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Summary 

In this study we analyzed the effects of melatonin (Mel, 1 mg/kg 

ip) on behavioral changes as well as cell and oxidative damage 

prompted by bilaterally olfactory bulbectomy. Olfactory 

bulbectomy caused an increase in lipid peroxidation products and 

caspase-3, whereas it prompted a decrease of reduced 

glutathione (GSH) content and antioxidative enzymes activities. 

Additionally, olfactory bulbectomy induced behavioral changes 

characterized by the enhancement of immobility time in the 

forced swim test and hyperactivity in the open field test. All these 

changes were normalized by treatment of Mel (14 days). Our 

data show that Mel has a beneficial neuropsychiatric action 

against oxidative stress, cell damage and behavior alterations. 

 

Key words 

Antioxidant • Depression • Melatonin • Olfactory bulbectomy • 

Oxidative stress 

 

Corresponding author 

Isaac Túnez, Departamento de Bioquímica y Biología Molecular, 

Facultad de Medicina, Universidad de Córdoba, Avda. Menendez 

Pidal s/n, 14004-Cordoba, Spain. Fax:+34 957 21 82 29. E-mail: 

fm2tufii@uco.es 

 

Introduction 
 
 Oxidative stress has been implicated in the 
pathogenesis of various diseases and may be a common 
pathogenic mechanism underlying many psychiatric 
disorders, a theory which is strongly supported by studies 

carried out in animals (Gladkevich et al. 2007, Nunomura 
et al. 2007, Wang 2007, Song and Leonard 2005).  
 Depressive disorders are amongst the leading 
causes of disability and mortality worldwide and are 
associated with different neuropsychiatric illnesses such 
as Alzheimer’s disease, Huntington’s disease, 
Parkinson’s disease, diabetes and vascular disease. The 
World Health Organization (WHO) has indicated that 
depressive disorders will soon be the second leading 
cause of disability worldwide (Akiskal 2005, Nowak et 
al. 2003), with a prevalence of between 9 % and 18 % 
(Schloss and Henm 2004). Major depression has been 
linked to oxidative stress (Ng et al. 2008) and changes in 
melatonin levels (Carvalho et al. 2006).  
 N-acetyl-5-methoxytryptamine (melatonin) is a 
neurohormone secreted and released by the pineal gland. 
This indoleamine is derived from serotonin, has a 
characteristic circadian rhythm with high concentrations 
during the night and low levels during the day, and might 
be critically involved in mood regulation (Zeng et al. 
2008). Disturbances in its level and circadian profile have 
been associated with neurodegenerative disorders such as 
Alzheimer’s disease (Furio et al. 2007), but with regard 
to mood disorder, especially major depression (Carvalho 
et al. 2006, Crasson et al. 2004, Szymanska et al. 2001).  
 In this study, we investigated the effect of 
melatonin treatment on oxidative and cell damage 
biomarkers present in the depression induced by olfactory 
bulbectomy and it characterizes by behavioral changes in 
Wistar rat. To fulfill our aim we quantified: i) oxidative 
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stress biomarkers (lipid peroxidation products; reduced 
glutathione, GSH; glutathione peroxidase, GSH-Px; 
superoxide dismutase, SOD); ii) cell damage (lactate 
dehydrogenase, LDH; caspase-3); and iii) behavioral 
changes (open field test, forced swim test). 
 
Materials and Methods 
 
Animals 
 Male Wistar rats (purchased from Charles River, 
Barcelona, Spain) weighing 220-250 g were used 
throughout all experiments. The rats were housed five per 
cage at a constant temperature (20-23 ºC), illumination 
(12-h light/12-h dark cycle, light on at 08:00 h) and were 
provided with food (Purine, Barcelona, Spain®) and water 
ad libitum. All animals welfare and procedures were in 
accordance with the European Communities Council 
Directive of 24 November 1986 (86/609/ECC) and RD 
223/1988, and were approved by the University of 
Cordoba’s Bioethics Committee, Spain.  
 To carry out this study, 35 rats were used. These 
rats were divided into seven groups as follows: i) control; 
ii) vehicle (6 % ethanol); iii) melatonin-treated; iv) sham-
operated; v) olfactory bulbectomy; vi) olfactory 
bulbectomy + vehicle, and vii) olfactory bulbectomy + 
melatonin. 
 Melatonin was supplied from Sigma (St. Louis, 
MO, USA). The pineal indole was freshly dissolved in 
saline containing 6 % ethanol (total volume of 1 ml/kg) 
and administered intraperitoneally (i.p.) in a daily dose of 
1 mg/kg for 14 days beginning two weeks after surgery. 
The dose of melatonin used was selected on the basis of 
our previous reports demonstrating in vivo neuronal 
protection and reduction of oxidative stress (Túnez et al. 
2004). 
 
