C%'. Finally, assume
g,J € L*®(Q;R®) and assume that o, p, v, p, p are positive constants with

O<p<po<p<o ae onf

Then there exist T' > 0 and a weak solution to the problem (6)—(13) on [0,T"] in the sense of Definition
1.1, satisfying the energy inequality

1 1 T 1
f L) + 3B de +J f 2w [Vault, )|? + — |ewrd B(t, 2)|? dudt
02 2 0 Jo op?
1 1 T 1
éJ ~poluo|* + =|Bo|* da + f f p(t,x)g(t,x) - u(t,x) + =J(t,x) - curl B(¢t, x) dzdt (26)
o) 2 2 0o JO g
for almost all T € [0,T"]. Moreover, there is an isometry X (s;t,-) : R — R3 such that
S (x(t) = X (s;t,5 (x(s))) Vs, te[0,T"] (27)
and T can be chosen such that

T = sup {T e [0,77] : dist (S(x(£)),00) >0 Vt < T}. (28)



Remark 1.1. Since the solution p to the continuity equation (23), given by Theorem 1.1, satisfies
p € L2((0,T) x Q), the transport theorem by DiPerna and Lions [10] implies that p also solves the
renormalized continuity equation

0B(p) +u-VB(p) =0 in (0,T) x © (29)

in the distributional sense for any bounded 3 € C'(R) vanishing near 0 and such that also (8'(1+|-]))~1
s bounded.

Remark 1.2. In [1}], the existence of a global-in-time solution to a fluid-rigid body system is shown
by extending the solution after a possible collision with the boundary by a solution to a problem in
which the body is now considered as a fixed part of the exterior of the domain. With Theorem 1.1 at
hand, the same method could probably also be applied here to infer global-in-time existence.

The proof of Theorem 1.1 will be accomplished via an approximation method in Sections 3-6 and is
outlined in the following section.

2 Approximate system

We introduce the approximate system to the original system of equations and we show the existence
of a solution to this approximation. The limit of this solution then again is supposed to give us the
solution to the original problem. More precisely, we will use three different levels of approximation,

characterized through 3 parameters At,e,n > 0:
e On At-level, we have a time discretization by the Rothe method, c.f. [36, Section 8.2]. To this
end, At > 0 is chosen in such a way that % € N and we split up the interval [0,7"] into the

discrete times kAL, k=1, ..., %.

e On the elevel, we add several regularization terms to the system, which help us to solve the
approximate system and pass to the limit as At — 0.

e On the n-level we add a penalization term to the momentum equation, which guarantees us that
after passing to the limit in n — 0, the limit velocity will coincide - on the solid part of the
domain - with the rigid velocity of the body.

We now introduce the full approximate system, containing all three levels of the approximation, and
give a more detailed explanation afterwards: Assuming that for some discrete time kAt, k € {1, ..., Alt}
the solution at time (k —1)At, indexed by k — 1, has already been found and defining the test function
space

wk(Q) ;:{b e H*?(Q): b-njog =0, curl b=0in {x eQ: XK, (z) = 1}} (30)

we seek functions

o QR uk,, BX,: Q>R xamr: [(k—1)At, kALl x Q - R,



satisfying the discrete system at time kAt,

kAt
J f Xarx0© drdt = f X5 te((k — 1)At, x) dxfj Y&, O(kAt, z) da
R3 R3 R3

k—1)At
kAt
N j (xaeaTths!) - VO dadt, (31)
(k—1)At
O N
_J NTtAtwdw :J uAtl Vot + eVpi, - Vo da, (32)
0 Q

E Kk -1, k—1
B J PALYAL A/;At Ut ¢ dx :j [div (p’&u’gl ® U]Zt) — 2vdiv (Du'&) + eVu'gthgt] ¢ dr
0 Q

f eAuRA¢ + [npm XA (ukAtl Hk&l) - pZtngt] "¢ dz
1
—f = (curl BS' < B') - 6 do, (33)
Q1
Bk _ Bk 1 1 B € 2
— JQ NTtN “bdx = fQ [a,u curl B, —uk, x BZtl + 2 ’curlBZt‘ curl Bgt} -curlb dz
1
+ j —=Jk, - curlb + ecurl (curl BZt) -curl (curlb) dx (34)
QO O

for all © € D([(k — 1)At, kAt] x R3), ¢y € HY2(Q), ¢ € VE(Q) and b € WF(2). Here, the functions xX,
and 15!, introduced in the equations (31) and (33), are defined by:

th = Xak(kAL), HZtl (uG)At + thl x (m - a&l) (35)
and

1
k=1 ._ SR3 pAtXAt uAt dx

(UG)A 5 (36)
! S]Ri” pAtXAtl dx
-1
it (16) bt (o= o) x k! a (37)
Iﬁ;l = JRg PZtXEl <|x — az_tl]2id — <a: — a2t1> ® <m — a2t1>> dzx, (38)
ko k-1
T dr
“Ztl . SR3 PAtX At (39)

S PZtXZ? dr -
In order to keep the latter terms well-defined, we extend the functions plAt by p and ulAt by 0 outside
of Q for any [ = 0, ..., k. Moreover, the quantities gk, and J%, from (33) and (34) are defined in the
following way: Since the given functions g and J are by assumption only L*-functions and thus not

necessarily defined in the discrete times, we first need to introduce some mollifications. For example,
we can define

T T -
gy (t) := L Oy (t + & () —s) g(s) ds, Jy(t) := L 0, (t+&,(t) —s)J(s) ds, &(t) := *yT TQt7

where 6., : R — R is a mollifier. Then we choose v = (yAt), v(At) — 0 for At — 0 and set

IRt = Gy(an (RAL), TR = Jyan (KAL), (40)

The idea behind the time discretization is to decouple the system, so that we can solve the equations
one after another by using retarded functions in the coupling terms. In particular, it helps us with
solving the induction equation, in which - even on approximation level - the test functions depend
on the characteristic function of the rigid body and therefore on the solution of the overall system
itself, c.f. (17). In our discretization, we will be able to first determine the position of the solid up to



a certain discrete time and subsequently choose the test functions for the induction equation at this
specific time accordingly. The existence of the magnetic induction on the discrete level then follows
by standard methods.

We also want to point out, that the function xa¢x represents an exception in this system: It is the
only function, which is immediately constructed as a time-dependent function. The reason for this
is that we want it to take only the values 0 and 1 so that we are able to determine the position of
the rigid body at any time. Inspired by [21], we can guarantee this by constructing xa¢x by solving
a classical transport equation on the small interval [(k — 1)At, kAt], in case of a discrete transport
equation we might lose the property.

Next we note that the mapping Hz_tl is, by definition, a rigid velocity field with the translational
velocity (ug)zl and the rotational velocity wgzl. The constant terms Z;l and a’El can be considered
as a discrete version of the inertia tensor and the center of mass of the rigid body described by the
characteristic function ya; at time kAt. Once we will have passed to the limit in the time discretization,
we will see that the limit of ﬁ/At is actually the projection of the velocity onto a rigid velocity field.
This comes into play in the penalization term from the n-level of the approximation mentioned above,
namely the term

| S k-1
Hpm XAt <um — 1Ty, )a

from (33). As mentioned before, we can use this term to infer that after letting n — 0 the limit
velocity coincides, in the solid area, with the velocity of the rigid body, which is what we require
to obtain (22). This penalization method, which is known as Brinkman penalization, is discussed
rigorously in [4]. Physically speaking, it describes an extension of the fluid into the solid region,
i.e. the approximate body, while still moving via a rigid velocity field, is now permeable and the
limit passage n — 0 represents the process of letting the permeability vanish. This technique can be
considered as an extension of the penalty method used in [2] for a fluid-structure interaction problem
in which the movement of the solid is prescribed. It further finds use in [33], where the examined solid
is additionally deformable and self-propelled and it is moreover of interest for finite element approaches
to the problem, c.f. [7], [24]. There are also other penalization methods available as for example in
[37], where an approach is used in which the solids are approximated by a fluid with viscosity rising
to infinity.

Finally, it remains to discuss the various regularization terms from the e-level of the approximation. In
the continuity equation, the Laplacian of the density is added to the right-hand side, which allows us
to show an upper bound for p as well as some bound away from 0. This is needed because such a bound
cannot be guaranteed from the discrete version of the transport equation. In order to compensate for
this term in the energy inequality, the term eVuZthZt is added to the momentum equation. The
second new term in this equation, eAzuZt, is needed for passing to the limit in At — 0. Moreover,
we have two regularization terms in the induction equation, the 4-th curl of the magnetic induction
and the term curl(|curlB,|2curl BX,) which is also known as the 4-double-curl. The first one is used
for the construction of BZt via a weakly continuous coercive operator, while we require the latter
one in the energy inequality: in the time-dependent version of the system, the mixed terms from the
momentum and the induction equation cancel each other. On the discrete level this is not the case,
as the involved functions are chosen from distinct discrete times. However, the 4-double-curl enables
us to absorb the problematic terms into the positive left-hand side, so that we can get the uniform
bounds needed for the limit passage as At — 0. We also remark, that the 4-double-curl was chosen
instead of the 4-Laplacian in order to allow us to apply the Helmholtz-decomposition [40, Theorem
4.2]. This is why the test functions b € W*(Q), which are not divergence-free, can be used in (34). We
complement the equations by the relations

divuk, = divB%, =0 in Q, curl B, =0 in {m eQ: XK (z) = 1},
uk, =0 on o9, BX, -n=0 onoQ, (41)

PAL = Po, xatk(0) = xo, ud, = uo, BY, = Bo.



In Section 3 we will show the existence of a solution to this approximate system. In Section 4 we
will pass to the limit with respect to At — 0, i.e. we will return from the discrete system back to
a system depending on time. Afterwards, in Section 5, we let the regularization terms vanish from
our approximation by letting e — 0. Finally, in Section 6, we will obtain the desired solution to our
original system by sending also the last parameter 7 to 0.

3 Existence of the approximate solution

In this section we prove the existence of a solution to the approximate system. To this end, we first
introduce another function space for fixed discrete time indices k:

Y*(Q) :={b e L* (Q;R3) : b-njogn =0, divb=0in Q, curl b =0 in {:E eQ: XK, (z) = 1},
curl (curl b) € Lz(Q)}.

