This site uses cookies, tags, and tracking settings to store information that help give you the very best browsing experience. Dismiss this warning

Identifying Shifts in Modes of Low-Frequency Circulation Variability Using the 20CR Renalysis Ensemble

Vladimír Piskala aFaculty of Science, Charles University, Prague, Czech Republic

Search for other papers by Vladimír Piskala in
Current site
Google Scholar
PubMed
Close
https://orcid.org/0000-0002-7803-9509
and
Radan Huth aFaculty of Science, Charles University, Prague, Czech Republic
bInstitute of Atmospheric Physics, Czech Academy of Sciences, Prague, Czech Republic

Search for other papers by Radan Huth in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Principal component analysis (PCA) is a widely used technique to identify modes of low-frequency variability of atmospheric circulation and their spatial changes. However, it turns out that PCA is highly sensitive to the period analyzed and the length of the time window used. Its results can vary considerably if the period is shifted by even 1 year. We present temporal variability of modes from the late nineteenth century using moving PCA of winter (DJF) monthly mean 500-hPa height anomalies for 20–50-yr moving periods with 1-yr step. We employ the congruence coefficient to compare spatial patterns of the modes and identify their substantial changes. Shorter moving periods are more susceptible to sudden fluctuations in mode patterns from one period to the next, while longer periods yield more stable results. We strongly recommend applying a moving PCA to detect spatial changes in modes of low-frequency variability, as it unveils any hidden sudden changes in the modes. These changes can be influenced by many aspects, such as data quality, sampling variability, and length of the analyzed period. Spatial patterns of the Atlantic–European modes are more stable across ensemble members than those over the Pacific and North America, especially before the 1920s. During this period, North Atlantic and European modes explain more variance in the ensemble mean than in ensemble members, while the reverse holds for Pacific and North American modes. In data-sparse regions, modes in ensemble members exhibit greater variability. The process of averaging then leads to weaker modes in the ensemble mean, explaining less variance compared to ensemble members.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Vladimír Piskala, vladimir.piskala@natur.cuni.cz; Radan Huth, radan.huth@natur.cuni.cz

Abstract

Principal component analysis (PCA) is a widely used technique to identify modes of low-frequency variability of atmospheric circulation and their spatial changes. However, it turns out that PCA is highly sensitive to the period analyzed and the length of the time window used. Its results can vary considerably if the period is shifted by even 1 year. We present temporal variability of modes from the late nineteenth century using moving PCA of winter (DJF) monthly mean 500-hPa height anomalies for 20–50-yr moving periods with 1-yr step. We employ the congruence coefficient to compare spatial patterns of the modes and identify their substantial changes. Shorter moving periods are more susceptible to sudden fluctuations in mode patterns from one period to the next, while longer periods yield more stable results. We strongly recommend applying a moving PCA to detect spatial changes in modes of low-frequency variability, as it unveils any hidden sudden changes in the modes. These changes can be influenced by many aspects, such as data quality, sampling variability, and length of the analyzed period. Spatial patterns of the Atlantic–European modes are more stable across ensemble members than those over the Pacific and North America, especially before the 1920s. During this period, North Atlantic and European modes explain more variance in the ensemble mean than in ensemble members, while the reverse holds for Pacific and North American modes. In data-sparse regions, modes in ensemble members exhibit greater variability. The process of averaging then leads to weaker modes in the ensemble mean, explaining less variance compared to ensemble members.

© 2023 American Meteorological Society. This published article is licensed under the terms of the default AMS reuse license. For information regarding reuse of this content and general copyright information, consult the AMS Copyright Policy (www.ametsoc.org/PUBSReuseLicenses).

Corresponding authors: Vladimír Piskala, vladimir.piskala@natur.cuni.cz; Radan Huth, radan.huth@natur.cuni.cz

Supplementary Materials

    • Supplemental Materials (ZIP 19.532 MB)
Save
  • Barnston, A. G., and R. E. Livezey, 1987: Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Mon. Wea. Rev., 115, 10831126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Belleflamme, A., X. Fettweis, C. Lang, and M. Erpicum, 2013: Current and future atmospheric circulation at 500 hPa over Greenland simulated by the CMIP3 and CMIP5 global models. Climate Dyn., 41, 20612080, https://doi.org/10.1007/s00382-012-1538-2.