Surgical procedure and experimental design 
 Surgery took place one week after arrival of the 
animals in the laboratory. Bilateral olfactory bulbectomy 
was performed with rats anesthetized under ketamine 
(50 mg/kg/i.p.; ketolar®, Pfizer S.A., Madrid, Spain). The 
top the skull was shaved and swabbed with an antiseptic, 
after which a midline frontal incision was made in the 
scalp and the skin was retracted bilaterally. Burr holes 
(2 mm) were drilled into the skull at the points 7 mm 
anterior to bregma and 2 mm lateral to the bregma suture, 
after which the olfactory bulbs were separated from the 
frontal cortex, removed and skin was closed with surgical 
clips. Sham-operated animals underwent the same 

procedure except for excision and removal of the 
olfactory bulbs. Two weeks after surgery, melatonin was 
administered daily for 14 days. All animals were 
sacrificed at the end of behavioral procedure by 
decapitation and their brain were rapidly removed, frozen 
on dry ice, and stored frozen (–80 ºC) until being 
assayed. 
 
Biochemical parameters 
 
Lipid peroxidation products 
 Levels of brain lipid peroxidation products were 
quantified as malondialdehyde (MDA) plus  
4-hydroxyalkenals (4-HDA). They were determined 
using LPO-586 kit (Oxis International, Portland, OR, 
USA). Data were expressed as nmol/mg protein. 
 
GSH levels 
 GSH in brain tissue was determined using 
reagents purchased from Oxis International (Portland, 
OR, USA), i.e. GSH-400 kits. Results were expressed in 
nmol/mg protein. 
 
GSH-Px activity 
 GSH-Px (EC, 1.11.1.9) activity was evaluated 
by the method of Flohé and Gunzler (1984). Briefly, the 
tissues were homogenized in ice-cold buffer (0.1 M 
KH2PO4/K2HPO4, pH 7.0 plus 29.2 mg EDTA in 100 ml 
of distilled water and 10.0 mg digitonin in 100 ml of 
distilled water, final volume, 2000 ml). The homogenates 
were then centrifuged at 10,000 x g for 10 min at 4 ºC. 
The GSH-Px assay is based on the oxidation of NADPH 
to NAD+, catalyzed by a limiting concentration of 
glutathione reductase, with maximum absorbance at 340 
nm. The activity of GSH-Px was expressed as U/mg 
protein. 
 
SOD activity  
 SOD (E.C.: 1.15.1.1) was assayed by the Sun et 
al. (1998). Briefly, brain tissue was homogenized in ice 
cold isotonic saline. The homogenates were then 
centrifuged at 10,000 x g for 10 min at 4 ºC. SOD assay 
is based on the ability for SOD to inhibit the reduction of 
nitroblue tetrazolium (NBT) reduction by superoxide 
generator. Data were expressed in U/mg protein. 
 
LDH activity 
 LDH in the brain homogenate was assayed using 
kit purchased from BioVision Inc. (Mountain View, CA, 
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USA), i.e. LDH-Cytotoxicity assay kit. The assay is 
based on measurement of activity of lactate 
dehydrogenase (LDH) which is a stable enzyme normally 
found in the cytosol of all cells. The activity of LDH was 
expressed in U/mg protein. 
 
Caspase-3 activity 
 The caspase-3 activity in the brain homogenates 
were measured using reagents purchased from BioVision 
Inc. (Mountain View, CA, USA), i.e. Caspase-3/CPP32 
colorimetric assay kit. The activity is expressed as optical 
density arbitrary units per milligram of protein (O.D. 
arbitraty units/mg protein). 
 
Protein estimation 
 The protein concentration was determined 
according to Bradford (1976) using kit purchased from 
Sigma Co. (St. Louis, MO, USA), i.e., Bradford reagents 
B6916 assay kit, using bovine serum albumin as a 
standard. 
 