While the more general space W¥(Q) in (30), containing also functions which are not divergence-free,
serves as a test function space for the induction equation at the discrete time kAt, the space Y*(€2) will
be the space in which we construct the magnetic induction at time kAt. As for functions b € Y*(1)
it holds curl(curlb) = Ab, both of these spaces can be equipped with the H%2-norm.

Proposition 3.1. Let all the assumptions of Theorem 1.1 be satisfied and At > 0. Let further ggt
and Jgt be given by (40) for any k =0, ..., % and assume in addition that

pPo € Hl’z(Q), uo, BD € H2’2(Q).

Then, for all k =1, ..., Alt, there exist functions xacx € C([(k — 1)At, kAt]; LY

loc

(R?)), 1 <p < o and
PZt € H1’2(9>7 P < Pl&: <P, UZt € VOQ(Q): Bgt € Yk(Q) (42)

which satisfy the variational equations (31)-(34) for all test functions © € D([(k — 1)At, kAt] x R3),
Y e HY2(Q), ¢ € VE(Q) and be WF(Q).

Proof

We consider some discrete time index k € {1, ey %} and assume that the proposition is already proved
foralll=1,.. k—1.

Step 1: The existence of a solution p&, € H%2(Q) to (32) follows immediately from the Lax-Milgram
Lemma. Further, we may test (32) by max {p’gt —p,0} to see

ko= 2 (k_l—*)max k. —75,0
’max {pAt 7 0}‘ o < J Par — P {pAt P } c <0,
Q

0 At At

c.f. [34, Section 7.6.5]. Arguing similarly for the lower bound, we arrive at the estimates for p’& in
(42).

Step 2: As in [21], we consider the initial value problem
k—1
éXEtAi (s;t,x)
ot

Hk71 kE—1

= H’El (XAtAt (s;t,m)) , th“ (s;8,2) =x, =wE€ R3, s,teR, (43)

where ¢ represents the time variable and s the initial time. Since H]El is constant in time and a
rigid velocity field by (35), it is in particular Lipschitz-continuous. Then by the theory of ordinary
differential equations, (43) defines a unique mapping

XT3 R« R x R - R? (44)
At . .
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We set

k-1
Xaek(t, ) == XAt k-1 <(k: —1)At, th“ (t; (k — 1)At,x)> for t € [(k — 1)At, kAt] (45)

and infer from [10, Theorem III.2] that this is the (unique renormalized) solution to the transport
equation (31).

Step 3: We consider the operator

k
* p . _
AVEQ) — (VEQ)", <Au’v>(V02(Q))*xV02(Q) :=f < 2t ) v+ div (pgtukml ®u) v
):

+2uD(u) 1 Vo + € (VquZt) v+ e(Au) - (Av) dr

for u,v € VZ(Q). Because of the regularization term, A is coercive on VZ(2). Further, the bilinear

form (A, '>(V2 @) V2@ is bounded on V() and hence the Lax-Milgram Lemma again implies the
0 0

existence of uk, € VZ(Q) satisfying (33).
Step 4: We introduce
A:YRQ) > (Yk(sz)) :
<A(B),b>(yk( ey h(@ J — - b+ ecurl (curl B) - curl (curld)

+ {curlB +— |curlB| curlB} -curlb dx.
ou 2

Clearly, A is coercive:
<‘1(B)7E> = L HBH%Q o) T EHABH%2 Q) = CHBH%{” Q) = CHBH2 ke
(Yk)*xyk At (o) Q) 2(9) Y

Further, if B, — B in Y*(Q), then from the Rellich-Kondrachov embedding we know B, — B in
W4(Q), which again gives us weak continuity of A. Coercivity and weak continuity imply surjectivity
of A (see for example [16, Theorem 1.2]) and so we infer the existence of a solution BY, € Y*(Q) to
(34) for all b e Y* and by the Helmholtz-decomposition [40, Theorem 4.2] even for all b e W¥*(Q).

U

Remark 3.1. For any fized s,t € R the mapping (44) is an isometry. Indeed, from Hzl being a rigid
velocity field and the ordinary differential equation (43), it follows that

0 ch 1 k=1 2
En XAPt (sit,x) — X2 (sit,y)| =0 (46)

for any z,y € R3.

In the remainder of this section we derive an energy inequality for our discrete solution. To this end
we extend, without loss of generality,

T

ulAt(x) =0, plAt(x> =P Vz e RS\Qv l=0,..

We fix some k € {1, v %} For arbitrary [ < k we test the continuity equation (32) at the discrete
time [At by %|ulAtl2 and subtract the result from the momentum equation (33), also at time [At,
tested by ulAt. This yields

Ly l Loy - l 1 .
L oapPaduad” - 2At”At [ua 1‘2+2V\Wml2+npm Xa(ulny =TI -y + e Auipy|? dae

_ 1 _ _
< L plAtlglAt . ulAt + ;(curlBlAt1 X BlAtl) . ulAt dz. (48)

11



Next, we test the magnetic equation (34) at time [At by iBlAt and estimate

1 1 1
—[}1B4,)? B 20| J —|eurl By, 2 d
gt 1Bl o)~ 1BE ey | + -, | lewlBA P do

€ € 1 1
<— | £jcurlB 4+—‘AB1 ‘ — 2k, x BN curlBy, — —Jh, - curlBY, dz. (49
| SlounBlylt+ SB[ % (udyy x B - curlBly - -7k, curlBh, dr. (49

Adding this to (48) and summing over all | < k, we infer

Ea

Lok 2 L2 L2
@B”UNHB(Q) QAtPHuAtHL? Q) g (2V||VUAt||L2(Q) + €HAUAtHL2(Q)>
1 i 1 € €
k 2 0 2 L2 L4 !
+2 Al (HBAtHLQ(Q) —[Badliz@ ) Z <MCur13At||L2(Q) + EHCUTIBAtHUl(Q) o HABAt

2
L2(9)>

Ly -1 I— l -1 1 l 1 -1 I— !
Z J —*PleAt uAt HAt1> “upg t+ pAtlgAt “upg t+ *(CurlBAt X BAtl) T UA¢
=1 K
+1(u x BIoY) - curl B 1y 1B4,d
At X Dy ) -curlbag + ou At - CUTLD A QL. (50)
I

In order to estimate the right-hand side here, we need

I z2) < clluli) |z, (51)

which can be proved in the following way: We distinguish between two cases, the first one being
suprlA_t1 Q= . Then, as ulA_t1 = 0 outside of 2, both sides of (51) are equal to zero and so the
inequality is trivially satisfied. For the second case, suppxlA_t1 (N Q # &, we note that from (44) being
an isometry and by (45) it follows the existence of a compact set K independent of [ and At such that
in this case suppx ~ C K. This allows us to reduce the integrals over R? in (36) - (39) to integrals
over K. Moreover, as ol A¢ = p was extended by p on R3\Q2, we know

fRs pax'ns dz = p|S| > 0. (52)
Thus we can estimate

S]R3 plAtXlA_tlx dx
§as PapXiag | do

-1
’am’— <c

<c (53)

J PlAth dx
K

with ¢ independent of | and At¢. By similar computations, c.f. also [4, Section 3.2] and the proof of
[33, Lemma 4], we obtain

-1 -1
’wAt ‘ < CH“At

-1 -1 -1 2 3
‘(“GW ’ < CH a2 ) Hmm’ v (IN ”) > dul” voeR,  (54)

where the last inequality uses that since (44) is an isometry, one can find for any At >0, =1, ..., Alt

some ball B,(I, At) c R® with radius r > 0 independent of I and At such that B, (I, At) = S(x's,)-
Thus, (51) is also satisfied in the second case. Now, exploiting (51) and applying Young’s inequality,
the right-hand side of (50) can be bounded by

k

— — 27 —
P b2 Py 12 Py 1 2
1—21 [ UHU ey + %”UAt”LQ(Q) + 5 9z 9y + Sluadlzae
1 -1 c? 1
+;HCUT13A¢ |a@) I B I paqoy luae lz2 oy + 7chrl‘]HL°0 @t 5, ”BAtHL2

1 _
+; lewrl Bi, || 4oy | Bi; 2o ulAtLQ(Q)} : (55)
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Using the Poincaré-type estimate

-1 -1
H At paq) s¢ chrlBAt @)’
c.f. [1, Corollary 3.4], we further estimate
1 _ c? cp € _ €
;H(IurlBlAtHL‘l(Q) | BA oy luael o) < Humum @ T 87;,|\0111"131At1\|%4(9) + STK,HCUﬂBlAtH%%Q)

1 - - ! Ay € -
;HCUﬂBAtl\|L4(Q)||BAt1\|L4(Q)||UAtHL2(Q) < ?HUAtH%%Q)+47M3HCUHBA1$1H%4(Q)

Consequently, we can absorb several quantities from (55), including - for At sufficiently small - the
L%:norm of uk,, into the left-hand side of (50) and obtain

2 Zk] (2 .y 2
+ v H u
o) At

L*(9)

velauh], )+ kB
L2(Q) 4puAt

2
o)

14 Huk
4At IR

ko 2
+ Z <0M chrlBAt

=1

L2()

iyt 53 chrlBAtH4 o )+iHABlAt

P 2 1 Tc? Tc™p € 4
S At HUOAtHLz(Q) + 2uAt HBgth(Q) 2At HgHLOO LAt HCUFUH%OO(Q) + 818 HCUﬂBgtHLLx(Q)
€ 4 ﬁ 2 — ﬁ 2 p 2C2,LL
muwrw&uwznw%tmg_zl ] L R e ¥
20,u H At (Q)] ) (56)

Hence, from the discrete Gronwall estimate (c.f. [36, (1.67)]), we infer the bound

2

’ugtH;(Q + Atz <‘VUN)L 2(0) * ‘AulAt‘;(Q)> + HBZt L2(Q)

2
o)

: l 2 l 4 l
+Atl_21 (HCUTIBAt‘LQ(Q) + chrlBAtHL4(9) + HABN

T

< C(UO,BO,E,B,C,Q,J,U,M,V,E,U,T) Vk‘lzlaa&

uniformly in At and k.