    • Search Google Scholar
    • Export Citation
  • Brinkmann, W. A. R., 1999: Application of non-hierarchically clustered circulation components to surface weather conditions: Lake Superior basin winter temperatures. Theor. Appl. Climatol., 63, 4156, https://doi.org/10.1007/s007040050090.

    • Search Google Scholar
    • Export Citation
  • Cheng, X., G. Nitsche, and J. M. Wallace, 1995: Robustness of low-frequency circulation patterns derived from EOF and rotated EOF analyses. J. Climate, 8, 17091713, https://doi.org/10.1175/1520-0442(1995)008<1709:ROLFCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chien, Y.-T., S.-Y. S. Wang, Y. Chikamoto, S. L. Voelker, J. D. D. Meyer, and J.-H. Yoon, 2019: North American winter dipole: Observed and simulated changes in circulations. Atmosphere, 10, 793, https://doi.org/10.3390/atmos10120793.

    • Search Google Scholar
    • Export Citation
  • Compagnucci, R. H., and M. B. Richman, 2008: Can principal component analysis provide atmospheric circulation or teleconnection patterns? Int. J. Climatol., 28, 703726, https://doi.org/10.1002/joc.1574.

    • Search Google Scholar
    • Export Citation
  • Compo, G. P., and Coauthors, 2011: The Twentieth Century Reanalysis Project. Quart. J. Roy. Meteor. Soc., 137 (654), 128, https://doi.org/10.1002/qj.776.

    • Search Google Scholar
    • Export Citation
  • Craddock, J. M., 1973: Problems and prospects for eigenvector analysis in meteorology. J. Roy. Stat. Soc., 22D, 133145, https://doi.org/10.2307/2987365.

    • Search Google Scholar
    • Export Citation
  • Cram, T. A., and Coauthors, 2015: The International Surface Pressure Databank version 2. Geosci. Data J., 2, 3146, https://doi.org/10.1002/gdj3.25.

    • Search Google Scholar
    • Export Citation
  • Dorrington, J., and K. J. Strommen, 2020: Jet speed variability obscures Euro-Atlantic regime structure. Geophys. Res. Lett., 47, e2020GL087907, https://doi.org/10.1029/2020GL087907.

    • Search Google Scholar
    • Export Citation
  • Dorrington, J., K. J. Strommen, and F. Fabiano, 2022: Quantifying climate model representation of the wintertime Euro-Atlantic circulation using geopotential-jet regimes. Wea. Climate Dyn., 3, 505533, https://doi.org/10.5194/wcd-3-505-2022.

    • Search Google Scholar
    • Export Citation
  • Handorf, D., and K. Dethloff, 2012: How well do state-of-the-art atmosphere-ocean general circulation models reproduce atmospheric teleconnection patterns? Tellus, 64A, 19777, https://doi.org/10.3402/tellusa.v64i0.19777.

    • Search Google Scholar
    • Export Citation
  • Hannachi, A., I. T. Jolliffe, and D. B. Stephenson, 2007: Empirical orthogonal functions and related techniques in atmospheric science: A review. Int. J. Climatol., 27, 11191152, https://doi.org/10.1002/joc.1499.

    • Search Google Scholar
    • Export Citation
  • Harman, H. H., 1976: Modern Factor Analysis. 3rd ed. University of Chicago Press, 487 pp.

  • Huth, R., 2006: The effect of various methodological options on the detection of leading modes of sea level pressure variability. Tellus, 58A, 121130, https://doi.org/10.1111/j.1600-0870.2006.00158.x.

    • Search Google Scholar
    • Export Citation
  • Huth, R., 2007: Arctic or North Atlantic Oscillation? Arguments based on the principal component analysis methodology. Theor. Appl. Climatol., 89 (1–2), 18, https://doi.org/10.1007/s00704-006-0257-1.

    • Search Google Scholar
    • Export Citation
  • Huth, R., and R. Beranová, 2021: How to recognize a true mode of atmospheric circulation variability. Earth Space Sci., 8, e2020EA001275, https://doi.org/10.1029/2020EA001275.