Behavioral tests 
 
Open field test  
 The rats were subjected to an open field test on 
the 14th day of treatment chronic with melatonin. Each rat 
was placed individually into the center of the open field 
apparatus. The open field apparatus was a circle made of 
wood, 90-cm in diameter. The test was performed 
between 09:00 and 12:00 h. A 60 W light bulb was 
positioned 90-100 cm above the center, and provided the 
only source of illumination in the testing room. Each 
animal was placed in the center of the open field 
apparatus, and the ambulation scores (the number of 
squares crossed) were measured during a 3-min period 
(Nowak et al. 2003, Xu et al. 2005). 
 
Forced swim test  
 Forced swim test was carried out according to 
the method described by Porsolt et al. (1978). The rats 
were placed, after the open field test, in Plexiglas 
cylinders (height: 40 cm, diameter: 18 cm) containing 
25 cm water, maintained at 23-25 ºC. After 15 min in the 
water they were removed and allowed to dry 15 min in a 
heated container before being returned to their home 
cages. They were again placed in the cylinders 24 h later 
and the total duration of immobility was measured during 
a 5-min test. A rat was judged to be immobile when it 
remained floating passively in the water. 

Statistical analysis 
 Statistical analysis of the data was accomplished 
by means of the SPSS® statistical software package 
(SPSS Iberica, Madrid, Spain). All results were expressed 
as mean ± SEM. To evaluate variations in data, a one-
way analysis of variance (one-way ANOVA) was 
corrected with the Bonferroni test. The level of statistical 
significance was set at P<0.05.  
 
Results 
 
Effects triggered by olfactory bulbectomy 
 The bilaterally olfactory bulbectomy caused 
significant enhancements in forced swim and open field 
test when animals were compared with intact control 
(P<0.001 and P<0.001, respectively) (Fig. 1). 
Additionally, olfactory bulbectomy induced oxidative 
stress which was characterized by increases in lipid 
peroxidation products (P<0.001) and reductions in GSH 
content (P<0.001) and antioxidative enzymes activities 
(GSH-Px: P<0.001; and SOD: P<0.001) (Table 1). LDH 
and caspase-3 were used as an indicator of cell damage. 
Removal of olfactory bulbs in rats did not affect LDH 
activity (Fig. 2), whereas caspase-3 activity was 
significantly enhanced (P<0.001) (Fig. 2). 
 
Neuroprotective effects of melatonin 
 The administration of melatonin to intact 
controls caused significant changes in behavior (forced 
swim test: 89.8±4.20 s of immobility time in the control 
group vs. 67.8±0.86 s of immobility time in the melatonin 
group, P<0.05; and open field test: 15.3±0.20 number of 
ambulation counts in the control group vs. 13.0±0.25 
number of ambulation counts in the melatonin group, 
P<0.01) (Fig. 1), whereas it did not modify the 
biochemical parameters evaluated in the present work 
(Fig. 2, Table 1). 
 Behavioral changes provoked by olfactory 
bulbectomy were neutralized by melatonin administration 
(open field test: 159.5±11.01 ambulation counts in 
olfactory bulbectomy group vs. 73.7±4.61 ambulation 
counts in the olfactory bulbectomy + melatonin group, 
P<0.001; and forced swim test: 29.8±1.45 s of 
immobility time in olfactory bulbectomy group vs. 
15.0±0.45 s of immobility time in olfactory bulbectomy + 
melatonin group, respectively; P<0.001) (Fig. 1). 

Furthermore, the enhancement in biomarkers of 
oxidative stress (lipid peroxidation products, GSH, SOD 
and GSH-Px) triggered by olfactory bulbectomy was 
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reversed toward normality by chronic administration of 
melatonin (P<0.001) (Table 1). Finally, the 
administration of melatonin caused a reduction in 
caspase-3 activation induced by olfactory bulbectomy 
(0.38±0.003 OD arbitrary units/mg protein in olfactory 
bulbectomy group vs 0.29±0.005 OD arbitrary units/mg 
protein in olfactory bulbectomy + melatonin group, 
P<0.001) (Fig. 2). 

Discussion 
 
 The present study shows that melatonin reduces 
immobility time in the forced swim test and movement in 
the open field test, as well as cellular and oxidative 
damage. Our data suggest the antidepressive, antioxidant 
and neuroprotective effects of melatonin, indicating that 
this pineal indole could be a useful tool in the treatment 

Table 1. Changes in the levels of oxidative stress biomarkers. 
 