4 Limit passage with respect to At — 0

We now want to pass to the limit in the time discretization, i.e. At — 0. To do so, we introduce
piecewise constant as well as piecewise affine interpolants of our functions defined so far only in the
discrete time points. Namely, for the time-independent quantities fﬁt defined for £ =0, ..., % we set

T
Fanlt) = <Att (k- 1)) &+ <k— Att> T for (k- DAL <ESEAL =1, (58)

_ T
Faclt) == fX, for (k= DAt <t kAt k=0, 5=, (59)
_ T

Fag(t) = fht for (k — )AL <t < kA, k=1, (60)

We will use the same notation also for the interpolation of the discrete momentum function (pu)’gt =
pztugt, k=0,.., %. Regarding the solution to the transport equation on [0, 7], we glue together the
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already time-dependent functions xa¢, defined on the intervals [(k — 1)At, kAt]. More specifically,
we set

xae(t) := xaek(t) for (k—1)At <t <EkAt, k=1,.., AL

By the construction of xax in Proposition 3.1 it holds xa; € C([0,T]; LY. .(R3)), 1 < p < o0, and xa¢

loc
is the solution to

T T
f f XAtat@d:cdtJ x00(0, z) d:nzj f (Xmﬁ’m) VO dudt (61)
0 JR3 R3 0 JR3

for any © € D([0,T) x R?). According to the transport theory by DiPerna and Lions, c.f. [10, Thoerem
I11.2], this solution is unique and can be represented by

=/

xat(t, ) := xo <X£[t“(t;0,x)> for t € [0,T]. (62)

=4

Here thm denotes the unique solution to the initial value problem

6Xﬁ/“ i, — iy T,
At&(::”) = H/At (t,thAt(s;t,a:)> , ngt(s;s,x) —xz, zeR3 s tel0,T], (63)
given by the Carathéodory theorem [36, Theorem 1.45]. By the uniqueness of this solution, the function

ngt can also be written as a composition of the mappings (44). In particular, by the corresponding
property of those functions (c.f. Remark 3.1), the mapping

x — thAt(s;t,a:), s, t € [0, kAt] (64)

is an isometry from R3 to R3. The a-priori estimate (57) translates to the following uniform bounds
for the above defined interpolants

lual Lo o752 () + [Tatl oo riz2)) + [Tl o 0.r20y) < (65)

”uAt”Lz(O,T;HZ*z(Q)) + HﬂAtHLQ(O,T;Hz’Q(Q)) + ||ﬂ,AtHL2(0?T;H2,2(Q)) <6 (66)
— —

| Batl oo 0,1 02(0)) + HBAt|‘LOO(07T;L2(Q)) + HBAtH <¢, (67)

L®(0,T;L%(92))

IBadl o * Badl aom i * [Bail ooy < © (68)
leurl Batll pao,myx ) + ||Cur1§AtHL4((0,T)xQ) + chrlEIAt LA TIXE) <ec. (69)
These bounds allow us to find functions
Be {b e L”(0,T;L*()) ﬂL2 (0,75V*(Q)) : b-nloq = 0} (70)
we L® (0,T: L2(Q)) () L? (0,T; VE(Q)) (71)

such that for selected non-relabeled subsequences
By, Bat, Bar =B in L?(0,T;L*(Q)),  Bas Bas, Bar— B in L2 (0,T; H*2(Q)), (72)
Uny, Unt, uar —u  in L* (0,75 L (Q)), Wny, Uap, Uar —u  in L2 (0,73 H>(Q)) . (73)

The equality between the weak limits of E’At, Bat, Bay and UWay, Tat, Uat is given by Lemma 7.1.
The inclusions (70) and (71) follow from the fact that ua:(t) € Vi@ for any t € [0,T] and Ba(t) € Yk
for any t € ((k — 1)At, kAt]. Moreover, for the discretized external forces Ja; and ga, it follows

Jar—J in LP((0,T) xQ),  gay—g inLP((0,T) x Q) V1< p< oo,
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directly from their definition in (40), c.f. [36, Lemma 8.7].

4.1 Characteristic function

The fact that it still holds ﬁlA_tl = 0 whenever suppxh, (2 = & and (53), (54), (57) in the other
case imply the condition (209) from Lemma 7.2 and in particular we get the existence of a function
ITe L*(0,T; VV&)COO(R?’)) such that

loc

Oy, “I inL” <0,T; leOC(Rff)) L ()=o) +wt) xz,  vawe LP0,T).  (74)

In (119) we will characterize the limit function I more specifically through the density, the velocity
and the characteristic function, similar to (35). By the relations (61) and (63) we also have the
conditions (210) and (211) of Lemma 7.2 which, in combination with Remark 7.1, implies that

xat —x inC([0,T]; L7 (R?)) V1<p< oo, x(t,z) = xo (X"(:0,7)), (75)
XZA — X" in C([0,T] x [0,T]; Cioc (R?)), (76)

where y and X are the unique solutions of

T T
—J f X0:Odxdt — f x009(0,z) dx = J f (xI) - VO dzdt VO e D ([0,T) x R3) , (77)
0 Jr3 R3 0 JRr3

XM (st
dEiSt”x) zﬂ(t,XH(s;t,x)), XH(S;S,SU) =z (78)
respectively. From (75) it also follows that
Xae Xar— x i C([0,T]; L7 (R?)) V1<p< o, (79)

which is obtained in the same way as the similar statement in [36, Lemma 8.7].

4.2 Induction equation

In the passage to the limit of the induction equation (83) below, we consider test functions from the
space Y (x,T) which are curl-free in a neighbourhood of the solid region in the limit. To see that this
is possible, let us choose an arbitrary v > 0 and denote by Sy (x(t)) and S7(x(t)) the y-neighbourhood
and the “y-kernel” of S(x(t)) respectively, i.e.

ST (x(t)) := {m e R?: dist (x, S(x(1))) < 7}, Sy(x(t) :={x e S(x(t)) : dist (x,05(x(t))) >~}.

From the uniform convergence (76) of X gt“ and the relation (62) between thm and the characteristic
functions ya¢, it follows the existence of some d(y) > 0 such that

Sy(x(1) = S (Xae(®)) = ST (x(#)) Ve [0,T], At <6(v). (80)

Now we fix an arbitrary function b € Y (x,T'), hence there exists some > 0 such that b is curl-free in
S7(x(t)) for any t € [0,T]. Then, by the second inclusion in (80), b is also curl-free in S (X a.(t)) for
any At < 6(vy). In other words,

b(t) e Wh Ve ((k—1)ALEAL], k= 1,..., %, At < 5(v), (81)

so we may use b(t) as a test function for the discrete induction equation.
Next we take an arbitrary interval I < (0,7) and an arbitrary open ball U < R? such that I x U <
Q°%(x,T)(N Q. The first inclusion in (80) implies

curlB = A1};m0 curlBa; =0 a.e. in I x U and thus in Q% (x, T) ﬂQ (82)

15



Now we take b€ Y (x,T') and At > 0 sufficiently small such that (81) holds true. For fixed k we test
the discrete induction equation (34) by b(t), t € ((k — 1)At, kAt], integrate over this interval and then
sum up over all k to see

kAt k—1
Bk - B
f fatBAt bd:cdt— f f At tAt b dzdt
1At

:J f <—curlBAt + Upp X E’At + *7At — 62|cur1BAt]2(:urlBAt> -curlb dzdt
o o 1

T
—f f ecurl (curlBay) : curl (curld) dadt. (83)

An interpolation between L*(L?) and L?(L*) together with the estimates (65)—(68) leads to the
bounds

By, <ec (84)

LAOTIAQ)

L 1
€1 ||UAtHL4(O,T;L4(Q)) s¢ e

Together with the bound (69) this implies the existence of functions z € Lg((O,T ) x Q) and 21,29 €
L?((0,T) x Q) such that for chosen subsequences

€ {curlEAt‘zcurIEAt — ez in L3 ((0,7) x Q), (85)
Tar X By — 21 in L2((0,7) x Q), (86)
curlBy, x B, — 2 in L2((0,T) x Q). (87)
With these convergences at hand we can pass to the limit in (83) and obtain

f J B - 0tb d:cdt—f By - b(0,x) dx
f J [—curlB + 21+ J - 62,2] - curlb — ecurl (curlB) : curl (curld) dzdt (88)
,u

for all b€ Y (x,T). The main difficulty of this section is now to identify the limit functions z; and zs.
The limit function z does not need to be identified, as it will vanish from the equation when we pass
to the limit with ¢ — 0. We first note that

z1-curlb =0 = (ux B) -curlb a.e. in Q%(x,T ﬂQ, (89)
29 =0 =curlB =curlB x B a.e. in QS (x, T ﬂQ, (90)

where (89) follows directly from b € Y (x,T) and (90) follows in the same way as (82). Hence it
suffices to identify z; and zo in the fluid region. In order to do so, we choose an arbitrary interval
I = (a,d) = (0,T) and an arbitrary open ball U ¢ Q with I x U < Q¥ (x,T) := Q\@S(X,T). In
(81) we have seen that, for any sufficiently small At > 0, functions from D(I x U) are admissible test
functions in (83). By a density argument, (83) may thus also be tested by any b € L*(a, d; HS’Q(U)),
extended by 0 outside of (a,d) x U. This, together with the L*((0,T) x Q)-bound of T in (84), leads
to the dual estimate

l Bat(+) — Bag(- — At)

At
From this estimate, we can now derive a corresponding estimate for the retarded interpolant le-
Indeed, for arbitrary b € L4(a + At, d; H2’2(U)), we infer

a+At

fd Atf Bau(t BAt( — At)

L er-2awy

. b(t + At) dxdt < chHL‘l(a—&-At,d;Hg‘Z(U))’ (92)
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so it holds _, .
Bpy(+) = Bag(- — At)
At

<ec. (93)
L3 (a+ At,H-22(U))

This gives us the conditions for the discrete Aubin-Lions Lemma [11, Theorem 1], which yields
B, — B in LA(I; H-2(U)). (94)
By the arbitrary choice of I x U this is sufficient to infer

zi=uxB ae inQF(x,T), 2z =curlBxB ae. in QI (x,T). (95)

4.3 Continuity equation

We test the discrete continuity equation (32) by PZw apply Young’s inequality and sum over all
k=1,...,1,1¢€ {1, v %} which leads to