    • Search Google Scholar
    • Export Citation
  • Huth, R., L. Pokorná, J. Bochníček, and P. Hejda, 2006: Solar cycle effects on modes of low-frequency circulation variability. J. Geophys. Res., 111, D22107, https://doi.org/10.1029/2005JD006813.

    • Search Google Scholar
    • Export Citation
  • Hynčica, M., and R. Huth, 2020: Modes of atmospheric circulation variability in the northern extratropics: A comparison of five reanalyses. J. Climate, 33, 10 70710 726, https://doi.org/10.1175/JCLI-D-19-0904.1.

    • Search Google Scholar
    • Export Citation
  • Jackson, J. E., 2003: A User’s Guide to Principal Components. John Wiley and Sons, 592 pp.

  • Jones, P. D., T. Jonsson, and D. Wheeler, 1997: Extension to the North Atlantic oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol., 17, 14331450, https://doi.org/10.1002/(SICI)1097-0088(19971115)17:13<1433::AID-JOC203>3.0.CO;2-P.

    • Search Google Scholar
    • Export Citation
  • Jung, T., M. Hilmer, E. Ruprecht, S. Kleppek, S. K. Gulev, and O. Zolina, 2003: Characteristics of the recent eastward shift of interannual NAO variability. J. Climate, 16, 33713382, https://doi.org/10.1175/1520-0442(2003)016<3371:COTRES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., A. J. Koscielny, and H. F. Diaz, 1982: Potential errors in the application of principal component (eigenvector) analysis to geophysical data. J. Appl. Meteor., 21, 11831186, https://doi.org/10.1175/1520-0450(1982)021<1183:PEITAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krueger, O., F. Schenk, F. Feser, and R. Weisse, 2013: Inconsistencies between long-term trends in storminess derived from the 20CR reanalysis and observations. J. Climate, 26, 868874, https://doi.org/10.1175/JCLI-D-12-00309.1.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., 1967: Empirical eigenvectors of sea-level pressure, surface temperature and precipitation complexes over North America. J. Appl. Meteor., 6, 791802, https://doi.org/10.1175/1520-0450(1967)006<0791:EEOSLP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kutzbach, J. E., 1970: Large-scale features of monthly mean Northern Hemisphere anomaly maps of sea-level pressure. Mon. Wea. Rev., 98, 708716, https://doi.org/10.1175/1520-0493(1970)098<0708:LSFOMM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lee, Y.-Y., J.-S. Kug, G.-H. Lim, and M. Watanabe, 2012: Eastward shift of the Pacific/North American pattern on an interdecadal time scale and an associated synoptic eddy feedback. Int. J. Climatol., 32, 11281134, https://doi.org/10.1002/joc.2329.

    • Search Google Scholar
    • Export Citation
  • Liu, Y., L. Wang, W. Zhou, and W. Chen, 2014: Three Eurasian teleconnection patterns: Spatial structures, temporal variability, and associated winter climate anomalies. Climate Dyn., 42, 28172839, https://doi.org/10.1007/s00382-014-2163-z.

    • Search Google Scholar
    • Export Citation
  • Mezzina, B., J. García-Serrano, I. Bladé, and F. Kucharski, 2020: Dynamics of the ENSO teleconnection and NAO variability in the North Atlantic–European late winter. J. Climate, 33, 907923, https://doi.org/10.1175/JCLI-D-19-0192.1.

    • Search Google Scholar
    • Export Citation
  • Moore, G. W. K., I. A. Renfrew, and R. S. Pickart, 2013: Multidecadal mobility of the North Atlantic Oscillation. J. Climate, 26, 24532466, https://doi.org/10.1175/JCLI-D-12-00023.1.

    • Search Google Scholar
    • Export Citation
  • O’Lenic, E. A., and R. E. Livezey, 1988: Practical considerations in the use of rotated principal component analysis (RPCA) in diagnostic studies of upper-air height fields. Mon. Wea. Rev., 116, 16821689, https://doi.org/10.1175/1520-0493(1988)116<1682:PCITUO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Panagiotopoulos, F., M. Shahgedanova, and D. B. Stephenson, 2002: A review of Northern Hemisphere winter-time teleconnection patterns. J. Phys. IV France, 12, 2747, https://doi.org/10.1051/jp4:20020450.