 

Lipid 
peroxidation 

products 
(nmol/mg protein) 

GSH 
(nmol/mg 
protein) 

GSH-Px 
(U/mg protein) 

SOD 
(U/mg protein) 

Control 8.30 ± 0.47 7.00 ± 0.10 22.18 ± 0.95 39.45 ± 0.49 
Vehicle 8.54 ± 0.13 6.57 ± 0.12 23.60 ± 0.51 41.60 ± 0.81 
Melatonin 8.74 ± 0.25 6.49 ± 0.14 23.80 ± 0.86 44.00 ± 1.26 
Sham operated 8.83 ± 0.17 6.37 ± 0.10 21.97 ± 1.66 49.87 ± 0.65 
Olfactory bulbectomy 24.57 ± 0.36a 4.21 ± 0.16 a 12.53 ± 0.43 a 23.12 ± 0.34 a 
Olfactory bulbectomy + vehicle 22.95 ± 0.42 4.16 ± 0.18 12.80 ± 0.37 21.40 ± 0.51 
Olfactory bulbectomy + melatonin 8.29 ± 0.29b 6.90 ± 0.29 b 21.40 ± 0.75 b 38.00 ± 0.70 b 

 
The results are presented as mean ± SEM; n=5 animals per group; aP<0.001 vs. control group; bP<0.001 vs. olfactory bulbectomy 
group. 
 

 
 

Fig. 1. The effects of chronic melatonin 
(Mel) administration on the ambulation in 
open field test (it was evaluated as the 
number of squares crossed) (A) and 
immobility time (determined as seconds) in 
forced swim test in the olfactory 
bulbectomy (OBX) model (B) of depression 
in rats. The ambulation scores was 
evaluated as the number of squares crossed 
during a 3-min period the open field 
sessions. The immobility time was recorded 
during a 5-min period the swim sessions. 
Each value represents mean ± SEM; n=5 
animals per group. *P<0.05 versus control; 
** P<0.01 versus control; ***P<0.001 versus 
control; ●●●P<0.001 versus OBX. 
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and control of depression.  
 In addition, our results agree with those reported 
by Song and Leonard (1995, 2005) that olfactory 
bulbectomy generates immunological, neurochemical, 
hormonal and behavioral changes.  
 It is well known that oxygen free radicals are 
involved in the pathogenesis of numerous illnesses, and 
are currently linked to different neuropsychiatric 
disorders, such as depression, in both humans and 
experimental models (Atmaca et al. 2004, Bilici et al. 
2001, Eren et al. 2007, Khanzode et al. 2003, McIntyre et 
al. 2007, Túnez et al. 2007, Zafir and Banu 2007). 
Recently, Sarandol et al. (2007) showed the presence of 
oxidative stress in patients diagnosed with severe 
depression using the Diagnostic and Statistical Manual of 
Mental Disorders Fourth Edition (DSM-IV), and 
demonstrated that they are characterized by increased 
plasma MDA levels and SOD activity. These data 
support the existence of oxidative stress in the course and 
evolution of depression, and suggest the presence of 
oxidative stress in olfactory bulbectomy rats. 
Nevertheless, our study shows a significant decrease in 
SOD and GSH-Px activity, whereas Sarandol et al. 
(2007) and Szuster-Ciesielska et al. (2008) found 
increased SOD activity. This difference could be either 
due to a different subject of the study (the rat vs. human 

beings) or due to the different cause of the depressive 
process (olfactory bulbectomy in our study, whereas in 
the others it was endogenous depression). Thus olfactory 
bulbectomy might be associated with a more intense 
oxidative stress, characterized by a higher production of 
oxygen reactive species, which could cause the saturation 
of antioxidant enzymatic systems and the decrease of 
their activity. These phenomena are reflected by changes 
in the studied oxidative stress biomarkers which occur 
simultaneously with increases in caspase-3 activity, the 
enzyme present in the route which leads to programmed 
cell death – apoptosis. These data are also found in our 
previous studies carried out in the depression model 
caused by olfactory bulbectomy (Tasset et al. 2008, 
Túnez et al. 2007), where we have seen that, along with 
the depressive and anxious state, there was also an 
intense oxidative stress, as the other authors have 
observed in major depression (Szuster-Ciesielska et al. 
2008) and other character disorders (Forlenza and Miller 
2006, McIntyre et al. 2007, Vawter et al. 2006). 
Furthermore, olfactory bulbectomy has been associated 
with an intense cell loss due to increased apoptosis 
through caspase-3 activation, along with a decrease in 
neurogenesis (Borders et al. 2007).  
 Our study also evaluated possible antidepressive 
effects of melatonin in two behavioral situations (forced 