!
T
|0ael 220 + 2Atk21‘fvpg\%2(m <|polZeg) Vi€ {1»--~, At} (96)

Hence, pa; is bounded in L2?(0,7T; H%?(2)) and we can find p € L?(0,T; H'*(Q)) such that for a
chosen subsequence
Par —p in L?(0,T; H*(Q)). (97)

Further, from the continuity equation we derive the dual estimates

Par(c) = pac(- — At) Pac() = Pps (- — AY)

At At
by the same arguments as the bounds (91) and (93) for the discrete time derivatives of Ba; and E/At.
In particular, we can again apply the discrete Aubin-Lions Lemma [11, Theorem 1] to infer

<c  (98)

< ¢,

L2(0,T5(H2())*) L2(At,T;(H2(Q))*)

Pats Pag — p in LU(0,T;L7(R%)) V1I<g<oo, p<p<p ae in[0,T] xR’ (99)

where the limit function p has been extended by p outside of (2. Now, we sum the discrete equation
(32) over all k =1, ..., % and pass to the limit by means of (97) and (99). This yields

T T
- J f PO dxdt — f pot(0,z) dx = f f (pu) - Vb + epAt) dxdt Y € D([0,T) x ). (100)
0 Ja Q 0 Jo

Our next goal is to show strong convergence of Vo, which is required for the limit passage in the
momentum equation. The first bound in (98) further implies that for a subsequence

dpar = ap in L2 (0,73 (H2()"). (101)

Consequently, the limit of the discrete continuity equation can also be expressed in the form
JOT JQ Oy — (pu) - Vip + eVp - Voo dedt =0 Voo e L2(0,T; HY?(Q)), T € [0,T1]. (102)
We now test (102) by p and compare it to the corresponding relation (96) on the At—level, which will

yield convergence of |Vpa;lr2(0,7):02(0)) and thus the desired strong convergence of Vpa,. Indeed,
testing (102) by p we obtain

I6() ey + 2¢ f L Vol dwdt = [p(0) 2q, - (103)
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Further, the inequality (96) can be rewritten in the form

IAt—~ T
[acIAE = )22, +26f J Voadl? dedt < pof22i0) ¥y € [0,A1), Le {1,...,At}. (104)

Any 7 € (0,T] can be expressed as 7 = [At — « for some [ € {1,...,%} and v € [0,At). Thus,
subtracting (103) from (104) and making use of the strong convergence (99), we infer that for a
further subsequence

hmf f Vol dedt < f J |Vp|? dzdt for a.a. 7€ (0,T]. (105)
0 JQ

At—0

On the other hand, for each such 7 the weak lower semicontinuity of norms guarantees us the existence
of z3 = 23(7) € R such that for another subsequence

IVPacl72(0:r200) = 7 = V072000200 (106)
Combining (105) and (106), we infer that for almost all 7 € [0, 7] there exists a subsequence for which

||V5At\|L2(o,T;L2(Q)) - ||VPHL2(0J;L2(Q))‘

In combination with the weak convergence (97) and a diagonal argument, this implies the desired
relation

Vpa; — Vp in L2 (0,7’; L2(Q)) for a.a. 7€ [0,T]. (107)

Next, we show that the limit density satisfies a regularized and integrated version of the renormalized
continuity equation (29), which will be significant in the limit passage with respect to e — 0. To this
end we take an arbitrary smooth and convex function 8 on [p,p] and test (32) by 8/(p%,) for any
k=1,.., A 7. By the convexity of 3 and the fact that div)y, = 0 this yields

ph p P — PR
f J OuparB (Pa) dv =At (Z J = At —AL 8L B (pRy) d ) + VL %E(le) dx
|| e s o) dade— [ | Tpa V8 (o) o

—fo LGWPAAQB”(PM) dwdt < 0 (108)

for any 7€ (0,T], and [ € {1, ey Alt}7 v € [0, At) chosen such that 7 = [At — ~. Since the derivatives
of B are bounded, the strong L?(H'?)-convergence of pa, (c.f. (99), (107)) implies

B"(pae) = B"(p) in L*((0,T) x ),
B (ar) — B'(p) in L? (0,7; Hl’g(Q)) for a.a. 7€ [0,T].

Using this in combination with (101), we can pass to the limit in (108) and obtain the desired relation

fﬁ dx—fﬂpo dx—fj&tﬁ ) dadt = — ff B"(p)|Vp|* dzdt <0 for a.a. 7€ [0,T].
(109)

4.4 Momentum equation

We test the discrete momentum equation (33) by ¢(t) for ¢ € L*(0,T; VZ(£2)) and sum the result over
all k. Using the Holder inequality and the Gagliardo—Nirenberg interpolation inequality we estimate

T
[ [ e(Vaavpa) -6 o
0 Q
<e|Vuar| a2 VParl 20,102 14l L4 0,702 ()

1 1
<ce[Uatl 720 1,22 me)) [Tatl foo 0 1.2 my) VPt L20,m;2(00) €] 30,7500 () < €
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This allows us to infer the dual estimate

(P s (1) = (pu) s (- = AL)
At

= [0(puw)acl 4/ i ron oy < C (110)
L3 (o,T;(V@(Q))*) LS(O’T’(VO (@) )

We can now mimick the compactness results for the time-dependent incompressible Navier-Stokes
equations, c.f. [31, Theorem 2.4]. The estimate (110) gives us the conditions for the discrete Aubin-
Lions Lemma [11, Theorem 1], which allows us to deduce

F (wm) — P(pu) in L? (O,T; (VOQ(Q))*) |

where P denotes the orthogonal projection of L?(£2) onto the space V°(Q) of weakly divergence-free
L?—functions. This, in combination with the L*((0,T) x Q)-bound (84) of @y, leads to

uar —u in LIY((0,T) x Q) V1i<g<4. (111)

With this strong convergence at hand, we derive the following limit version of the momentum equation
T
- J J pu - Opp dxdt — j pouo - ¢(0,z) dx
0 JO 0

T 1
| [ pw@w Vo 2D Vo px (-6
0 Jo n
+pg- o+ ; (curlB x B) - ¢ — € (VuVp) - ¢ — eAu - Ap dxdt (112)

for any ¢ € D([0,T) x ) with divg = 0, where IT was defined in (74). Here we further used the strong
convergence (107) of Vpa, and the relations (87), (90), (95) which identify the magnetic term in the
limit equation. Now it only remains to identify II. We start by remarking that

J p(t)x(t)dz = p|S| >0 for a.a. te[0,T]. (113)
R3 -

We pick an arbitrary ball Bg c R? with radius R > 0, centered at 0. The weak-* convergence (73)
of @y, the uniform convergence (79) of the characteristic function and the strong convergence (99) of
the density yield that

JRS ParXar Unag dw = - px wdzr in L*((0,T) x Bg),

Jﬂ@ PAXA; T do — » px x dx in LP((0,T) x Bg) V1<p< w0,

f]st PatXar dv — JR3 px dz in LP((0,T) x Br) V1<p < o0.

Combining the latter convergence with the bounds (52), (113) away from 0 we further see

1 1
— in L? ((0,T) x Bg) V1<p< o,
1 # 1

_ A in L® ((0,T) x Bg)
Sps PacXay dz Sgs px da

and altogether

Sps PAX AN AT ——1 Spaoxude
— = (ug — (ug ==——— inL 0,T) x Br 114
SR?’ pAtX/At dx ( )At ( )[X,pﬂt] SR3 X dx (( ) ) ( )
as well as
S v d J
SopaXaw de oy S XA 0 Ty By Vl<p<w.  (115)

Srs ParXa; dx -~ (pepx do
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Next, we consider the matrix
=/ _ —_r 2. _ _
Tae= ||| pact (lo = asuPid = (o~ aa) @ (2 ) do.
for which similar arguments together with the already proven convergence (115) lead to

T/At = Iy p) = fRs PX (|a; - a[x,p]|21d - (yc - a[xw]) ® (55 - a[xw])) dr in LP((0,T) x Br) (116)

for any 1 < p < c0. From this and the bound of the eigenvalues of T’At(t) away from 0, c.f. (54), it is
possible to derive

(Ta) ™' = (Iny) in LP((0,T) x Bg) V1<p<oo. (117)

This, together with arguments similar to the ones used for (114), yields
— =/ -1 . — —/ —/
WAL = <IAt) 55 PAtXAt (37 - aAt) X Upy dx
— Wypl :=I[;}p] JW px ((z — a[x,p]) x u) dz in LP((0,T) x Bg) V1 <p < . (118)
Now (114), (115) and (118) imply
I = (u6) pypaa) + W] X (= apgp) = T p- (119)

4.5 Energy inequality

In order to derive an energy inequality for the limit system, we first derive a slightly modified version
of the discrete energy inequality (50). More precisely, we again add the estimates (48) and (49) and
sumover all [ =1,...,k, k€ {1, e %} Since each 7 € (0,7] can be written in the form 7 = kAt —~
for some k € {1, - A%} and v € [0, At), this leads to

1 — B 2 T . T B
S Vv L N L L 2w [V, 2)? dudt + JO Lemum(t,xn? dadt
M By 4 [ S jewiBart, )| dwdt + [ [ € |ABactoa) dedt
ap ORI T g Jg 43 Y 0 Jon! T
T 1 o
+J J —2|curlBAt(t,x)|2 dzdt
0 JooH
1 2 1 9 T 1, _ —, — _
< - _Z — .
D) H\/EOUOHLQ(Q) + 2 ||BOHL2(Q) +L JQ npAt(tafﬂ)XAt(t,ﬂf) (UAt(t»l“) HAt(ta$)> une(t, )
1 _ _
P86 2) - Tailtow) + o (eurtBlay(t2) x Bl 7)) ()
1 — — 1= —
+ m (ﬂAt(t, x) X B/At(t,x)> ceurlBag(t, x) + —=J ar(t, @) - curl Bag(t, x) dxdt + ¢ [At + (At)%] )
o
On the right-hand side of this inequality we can pass to the limit by using in particular the strong

convergence (111) of wa; and the relations (87), (90), (95) which identify the limits of the mixed terms.
Using the weak lower semicontinuity of norms on the left-hand side, we end up with

