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Summary 

To investigate the exact effects of dietary choline on hypertensive 

heart disease (HHD) and explore the potential mechanisms, male 

spontaneously hypertensive rats (SHR) and Wistar Kyoto rats 

(WKY) were randomly divided into five groups as follows: WKY 

group, WKY + Choline group, SHR group, SHR + Choline group, 

and SHR + Choline + NaHS group. In choline treatment groups, 

rats were fed with 1.3 % (w/v) choline in the drinking water for 3 

months. The rats in the SHR + Choline + NaHS group were 

intraperitoneally injected with NaHS (100 μmol/kg/day, 

a hydrogen sulfide (H2S) donor) for 3 months. After 3 months, left 

ventricular ejection fraction (LVEF) and fractional shortening 

(LVFS), the indicators of cardiac function measured by 

echocardiography, were increased significantly in SHR as 

compared to WKY, although there was no significant difference in 

collagen volumes and Bax/Bcl-2 ratio between the two groups, 

indicating the early stage of cardiac hypertrophy. There was 

a significant decrease in LVEF and LVFS and an increase in 

collagen volumes and Bax/Bcl-2 ratio in SHR fed with choline, 

meanwhile, plasma H2S levels were significantly decreased 

significantly in SHR fed with choline accompanying by the decrease 

of cystathionine-γ-lyase (CSE) activity. Three months of NaHS 

significantly increased plasma H2S levels, ameliorated cardiac 

dysfunction and inhibited cardiac fibrosis and apoptosis in SHR fed 

with choline. In conclusion, choline aggravated cardiac dysfunction 

in HHD through inhibiting the production of endogenous H2S, 

which was reversed by supplementation of exogenous H2S donor. 
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Introduction 

 

Hypertension is a major risk factor for the 

development of cardiovascular diseases and remains one 

of the most important public health problems worldwide. 

If left untreated, hypertension can lead to an array of long-

term end-organ diseases and premature death [1]. As an 

important target organ, long-lasting pressure overload 

promotes cardiac hypertrophy and pathologic structural 

remodeling resulting in hypertensive heart disease (HHD), 

which ultimately leads to heart failure (HF) [2]. It is 

reported that several pathophysiologic factors play 

important roles in HHD, including abnormality of 

hemodynamic mechanisms, longstanding stimulation of 

neurohormonal pathways and inappropriate activation of 

inflammation [3-5]. However, the exact mechanisms are 

not fully understood.  

In recently, gut microbiota has been found to 

contribute to pathogenesis of hypertension and its end-

organ diseases through production of a variety of 

microbial-derived bioactive metabolites [6-7]. As an 

essential nutrient for humans, much attention has been 

given to the potential role of choline and its metabolites in 

cardiovascular disease. Some studies suggested that 
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choline exhibited cardioprotective effect against several 

heart diseases including myocardial infarction, 

ischemia/reperfusion injury, cardiac hypertrophy and HF 

[8-10]. On the other hand, it was also shown that choline 

and its metabolites were associated with HF and had a 

higher risk of heart diseases [11-12]. In addition, basic 

study has further confirmed that choline diet and its 

microbial-derived metabolites, trimethylamine N-oxide 

(TMAO), aggravated pressure overload-induced HF [13]. 

Up to now, the connection between dietary choline and 

HHD was unclear, not to mention the mechanisms 

involved. As a newly discovered gasotransmitter, 

hydrogen sulfide (H2S) has been found to be endogenously 

generated in cardiovascular system and H2S deficiency 

played a critical pathologic role in the development of 

hypertension and its complications, such as HHD [14]. Our 

previous studies found that a diet enriched in choline 

reduced the plasma H2S levels and induced cardiac 

dysfunction [15]. In addition, H2S was also reported to 

prevent TMAO‑induced macrophage inflammation [16]. 

Therefore, whether H2S was involved in dietary choline 

and HHD was worth to be explored. 

With this in mind, the aim of present study was to 

investigate the exact effects of dietary choline on HHD and 

to explore whether it played a role through H2S. 

 

Materials and Methods 

 

Animals and treatments 

Male spontaneously hypertensive rats (SHR) and 

Wistar Kyoto rats (WKY), aged 6-weeks were purchased 

from Vital River Company (Beijing, China). They were 

kept in an environment with controlled temperature (20-

24 °C), humidity (45-55 %) and a regular 12-h light and 

dark cycle and fed on standard rat chow and tap water ad 

libitum for 2 weeks to adapt the laboratory environment. 

All animal experiments were performed according to the 

Guide for the Care and Use of Laboratory Animals of the 

National Institutes of Health (NIH) and approved by the 

Ethics Committee for Laboratory Animals Care and Use 

of Hebei Medical University.   

After acclimatization, the rats were randomly 

divided into five groups, each with six animals as follows: 

WKY group, WKY + Choline group, SHR group, SHR + 

Choline group, and SHR + Choline + NaHS group. All rats 

were fed with 1.3 % (w/v) choline in the drinking water for 

3 months, except those in WKY and SHR group which 

were fed with tap water for the same periods. The rats in 

the SHR + Choline + NaHS group were intraperitoneally 

injected with NaHS (100 μmol/kg/day) for 3 months and 

the rats in the other groups were injected with the same 

volume of sterile saline. 

After 3 months, cardiac function was assessed by 

echocardiography. And then, the rats were euthanized by 

intraperitoneally injecting an overdose of pentobarbital 

(100 mg/kg). Subsequently, the blood was collected from 

abdominal aorta. After centrifugation at 1200 g for 10 min, 

plasma was separated and frozen at -80˚C until further 

analysis. The heart was rapidly removed to determine the 

heart mass (heart weight / body weight × 100 %). Left 

ventricular tissues were frozen at -80 °C and fixed with 

4 % paraformaldehyde until further analysis.  