 
 

Fig. 2. Effects of olfactory bulbectomy 
(OBX) and melatonin (Mel) on LDH (panel 
A) and caspase-3 activity (panel B). 
Values are mean ± SEM, n=5 animals per 
group. aP<0.001 versus control group; 
bP<0.001 versus OBX group. 
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swim test and open field test). The chronic administration 
of melatonin caused a reduction of immobility time in the 
forced swim test and of the activity in the open field test 
in both intact control and those with OBX. Our findings 
agree not only with the results of Micale et al. (2006), 
who reported that Wistar rats treated with melatonin 
decrease their immobility time in the forced swim test, 
but also with the results obtained by Zeng et al. (2008) in 
another model of depression occurring in Wistar-Kyoto 
rats (WKY) (a substrain of Wistar rats which develops a 
spontaneously depressive state). These authors observed 
that the peripheral levels of melatonin and the expression 
of receptors in the anterior cingular cortex were lower in 
WKY than in normal Wistar rats. Additionally, this study 
put forward the idea that the administration of melatonin 
in the anterior cingular cortex prevents the behavioral 
changes shown by the open field test, forced swim test 
and other tests. These results are also indirectly endorsed 
by the studies which show that mice, whose MT1 
melatonin receptors are blocked, develop symptoms 
similar to those of depression (Weil et al. 2006). 
Similarly, the treatment with agonists of melatonin 
receptors improves depressive symptomatology (Olié and 
Kasper 2007). 
 Melatonin is a powerful antioxidant with 
neuroprotective capacity in different models of 
neuropsychiatric disorders. Its antioxidant effect, which is 
responsible for at least a part of its beneficial effect, is 
achieved in different ways: i) by scavenging of oxygen-
reactive species; ii) by stimulating the activity and 
expression of antioxidant enzymes; and iii) by inhibiting 
the activity of enzymes which produce reactive species 
like nitric oxide synthase (Reiter et al., 2007). It seems 
that the antioxidant effects can be exerted by the 
metabolites of melatonin, e.g. AMK, AFMK, etc, rather 
than by melatonin itself (Tan et al. 2007, Peyrot and 
Ducrocq 2008). These data support our present results 
that the chronic treatment with this indoleamine, besides 
reverting the animal’s behavioral test back to normal, also 
causes a significant reduction in the oxidative stress 
associated with olfactory bulbectomy as can be 

documented by reduced lipid peroxidation, and increases 
in GSH and the activity of the studied antioxidant 
enzymes. 
 On the other hand, melatonin blocks the 
activation of caspase-3. Bearing in mind that this is the 
unifying point between the extrinsic and intrinsic routes 
which lead to cell death by apoptosis, it is possible to 
think that the decrease in activity of this protease is 
accompanied by a decrease in apoptosis and neuronal 
loss. This is further supported by several studies, 
including that by Das et al. (2008) who reported that 
melatonin prevents proteolysis and apoptosis in C6 cells 
of astroglia incubated with hydrogen peroxide. Kilic et al. 
(2008) demonstrated that melatonin improves cell 
survival and neurogenesis in animal models with cerebral 
ischemia, a phenomenon that is associated with an 
improvement in motor deficiencies, hyperactivity, 
coordination and behavioral changes. Finally, Jou et al. 
(2007) found that melatonin blocks cytochrome c release, 
caspase-3 activation, the condensation and karyorrhexis 
of the nucleus and apoptotic fragmentation of nuclear 
DNA. 
 Although it is not clearly established how 
melatonin acts in a similar way as the antidepressants, we 
believe that a large part of these therapeutic effects is due 
to its antioxidant effect, prevention of cell damage and 
cell death (facilitating not only cell survival, but also 
neurogenesis) and due to the reduction of hyperactivity 
symptoms indicative to the depression in animals.  
 To summarize, our results suggest that melatonin 
possesses an antidepressant effect whose molecular 
mechanism is in part due to its antioxidant and anti-
apoptotic effects, at least in the model of animal 
depression induced by olfactory bulbectomy. However, 
more studies on this effect are required to establish and 
clarify the mechanisms underlying the beneficial effect of 
melatonin. 
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