1 1 T
f o) + 2B d + f f 20 [Vut, 2)* + el At ) + 5 |2(t,2)|
Q2 24 0 Ja Iz

4
3

1 1
+ i |IAB(t, z)|* + o lcurl B(t, z)|* + Ep(t, x)x(t, z) |u(t,z) — iy pu] (t,:n)’2 dxdt

1 1 T 1
< JQ §p0|uo\2 + §|BO|2 dx + JO jﬂ p(t,x)g(t,x) - u(t,x) + ;J(t,x) -curlB(t, z) dzdt (120)
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for almost all 7 € [0,T']. Here, the mixed terms canceled each other by the identity
(curl Bx B)-u=—(ux B)-curl B,

and the term involving u — IIj was rewritten by means of the relation

X5t
L fﬂ p(t,x)x(t, @) (u(t,z) — py pog (¢, 1)) -y pag (B 2) dedt =0, 7€ [0,T],

c.f. [4, Lemma 3.1]. In summary, we have shown

Proposition 4.1. Let all the assumptions of Theorem 1.1 be satisfied and let € > 0. Assume in
addition that

po€ HY(Q),  wo, Bye H**(Q).
Then, there exist

pee{weL2 (O,T;H1’2(Q)) D p<Y<pae in Q}, (121)
Xe€ C([0,T]; L7 (R?)), 1<p<w, zeLi((0,T)xQ), (122)

S {b e L (0,73 L*()) (| L2 (0, T; H**()) : divb =0 in Q,
curlb = 0 in Q%(xe, T ﬂQ, b-nloq = 0} (123)
uee L* (0,7 LX(Q)) (L7 (0, T3 V5(2) (124)

such that

f f Xc0:O dxdt —f x009(0, z)
R3 R3

i<, J,
j J POty dadt —J pot(0, ) J f petie) - Vb + ep At dadt, (126)

T
—f f Pelle - Opd dxdt — f pouo - ¢(0,z) dx —J J Pe(tue ®ue) : Voo — 2vD(u) : Vo
0 JQ Q 0 JOQ
1
- ;peXe (ue - H[Xe,pe,ue]) “ QO+ peg - b

VO dadt, (125)

Xe »Pe 7ue )

1
+ M (curl Be x Be) - ¢ — € (VueVpe) - ¢

— €Au, - A¢ dxdt, (127)
f jB 6tbdxdt—JBo (0, ) daz—J f {—curlB + Ue X Be + J M 6]-curlb
— ecurl (curl Be) : curl (curlb) dzdt (128)

for all® e D([0,T) x R?), ¥, ¢ € D([0,T) x Q) and all be Y (x,T). Moreover, these functions satisfy
the energy inequality

ol

1 1
f —pe(T)|ue(1)]? + =—|B(7)? dw+f f 2w |Vue(t, z) > + €| Auc(t, 2)|? + — |z€(t x)|
Q2 2u 3

1
+ 2 |AB.(t,2)|* + 07112 lcurl Be(t, )| + Epe(t,a:)xe(t,a:) ue(t, @) — Iy, po ] (t,a:){2 dxdt

1 1 T 1
< JQ 5p0|u0\2 + 5]30]2 dx + fo fﬂ pe(t,x)g(t, x) - uc(t, z) + EJ(t, x) - curl Be(t, x) dxdt (129)
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for almost all T € [0,T] and the characteristic function x. is connected to the solution XMixe.peuel of
the initial value problem
A X Mixe.peucl (3; t, gj)
dt

= H[Xs,Pe,ue] (t, XH[Xsﬂpe,ue] (3; t, _jp)) , XH[Xe,pe,ue] (S; s, ZL‘) = (130)

X(t7 ‘T) = X0 (XH[XE’pe’ue] (ta 07 IL’)) : (131)

5 Limit passage with respect to ¢ — 0

From the energy inequality (129) we infer the existence of a constant ¢ > 0, independent of ¢, such
that

el oo o,m:02(0)) + [1Bel o 0,m;2(0)) + [wel 200, 512(0)) + | Bell z20,1m12(0)) < ¢ (132)
€2 | Al 2o mye) + €1 126l 4 .y + €7 NABel 2oy < (133)

The continuity equation on the e-level tested by pe, c.f. (103), yields
€[ Voel 22 0. a) < c- (134)

Further, from the lower bound (113) for the total mass of the solid we deduce, similarly to (53) and
(54), the estimates

appa®] <00 |06 o) O] < lue®lizy . [pnnd®] < ch®lpagy . (15
v (I, p()v) = clv]? YveR3, (136)

for the quantities afy, .1, (UG) [y, pouc]r Wixepeud) @04 L[y, 5, introduced in (114)—(118), with ¢ inde-

pendent of ¢ and € and therefore

My peuc) Lo ) < cllue(t) |2y for a.a. te[0,T]. (137)
By this, the bounds in (121) for the density and the uniform bounds (132)—(134) we find functions
pe LP((0,T) x Q), IleL® (O,T; 1 (R3)> , (138)
Be {b e L (0,T; L*()) ﬂL2 (0,7;VH(Q)) : b-nlsg = 0} (139)
we L7 (0,73 L2(Q) () L2 (0,73 Vg () (140)
such that for chosen subsequences
ue = u in L% (0,T; L*(Q)), ue —u in L?(0,T; H*(Q)) , (141)
B =B in L*(0,T;L*(®)), B.— B in L*(0,T; H"*(Q)), (142)
pe S p in L% (0,T; L°(Q)), My oy ST in L7 (0,75 W5 (R)) (143)
and
Ve, eAue, eAB. — 0 in L2((0,T) x Q), ez —0 in L3((0,T) x Q). (144)

5.1 Characteristic function

The transport equation (125), the equation (130) for the associated characteristics and the estimates
(135) correspond directly to the conditions for Lemma 7.2 and Remark 7.1, which therefore yield

X, xerend XM i 0([0, T x [0,T7; Cloc (R)) (145)
Xe—»x inC([0,TLF (R*)) Vi<p<owo, x(tz)=xo0 (X"(0,2)),  (146)
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where y and X! are the unique solutions to

T T
—J J X0Odxdt — f X0©(0,x) dx = j f (xI) - VO dzdt YO € D ([0,T) x ]Rg) , (147
0 JR3 R3 0 JR3

dX"(s;t, )

Iy.. I . —
o =11 (¢, X" (s;t,2)), X" (s;s,x) = x. (148)

5.2 Induction equation

Interpolating the bounds for B, in L*(0,T; L?(Q)) and L?(0,T; L5(2)) we see that B, is also bounded
in L3((0,T) x Q). Hence, using the Holder inequality, we find zy, z5 € Lg((O,T) x ) such that for
selected subsequences

Ue x Be — 24 in L5 ((0,T) xQ),  curlBe x B, — z5 in L5 ((0,T) x Q). (149)
Further, for any v > 0 we again find, by (145) and (146), some () > 0 such that
S (x() © S(xe(t) © S7 (x(t) € S (x(1)) Vte[0,T], e < (). (150)

We fix arbitrary b e Y (x,T), so b is curl-free in S7(x(¢)) for some v > 0 and all ¢ € [0,T]. Now (150)
implies that b is also curl-free in a J-neighbourhood of the solid region on the e-level for all sufficiently
small € > 0. In particular it holds b € Y (x., T) for all such e. Thus, letting ¢ — 0 in (128), we obtain

T
— f f B - 0b dxdt — J By - b(0) dx = J f [—curlB + 24 + J] curlb dxdt (151)
0 JQ Q

for any b € Y (x,T), where the regularization terms vanished as stated in (144). It remains to identify
z4 and z5. On the solid domain, we can argue as in Section 4.2 and see from the fact that B, is
curl-free in Q% (x.,T) (@ and (150) that

zg-curlb =0 = (u x B)-curlb, curlB x B =curlB =0 = zj a.e. in Q%(x, T ﬂQ (152)

for be Y(x,T). In the fluid region we again consider an arbitrary set of the form I x U < Q¥ (x,T),
where I < (0,7) is an interval and U < 2 is a ball. For any sufficiently small € > 0 the first inclusion
in (150) implies that, for all functions 1 € D(I) and b € D(U) extended by 0 outside of I and U, the
product ¥b is an admissible test function in the induction equation (128) on the e-level. This, together
with the uniform estimates (132), (133) leads to the dual estimate

, Sec (153)
L3(I)

6tf B€ -bdx
U

This allows us to apply the Arzela-Ascoli theorem and deduce
Be — B in Cyeax (I; L*(U)) and thus in L? (I; H?(U)) V1< p < . (154)

Hence, writing
1
f j (curlB, x Be) - b dxdt :J J div(Bc® B.) - b—V (2 ]B€|2> -bdxdt, beD(IxU), (155)
1JU 1JU

which allows us, after integration by parts, to shift the derivatives to the test function b, we conclude
the desired identities

z=ux B ae inQF(x,T), z5 = curlB x B a.e. in QF (x,T). (156)
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5.3 Continuity equation

We test the continuity equation (126) by ¢®, where ¢ € D(0,T") and ® € D(2), to find that

< c.
L2(0,T)

8,5 J Pe Pdx
Q

This again gives us the conditions for the Arzela-Ascoli theorem, from which we obtain
pe = p in Cueak ([0,T]; L2(2)) and thus in L (0, T (HLQ(Q))*> Y1 < p < .

Combining this with the weak convergence (141) of u. and the fact that eVp, converges to 0 in
L?((0,T) x Q) according to (144), we may pass to the limit in (126) and obtain

T T
— J f porhdxdt — J po(0,x) dx = J f (pu) - Vb dxdt Vi € D([0,T) x Q). (157)
0 JQ Q 0 JQ

Since p € L?((0,T) x ), the transport theorem by DiPerna and Lions [10] implies that p also satisfies,
in the sense of distributions, the renormalized continuity equation (29) for any bounded 8 € C*(R)
vanishing near 0 and such that also (8(1+|-]))~! is bounded. As p is bounded from above and away
from 0, we can actually choose §(z) = zIn(z). Using the same choice in the corresponding relation
(109) on the e-level, letting € — 0 and comparing the results, we conclude

lin%f pen(pe(7)) do < J pln(p(7)) dz  for a.a. 7€ [0,T].
e~V Ja Q

Following e.g. [15, Theorem 10.20], this implies, by the strict convexity of z — zln(z), that
pe — p a.e. in (0,7) x Q.
In particular it follows
pe—p ImLP((0,T)xR% Vi<p<ow, p<p<p ae in[0,7]xR? (158)

where p has again been extended by p outside of .