    • Search Google Scholar
    • Export Citation
  • Peres-Neto, P. R., D. A. Jackson, and K. M. Somers, 2005: How many principal components? Stopping rules for determining the number of non-trivial axes revisited. Comput. Stat. Data Anal., 49, 974997, https://doi.org/10.1016/j.csda.2004.06.015.

    • Search Google Scholar
    • Export Citation
  • Richman, M. B., 1986: Rotation of principal components. J. Climatol., 6, 293335, https://doi.org/10.1002/joc.3370060305.

  • Richman, M. B., and P. J. Lamb, 1985: Climatic pattern analysis of three- and seven-day summer rainfall in the central United States: Some methodological considerations and a regionalization. J. Climate Appl. Meteor., 24, 13251343, https://doi.org/10.1175/1520-0450(1985)024<1325:CPAOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rogers, J., and M. McHugh, 2002: On the separability of the North Atlantic Oscillation and Arctic Oscillation. Climate Dyn., 19, 599608, https://doi.org/10.1007/s00382-002-0247-7.

    • Search Google Scholar
    • Export Citation
  • Serrano, A., J. García, V. L. Mateos, M. L. Cancillo, and J. Garrido, 1999: Monthly modes of variation of precipitation over the Iberian Peninsula. J. Climate, 12, 28942919, https://doi.org/10.1175/1520-0442(1999)012<2894:MMOVOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Slivinski, L. C., and Coauthors, 2019: Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Quart. J. Roy. Meteor. Soc., 145, 28762908, https://doi.org/10.1002/qj.3598.

    • Search Google Scholar
    • Export Citation
  • Stryhal, J., and R. Huth, 2017: Classifications of winter Euro-Atlantic circulation patterns: An intercomparison of five atmospheric reanalyses. J. Climate, 30, 78477861, https://doi.org/10.1175/JCLI-D-17-0059.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, D. W. J., and J. M. Wallace, 2000: Annular modes in the extratropical circulation. Part I: Month-to-month variability. J. Climate, 13, 10001016, https://doi.org/10.1175/1520-0442(2000)013<1000:AMITEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • van den Dool, H. M., S. Saha, and Å. Johansson, 2000: Empirical orthogonal teleconnections. J. Climate, 13, 14211435, https://doi.org/10.1175/1520-0442(2000)013<1421:EOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, https://doi.org/10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, X. L., Y. Feng, G. P. Compo, V. R. Swail, F. W. Zwiers, R. J. Allan, and P. D. Sardeshmukh, 2013: Trends and low frequency variability of extra-tropical cyclone activity in the ensemble of twentieth century reanalysis. Climate Dyn., 40, 27752800, https://doi.org/10.1007/s00382-012-1450-9.

    • Search Google Scholar
    • Export Citation
  • Wang, Y.-H., G. Magnusdottir, H. Stern, X. Tian, and Y. Yu, 2012: Decadal variability of the NAO: Introducing an augmented NAO index. Geophys. Res. Lett., 39, L21702, https://doi.org/10.1029/2012GL053413.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2016: Modified “rule N” procedure for principal component (EOF) truncation. J. Climate, 29, 30493056, https://doi.org/10.1175/JCLI-D-15-0812.1.

    • Search Google Scholar
    • Export Citation
  • Woollings, T., C. Czuchnicki, and C. Franzke, 2014: Twentieth century North Atlantic jet variability. Quart. J. Roy. Meteor. Soc., 140, 783791, https://doi.org/10.1002/qj.2197.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., A. Sorteberg, J. Zhang, R. Gerdes, and J. C. Comiso, 2008: Recent radical shifts of atmospheric circulations and rapid changes in Arctic climate system. Geophys. Res. Lett., 35, L22701, https://doi.org/10.1029/2008GL035607.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 249 249 62
Full Text Views 144 144 35
PDF Downloads 137 137 39