5.4 Momentum equation

In order to pass to the limit in the momentum equation we further need strong convergence of the
velocity field. We test the momentum equation (127) on the e-level by ¢®, where ¢» € D(0,T) and
® € D(Q2) with div® = 0. This yields

. <e¢, (159)
L3(0,T)

8,5] P(peu) - @dx
Q

where P again denotes the orthogonal projection of L?(2) onto V9(Q2). The estimate (159) leads,
under exploitation of the Arzela-Ascoli theorem, to

Plpeue) — P(pu)  in Cyear([0, T]; L2(2)) and thus in L2 (o,T; (vol(sz))*) :

By the same arguments as in the proof of the classical compactness results for the incompressible
Navier-Stokes equations, c.f. [31, Theorem 2.4], this yields strong convergence of u, in L2((0,T) x §2)
and in particular

petle @ Uue — pu®u  in L? <O,T;Lg(Q)) . (160)

Moreover, we can use the strong convergence (146) of the characteristic function and the strong
convergence (158) of the density to identify the limit function II from (143) as IT = Il , ., just as in
(119). Combining this with (149), (152), (156) for the identification of the magnetic term and (160),
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we can pass to the limit in (127). The regularization terms again vanish as stated in (144) and so we
end up with

T
— J f pu - Orp dadt — J pouo - ¢(0,z) dx
J f (u®u): Vo —2vD(u) : (f)—fpx( H[X,p,u])-¢+pg'¢+i(cur1BxB)-¢dxdt
(161)
for any ¢ € D([0,T") x Q) with divg = 0.

5.5 Energy inequality

We drop the (nonnegative) regularization terms from the left-hand side of the energy inequality (129).
Using weak lower semicontinuity of norms, we then let € tend to 0 and obtain

J;;pﬁﬂu(ﬂ |B()Fdx+J~J‘h4Vu@xﬂ # s wtl B(t o)

+ 717,0(15, z)x(t, ) | (u(t, z) — Uiy pou] (t,a:))| dxdt
1 1 T 1
< fﬂ 5p(0)|u(0)\2 + §|B(O)]2 dx + Jo JQ p(t,x)g(t, z) - u(t, z) + Ej(t’ x) - curlB(t,x) dedt  (162)

for almost all 7 € [0, T]. Altogether we have shown

Proposition 5.1. Let all the assumptions of Theorem 1.1 be satisfied and let n > 0. Assume in
addition that

Pon € HI’Q(Q), uom, Bon € HQ’Q(Q)-

Then there exist

pp€{e L ((0,T) x Q) : p<t<p ae. inQ}, (163)
Xy € C([0,T]; L” (R?)), 1 < p < oo, (164)
e {b e L (0,7 LA(Q)) ()L (0, T; H'*(Q)) : divb =0 in Q,
curlb = 0 in Q5( (Xn, T ﬂQ, b-nloq = ()} (165)
up € L (0,15 L)) [ L* (0, T3 V5 () (166)
such that
T
f J Xn0tOdxdt —f x09(0, z) =J memun]) - VO dxdt, (167)
R3 R3 0 R3
T
f f pnOpdadt —f pon(0,x) J f pyiy) - V) dzdt, (168)
0 Ja
T T
—J J;l Py - 0r@ dxdt — JQ poyUoy - ¢(0,x) de = 0 Pty @uy) : Vo — 2uD(uy) : Vo
0 0

1
P (wn = Mpxypmiun]) = @+ Png - &

1
M — (curl B, x By) - ¢ dzdt, (169)

J JB 0tbd:cdt—f By, - b(0, ) dx—f f [—curlB +uy x By + J] curlb dxdt
(170)
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for all © e D([0,T) x R3), 9, € D([0,T) x Q) and all be Y (x,T). Moreover, these functions satisfy
the energy inequality

L ) |, (7) 2 S )% dx ’ v |V (t, z)|?
| 5ouOlun(OE + 5 B o+ || 20 V(0

1 1 2
+ U—MQ |curl Bn(t,ac)\2 + Epn(t,:r)xn(t, x) ’un(t, x) — iy, ] (¢, x)‘ dxdt

1 1 T 1
< jﬂ 5/)0777|u0777|2 + §|Bo’77|2 dx + L JQ py(t,x)g(t,x) - uy(t, ) + ;J(t, x) - curlBy(t,x) dedt (171)

for almost all T € [0, T] and the characteristic function x,, is connected to the solution X Wixn o] of
the initial value problem
dX Mxn.onun) (s;t,x)

dt

= H[ ] (t, XH[Xnanyun] (8; t, .’L’)) s XH[anPn,un] (S; S, JI) =X (172)

XnsPnyUn

x(t,z) = xo (XH[X”’”"’“"] (t; 0,00)) : (173)

6 Limit passage with respect to n — 0

6.1 Uniform bounds and convergent terms

In order to prove Theorem 1.1, we assume in this section further that the regularized initial data we
had chosen on the At-level and the e-level satisfy

pon, — po in L*(Q),  wp, —wug in L*(Q),  Bo, — Bo in L*(Q), (174)

where pg, ug, By denote the initial data in Theorem 1.1. The energy inequality (171) implies the
existence of a constant ¢ > 0, independent of 7, such that

g || oo 0,752 (02)) + [ Bl o, 220)) + lugllz2o,mm120)) + 1Byl 2 0,m;m12(0)) <6 (175)
1
1 HXﬁ (uﬂ - H[memun]) HL2(07T;L2(Q)) <6, (176)
7’]2

and as in the corresponding estimates (135)—(137) on the e-level, we deduce that

’a[xn,pn](t)‘ <6 ‘(uG)[XW’PmUn] (t>‘ <c “uﬂ(t)HL2(Q) ) ‘W[Xn,pn,un] (t)‘ <c Huﬂ(t)HLQ(Q) ’ (177)
v+ Iy, po1 (B)V) = clv]* VYveR3, (178)
||H[memuﬂ] (, .)||WLOC(Q) <ec ||u,7(t)HL2(Q) for a.a. t € [0,T] (179)

with ¢ independent of 1 and ¢. The above bounds, together with the uniform bounds for the density
in (163), allow us to find functions

pe L*((0,T) x Q), (180)
Be {b e L” (0,75 L*()) [ | L2 (0,T; V1)) : b nlon = 0}, (181)
we L (0,T: L2(Q)) () L2 (0,T; V4 (Q)) (182)
such that for extracted subsequences
u, =u in L* (0,T; L*(Q)), Uy — U in L* (0, T; H*(Q)), (183)
B, =B in L*(0,T;L*(Q)), B, —~ B in L* (0, T; H'*(Q)), (184)
py = p i L7 (0,T; L°(Q)), My ] = M 0 L7 (0,75 W0° (RF)) . (185)

The identification of the limit function IIfy , ) = (uG) [y pu) T Wxpa] X (T = afy,,]) In (185) can be
obtained as in the derivation of (119), under the exploitation of the strong convergence of x, in (187)
and py, in (190) below.
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6.2 Characteristic function

The transport equation (167), the equation (172) for the corresponding characteristics and the bounds
(177) allow us to once more apply Lemma 7.2 and Remark 7.1, which yield

s

Xyl XM i C([0,T] x [0, T Cloe (%)) (156)

Xy —x inC([0,TLF (R?) Vi<p<oo,  x(tx)=x0(X"t0,2), (187)
where Xxrul and y denote the unique solutions of

T T
—J f X0:Odzdt — J X0©(0, x) dx =J J (XM ) - VO dzdt YO €D ([0,T) x R?), (188)
0o Jr3 R3 0o Jrs

dX Mx.p.ul (s;t,x)
dt

=Ty, pa) (t, X Toord (558, 3)) XMicrl (s;5,2) = .

(189)

6.3 Continuity equation

For the strong convergence of the density we can apply classical compactness results for the incom-
pressible Navier-Stokes equations, c.f. [31, Theorem 2.4, Remark 2.4 3)], and infer that

py—p inC([0,T]; L7 (R?)) VI<p<oo, (190)

with p once again extended by p outside of . Passing to the limit in (168), we see that p is the
solution to

- LT L porpdzdt — L poto(0, ) da = LT L(pu) - Vip dedt  Vip e D([0,T) x Q). (191)

6.4 Induction equation

In the induction equation, all the approximation terms already vanished during the last limit passage.
Thus the limit passage with respect to 7 — 0 works by the same arguments as before. Indeed, we can
first use the uniform convergence (186) to check that for any v > 0 there exists d(7y) > 0 such that

S (x(#) € S(xy (1) = S (x(1)) = S7(x(1)) Ve [0,T], n<d(y). (192)

Then we can argue as in Section 5.2 to conclude

curlB =0 ae in Q¥(x,7)[)Q, (193)

and
Uex Be—uxB inLs((0,T)xQ), cwrlB.x Be—cwlBxB inLs((0,T)xQ). (194)

Exploiting further the convergence (174) of the initial data, we can pass to the limit in (170) and
obtain

J J B-0ib dwdt—f By - b(0,x) dz —J J [—curlB—l—u x B+ J] curlb dzdt  (195)

for all be Y(x,T).
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6.5 Momentum equation

Let now 7" be given by (28), i.e. 7' denotes the first time at which the rigid body S(x()) collides
with 0Q or, if this never happens in [0,7], then 7" = T. Since the initial distance between the body
and 0f) is positive by (15), the uniform convergence (186) implies 7" > 0 and, for any Ty < 1", there
is some vy > 0 such that

dist(aQ, S(X(t))) >~ Vte|0,Ty]. (196)

Our first goal in this section is to show that the limit velocity indeed coincides with a rigid velocity
field in the solid region. To this end we consider an arbitrary compact set T x U < Q°(x,T”) with an
interval I < (0,7") and some ball U < Q. From the first inclusion in (192) we see that for sufficiently
small n it holds

TxUcQxnT))Q < xyn=1 onIxU.
By the estimate (176) this means
uy — 10 ] =0 in L*(I x U),

XnsPn,Un
and as I x U was chosen arbitrarily we get, as desired,

uw=1p,, ae onQ(x,T). (197)

X?piu

Next, we show that the projection term vanishes in the limit of the momentum equation (169). We
fix some arbitrary test function ¢ € T(x,T"), i.e. ¢ € D([0,T) x ), dive = 0 and there exists ¢ > 0
such that

D(¢) =0 in {(t,w) e Q(T) : dist ((t,x),@S(X,T')) < 0}, (198)
c.f. (16). We choose Ty < T” such that

supp¢ < [0,Tp] x Q (199)

and a corresponding v > 0 according to (196). By (198) ¢ € T (x,T"), there is some 0 < o < « such
for all t € [0, Tp] the function ¢(t,-) coincides with a rigid velocity field ¢°(t,-) on S7(x(t)) = Q. As

Xy(t,z) =0 for e Q\S (xn(1))

the inclusion (192) implies that for sufficiently small 7 > 0 it holds

T! 1 T 1 S
JO JQ _5PTIX77 (un - H[mena“n]) : ¢ drdt = JO JQ _%ann (“77 - H[Xnvpnv“n]) ’ ¢ drdt = 0, (200)

where the second equality is a consequence of the fact that U o] (t,)
of uy,(t, ) onto rigid velocity fields on S(x,(t)), c.f. [4, Lemma 3.1].

We further note that by the uniform bounds for u, in (175) there exists a function zg € L?(0, T} L3 ()
such that for a chosen subsequence it holds

is the orthogonal projection

Pty @ Uy — 26 in L? (O,T; L%(Q)) .
Combining this with the convergence (174) of the initial data, the strong convergence (190) of the

density, the weak convergence (194) of the magnetic term and (200), we can pass to the limit in (169)
and obtain

— JOT/ L pu - Oz dadt — L poto - $(0,z) dx = LT/ L 26 : Vo —2uD(u) : Vo

1
+pg- ¢+ — (curlB x B) - ¢ dxdt (201)
p

28



for any ¢ € T(x,T"). It remains to identify zg. To this end it is sufficient to show that

To To
J J pylun | dodt — J J plul? dxdt (202)
0o Jo o Jao

for arbitrary 0 < Ty < T”. Indeed, as in the proof of the classical compactness result [31, Theorem
2.4], this leads to strong convergence of u, in L%((0,Tp) x ) and in particular to

26 = pu®u a.e. on (0,7p) x . (203)

Since for any arbitrary but fixed test function ¢ € T (x,T”) we can find Ty < T such that the inclusion
(199) holds true, (203) suffices to identify zg in the momentum equation (201). The proof of (202)
is achieved by following mostly [4] and using further arguments from [14]. More precisely, for fixed
0 < Ty < T, we choose Ysup = Ysup(Tp) > 0 as the supremum over all v which satisfy (196). Then for
any 0 <y < B2, t € [0,Tp] and r € [0,1] we define

K (Q) =={v(t) € V7' () : D(v(t)) =0in D' (S7(x(t)))} (204)
together with the orthogonal projection
PI(t): H™(Q) — K[ (). (205)

By the triangle inequality we estimate, for arbitrary v € D(0,Tp), r € (0,1) and ~ € (0, Z22],

4
To To
U f Ypylug | dedt —f f Yplul? d:):dt‘
0o Ja 0o Jo

To
<Pl o 0,10) [unl 20,7052 | Py — UWHL2(O,TO;L2(Q) + Uo JQ W (pytty - Puy — pu - PYu) dadt

+p HwHLOO(O,TO) ”u”LQ(O,To;L2(Q) ”P;U - UHLQ(O,TU;Lz(Q) . (206)

Keeping 7 € (0,1) and v € (0, 5] fixed, we let first  tend to 0. During this procedure, the second
term on the right-hand side of (206) vanishes, c.f. Lemma 7.3 in the Appendix. Subsequently, by
letting v tend to 0, also the first and the last term on the right-hand side of (206) vanish, c.f. Lemma
7.4 in the Appendix. Finally, replacing 1 by a suitable sequence of cut-off functions on [0,Ty], we
infer the convergence (202) and hence the identity (203).

6.6 Proof of the main result

Summarizing the results from Sections 6.1-6.5, we can now finish the proof of Theorem 1.1. The
regularities of x and p in (18) and (19) follow from the choice of the spaces in (187) and (190). As

D (H[x,p,u]) =0,

the properties of u in (20) follow from (182) and the relation (197) between u and IIj, ,,), while
the properties of B in (21) are given by (181) and (193). The transport equations (22) and (23)
were shown in (188) and (191), where in (188) the function I}, ,,) can indeed be replaced by u
due to the relation (197) between these two functions and the fact that x = 0 outside of Q°(x,T").
The momentum equation (24) is satisfied according to (201), where z¢ was identified in (203). The
induction equation (25) was shown to hold true in (195). The energy inequality (26) follows by
dropping the nonnegative projection term in the energy inequality (171) on the n-level and exploiting
the weak lower semicontinuity of norms. Finally, by the group property [10, (76)], which is satisfied
by the solution Xl to the initial value problem (189), it holds that

S(x(t) = {z eR*: x(t,z) =1} = {X(0;t,2) : ze S} =X"(0;¢,9)
=xU (s;t, {XH(O;S,S)}) = XH(s;t,S(X(s)))

for all s,¢ € [0,7']. By (186), X' is the (pointwise) limit of a sequence of isometries and hence an
isometry itself. Thus, the identity (27) follows for the choice X = X', which concludes the proof.
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7 Appendix

In the limit passage with respect to At — 0 the following variant of [36, Theorem 8.9] is used, which
guarantees that the weak limits of different interpolants of the same discrete functions coincide.

Lemma 7.1. Let fAt;?Au?/At be piecewise affine and, respectively, piecewise constant interpolants of
discrete functions fX,, k =0,..., % defined as in (58)-(60). Assume further that

far S F in L0, T, L), fa,=F in LP(0,T;L2(Q) Ffa, = F in L2(0,T; L3(R))

Then it holds
- =

f=r=r. (207)
Proof L
The proof, which is performed by comparing the limit of the functions f,, f/At to the one of fas
in the pairing with piecewise constant in time functions respectively, can be found in the proof of
[36, Theorem 8.9]. For the convenience of the reader, we restate the argument here: Without loss
of generality, we only consider the subsequences with indices At = 27!T, 1 € N. We pick L € N,
k1 < ko < 25 and ¢ € L?(Q2) and consider functions of the form X[rk1,7ke] ¥, Where 7 := 27T > 0
and X([rk, rk,] denotes the characteristic function of the interval [7k1, 7k2]. By [36, Proposition 1.36],
linear combinations of such functions are dense in L?(0,T; L?(€2)). For At < 7, i.e. | > L, we calculate

T . % kAt B t — kAL
Jo JQ (fa = Ta) Kk, rhe]¥ dmdt‘ - k_gﬂ J(k:—l)At L [<th B fﬁt 1) At ] ¥ dodt
- —A;k_; | (fhemaket) - ) ‘—Aj . Cartrka) = pastrh)) -0 o] < et 08)

with ¢ independent of At, since fa; is bounded uniformly in L*(0,T; L?(Q2)). We conclude
far—far—0 in L*(0,T; L*(Q)),

which implies the first identity from (207). Using the same kind of test function again, we also see

T
[ ]| (7= 750) e o]
0 JQ

T B Tko Thy Tk1+At Thy
_ ‘ f f (Fat— Far) - Xt dadt + f £ dedt - f £ty dwdt‘
0 Q Thko— At JQ Tk1 Q

<ScAt + 2488 f adll Lo o2 @) ¥ 20 < A,

exploiting in the first inequality the estimate we already know from (208). This implies f = f’ and
hence the second identity in (207).

(]

For the limit passage in the transport equation we use the following result, which is a variant of [37,
Lemma 5.2, Corollary 5.2, Corollary 5.3]:

Lemma 7.2. Assume that for any n € N, the function
I, : [0,T] x R® 5 R3,  TL,(t,x) := va(t) + wn(t) x 2, vy, w, € L7(0,T),
satisfies

HUnHLOO(O,T) s Nwnll ooy < ¢ (209)
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with ¢ independent of n. Denote further by X, the Carathéodory solution of

dX,(s;t,x)

o =11, (t, X (s;t,2)), X,(s;s,2) =2, zeR3 (210)

and by xn(t,z) = xo(Xn(t;0,2)) the corresponding solution to

T T
- f f Xn0rOdxdt —j x00(0,z) dx = f j (Xnll,) - VO dzdt VO e D([0,T) x R3). (211)
0 JR3 R3 0 JR3
Then, passing to subsequences if necessary, it holds that

Xn— X inC([0,T] x [0,T]; Croe (R?)), (212)
xn—x inC([0,T;L? (R%)) VI<p<ow (213)

loc

with X denoting the unique solution of

dX(s;t,x)

o =1I(¢t, X (s;t,2)), X(s;s,x) ==, (214)

X the one of

T T
_ fo fRs x0:Odzdt — fRS x00(0,z) dr = L JRS (XI) - VO dzdt YO e D([0,T) x R®)  (215)

and with 11 given by

M, ST in L0, T; WEP(R?),  M(tz) = o) +w(t) xz,  v,we L0,T).  (216)
Moreover,
x(t,z) = xo (X(t0,7)). (217)
Proof

First we note that the existence of the solution X,, to (210) and the fact that y, is the solution to
(211) are guaranteed by [10, Theorem 3.2]. The relation (216) is clear by (209). The convergence
(213) and (215) then immediately follow from [31, Theorem 2.5]. From the Gronwall inequality, (209)
and (210) it is possible to check that for each compact K < R3

{Xn(s;t,-)} is relatively compact in C(K) for all fixed (s,t) € [0,7] x [0,T]
and further to show equicontinuity of the mapping
(Sa t) = Xn(s; t, )

from [0, 7] x [0,T] to C(K). This gives us the conditions for a generalized version of the Arzela-Ascoli
theorem, [44, A;(24i)], which allows us to infer (212). The fact that X (s;-, ) is the Carathéodory
solution to the initial value problem (214) then follows by writing (210) in a variational form and
passing to the limit with the help of (212) and (216). Since this solution is unique, it follows that the
solution of (215) is given by the right-hand side of (217). But since we already determined the unique
solution of (215) as the function y given by (213), the equation (217) holds true, which concludes the
proof.

]

Remark 7.1. If xo has compact support in R3, the relation xn(t,z) = xo(Xn(t;0,2)) allows us to
improve the local convergence (213) to

Xn — x in C([0,T]; LP(R3)) V1< p < 0.
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In the limit passage with respect to n — 0, we exploit the following two results, Lemma 7.3 and
Lemma 7.4, which are versions of [14, Lemma 3.4] (c.f. [4, Lemma 3.8] for a related result) and [4,
Lemma 3.6, Lemma 3.7] respectively. For the convenience of the reader we outline the proofs of these
lemmata below.

Lemma 7.3. Let 0 < Ty < T" be fized, where T" is defined by (28). Let further Ysuyp = Ysup(To) > 0
be the supremum of all v which satisfy (196). Then, for any v € (0, 252] and any 0 < r < 1, it holds

To
J w(,onun-P,;"un—pu~P§u) dxdt| -0 forn—0
0 Q

Proof

The argument of the proof is the same as in [14, Lemma 3.4]. Then we test the momentum equation
(169) on the 7-level by test functions ¢, where ¢ € D(Q) satisfies D(¢) = 0 in S7(x(r)) and
) € D(J(7)) for an open neighbourhood J(7) of 7 in [0, Tp], which, by the inclusion (192) and the
fact that Xoewl € C([0,T] x [0,T]; Cloc(R?)) (c.f. (186)), can be chosen sufficiently small such that

S5 (xy(t) € S%(x(7)) and thus D(¢) = 0 in S5 (x, (1))

for all t € J(7) and all sufficiently small n > 0. By the same arguments as in (200) it then follows that,

for all such 7, the term % P X (U — H[memun]) vanishes from the momentum equation (169) tested by

any ¥¢ as chosen above. This leads to the dual estimate

< ¢,
L3 (J(r))

atf Pty - ¢ dz

Q

which implies, since K, () [ D(R) is dense in K?, (Q), that
54 ’2

Pty — ptt - in Cyeak (J(T); (KB%(Q))*> and thus in L2 (J(T); (K:%(QD*) . (218)

From this it is easy to see that the assertion holds on J(7) and, by the compactness of [0, Tp], also on
[0, Tp].
O

Lemma 7.4. Let Ty be as in Lemma 7.3. For any fixed r € (0,1) it holds

(7)  lim lim HP Uy — =0,

y—0n—0
(17) %13(1) | Pl

nll 20 1522
=l 2o g2y = O

For the proof of Lemma 7.4 we introduce some additional notation: To this end we remark that by
the second inclusion in (192), we find some 7sup = Nsup(Ysup) > 0 such that

m%@msuﬁm)>§$ ¥ € (0, msup), ¢ € [0, T0],

where Ysup = Ysup(Z0) is as in Lemma 7.3. For any 0 < v < Vi%, 0 <1 < Nsup, t € [0,Tp] and r € [0, 1]
we define, corresponding to (204) and (205), the space
K@) i={o() € V(@) : D(u(t)) = 0 in D' (57 (xy ()}

and the associated orthogonal projection
Py () : H™(Q) — K. ,(Q).

We further need the following two auxiliary results:
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Lemma 7.5. There are constants 'Yi% > 9 > 0 and ¢ > 0 such that for all t € [0,Tp], v € [0,70] and
n € (0, Nsup] the trace inequality

1 3
17t o oy < DFE Egsnen e 1O B o) (219)

holds true for functions f(t,-) € H“2(S7(x,(t))) and the Poincaré-type estimate

2 2 2
17250 e Benon < € (VI Miseon + 72 16 s ionsontn) (2200
holds true for functions f(t,-) € HY2(S7 (x,(t)\S(xy(1)))-

Proof
We first sketch the proof of (219). The idea is to consider, for 79 > 0 sufficiently small, a mapping
P, on 0S(xn(t)) x [—70,70] such that ®¢,(-,0) = id and

{x e S (xn(t)): dist(x,dS (x,(t))) = —} for v < 0,
0 (05 0®)7) = { {3 € ST e 08 ) =) for g0

We further choose ®;, to be bi-Lipschitz continuous uniformly with respect to ¢ and 7, i.e. both ®;,
and its inverse are Lipschitz-continuous with Lipschitz-constants independent of ¢ and 7. Such a map-
ping exists, since S(x,(t)) is a Lipschitz domain by the assumptions of Theorem 1.1. For a, b € [—v0,Y0]
we denote by Sy, 145 the set @;,(3S(xy(t)), [a,b]). By means of some integral transformations, we
can now transfer the problem to S(x,(t)), where we can make use of the trace inequality

Heestamy <1 (081 rpo) =€ iy 225, [ 00) 220

c.f. [35, Theorem 2.3|, with a constant ¢ independent of ¢, v and n. The estimate (221) leads to

If (¢, ‘)H%%aswm(t))) <c|f(t, ‘I’tm(’a’Y))H%z(as(xn(t))) <c|f(t, )Hiﬁz Vv € [0,7%],

(57 (xn (1))
where the constants c are independent of ¢, v and 7 due to the uniform bi-Lipschitz continuity of ®;,,.

The inequality (219) then follows by an interpolation between L2, H 12 and H'2. For the proof of
(220) we also exploit the uniform bi-Lipschitz continuity of ®;,, which implies that

i
f f £t B, 0)) et DBy (-, )ldsdS < e LF () E2osiun) (222)
0S(xn(t)) JO

with a constant ¢ uniform in ¢, v and 7. Using Young’s inequality we can therefore estimate
2 2
1FCE ) T2s,. 0. = € 1L @5 0000

Y Y
< f f (6, By (-, )| [det DBy (- 5)]| dsdS — f (£, @40, 0))2|det DB, (-, 8)|dsdS
0S(xn(t)) JO 0S(xn(t)) JO

Y
<2 [ [ = 170D O etDBy 5] dsdS + 7 () s o)
95(xs (1)) JO
(223)

Making use of the uniform bi-Lipschitz continuity of ®;, once more and applying Jensen’s inequality,
we may further estimate

f f (1t Bun (2 5)] — |t By, 0)])? [det DBy (-, )| dsdS
0S(x(t)) JO

Y s 2
<o ([ 19rp sl ds) ey slasis < e? [ 9 sPan
aS(Xﬂ(t)) 0 0 St,n,[O,’y]
Applying this to the first term on the right-hand side of (223), we infer (220).
O

The second auxiliary result we require for the proof of Lemma 7.4 is the following variant of [4, Lemma
3.3]:
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Lemma 7.6. Let v denote the constant from Lemma 7.5. Let further, for t € [0,To], v € [0,7] and
n € (0,nsupl, the functions w(t) € HY2(Q\S" (xy(t))), p(t) € L2(Q\S (xy(t))) denote the solution to
the Stokes problem

—Aw(t,") + Vp(t,-) =0 on NS (x,(1)), (224)
divw(t,-) =0 on Q\S (x, (1)),

wit, ) = { g(ta') ZZ ggj(xn(t)%

for v(t) € HY2(S7(xy(t))). Then there exists a constant ¢ > 0, independent of t, v and n, such that

1 3
lo@l L2 (@57 (@) S €1V OZ2(57 0n ) PO Er2(53 (00 -

The same estimate also holds true for the corresponding solution to the Stokes problem in the limit
n— 0, i.e. with x,(t) replaced by x(t).

Proof

The proof essentially follows [4, Lemma 3.3]. The idea is to consider the Stokes problem on Q\S” (x;(t))
with no-slip boundary condition and arbitrary right-hand side ¢(t) € L2(?\S” (x5(t))). The unique
solution w(t) € H>2(NS (xy(t))), p(t) € HH*(\S (x5 (t))) to this problem can be seen to satisfy

w(t, z) - ¢(t,z) do = _f

_ (Va(t)w(t)) -n dz + J p(H)w(t) - n dz,
AN (xn (1))

f A\S” (xn (¢)) AS (xn (1))

(225)

where n denotes the outer unit normal vector on d(Q\S” (x,(t))). The arbitrary choice of ¢(¢) then
yields a dual estimate for w(t, -) from which, together with the trace inequality (219) and the standard
estimates for the Stokes problem (c.f. [42, Proposition 2.2]), the assertion follows.

0

Proof of Lemma 7.4
First we sketch the idea of the proof of (i), which follows [4, Lemma 3.7]. For almost all ¢ € [0, Tp] we
define v, (t, ), pyy(t,-) as the solution to the Stokes problem

—Avyy(t,-) + Vpyy(t,-) = —Auy(t,-) on Q\?(Xn(t))
divu,(t,-) =0 on QS (xy(t))

v (t ) — H[men’un] (t7 ) on aSW(Xﬁ(t)%
R 0 on 0€2.
We extend vy, (t, ) by II[y, 5 w1t ) in S7(xy(t)) and note that ey,(, ) 1= vqy(t, ) — uy(t,-) solves
a Stokes problem on Q\S”(x,(t)) with 0-right-hand side to which we can apply Lemma 7.6. This,

together with the estimate (176) for u, — II| the trace inequality (219) and the Poincaré-type
estimate (220) leads to

XnsPn 7“71] ’

%if}) %E}% H%n”L?(o,TO;Hn?(Q)) =0. (226)
Since v, (t, -) coincides with a rigid velocity field in S7(x,,(t)) for almost all ¢ € [0, Tp], i.e. vyy(t,-) €
Ki ., ,(8), the equation (226) implies

e - _
Vi Yy 125t = a0 12y < 1 2 Vom0 vy = O

Moreover, by the first inclusion in (192) we have S(x(t)) < S7(xy(t)) for all sufficiently small n > 0.
Hence, for such 7, we obtain Py, (t)uy(t,-) € K{ (), which then yields

’lyli% Tl}lg(l) ‘}P§un - UWHLQ(O,TO;LQ(Q))
< lim lim HPZT'y,nun

— ’LLnHLg (0,To; H™2()) 30 70 = Oa

< lim lim HPVTu77

ot fet) — un| L2(0,To; H™2(Q))

i.e. (i). The assertion (i7) follows by similar arguments, c.f. also [4, Lemma 3.6].
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