 

Echocardiography  

After 3 months treatment, the rats were 

anaesthetized with 2 % isoflurane and the cardiac function 

was evaluated by using a VisualSonics Vevo 2100 system 

(FUJIFILM VisualSonics Inc., Toronto, Canada). M-mode 

images of the left ventricle were recorded and three 

consecutive cardiac cycles were selected to measure left 

ventricular ejection fraction (LVEF) and fractional 

shortening (LVFS).  

 

Histological analysis 

After fixed in 4 % paraformaldehyde for 48 h, the 

heart tissues were dehydrated, permeabilization, 

embedded in paraffin, sectioned at 5-μm thickness, and 

stained with Masson’s trichrome to identify collagen 

deposition, which was shown in blue. The heart sections 

were examined using an optical microscope (Olympus, 

Tokyo, Japan) and the collagen volume fraction was 

calculated as the percentage of collagen (blue-stained area) 

to the total myocardial area under direct vision. 

 

Measurement of H2S concentration in plasma  

Plasma H2S concentration was measured using 

liquid chromatography-mass spectrometry (LC-MS/MS) 

as previously described [17]. Briefly, 30 μl of plasma were 

mixed with 80 μl monobromobimane (MBB, Sigma-

Aldrich Ltd., USA) and 10 μl 0.1 % ammonia with shaking 

for 1-h at room temperature for derivatization of sulfide. 

MBB reacts with sulfide to produce sulfide-dibimane 

(SDB), which can be separated by gradient elution and 

analyzed by LC-MS/MS. The reaction was then terminated 

with 10 μl 20 % formic acid and centrifuged at 15000 g for 

10 min. The supernatants were stored at -80 °C until H2S 

measurements were performed. H2S concentrations were 

determined by using a curve generated with sodium sulfide 



2023  Choline Aggravated HHD by Inhibiting H2S Production in SHR   721 
 

 

(0-40 μmol/l) standards. 

 

Measurement of the cystathionine-γ-lyase (CSE) activity  

The activity of CSE in heart tissues was measured 

according to the previously described methods with some 

modified [18]. Briefly, heart tissues were homogenized in 

ice-cold PBS and centrifuged at 12,000 g for 20 min at 

4 °C. The supernatant was immediately used to measure 

the activity of CSE, and proteins in the supernatant were 

quantified using the BCA reagent. To measure the CSE 

activity, the enzyme substrate L-cysteine (10 mmol/l) and 

the cofactor pyridoxal-5′-phosphate (2 mmol/l) were 

added to the supernatant for an incubation of 0.5 h. Then 

H2S concentrations in the reaction system were measured 

using LC-MS/MS and the amount of H2S produced per 

microgram protein per hour was calculated as the activity 

of CSE.  

 

Western blot analysis 

Frozen heart tissues were cut into small fragments 

and homogenized with ice-cold RIPA lysis buffer. Proteins 

were extracted and quantified by the BCA method. Equal 

amount of protein samples were separated on 10 % SDS-

PAGE gels and transferred to a polyvinylidene fluoride 

membrane, which was blocked with 5 % non-fat milk for 

1 h. After that, the primary antibody specific for CSE 

(1:1000, Proteintech Biotechnology, USA), Bax (1:1000, 

Proteintech Biotechnology, USA), Bcl-2 (1:1000, 

Proteintech Biotechnology, USA), and GAPDH (1:5000, 

Proteintech Biotechnology, USA) were added to the 

membranes and incubated for at 4 °C overnight. Next, the 

membranes were incubated with horseradish peroxidase- 

conjugated secondary antibodies at room temperature for 

1 h after washing with TBST. The intensity of the protein 

bands was assessed on the ECL detection system (Thermo, 

USA) and quantified using the Image J software (Image J 

1.52, NIH, USA). 

 

Statistical analysis 

Results were presented as mean ± SEM. 

Statistical analysis was performed using an SPSS software 

package, version 13.0 (SPSS, Inc., USA). One-way 

ANOVA followed by least significant difference t-test 

(LSD) was used to compare values between multiple 

groups. The Kruskal-Wallis rank sum test was used for the 

results with small sample size and followed by LSD post 

hoc comparisons. P<0.05 was considered statistically 

significant.

 
 
Fig. 1. Dietary choline 

aggravated cardiac 

dysfunction in 

spontaneously hyper-

tensive rats. 

(A) Representative M-

mode images.  

(B) The changes of left 

ventricular ejection 

fraction (LVEF).  

(C) The changes of left 

ventricular fractional 

shortening (LVFS).  

(D) The changes of 

heart rate (HR). 

Results are expressed 

as mean ± SEM. A P of 

<0.05 was considered 

significant. 

 

 

 

 

 

 

Results 

 

Dietary choline aggravated cardiac dysfunction in SHR 

As was shown in Fig. 1A-C, LVEF and LVFS, the 

indicators of cardiac function measured by 

echocardiography, were significantly increased in SHR 

group as compared to those in WKY group, but they were 

significantly decreased in SHR fed with choline. There 
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was no significant difference in heart rate among the four 

groups (Fig. 1D).  

 

Dietary choline exacerbated cardiac fibrosis and 

apoptosis in SHR 

Masson’s trichrome staining showed although 

there was no significant difference between WKY and 

SHR group, interstitial collagen volumes were markedly 

increased in SHR after fed with choline (Fig. 2A-B). The 

heart mass was higher in SHR group than those in WKY 

group, but there was no significant difference between 

SHR and SHR + Choline group (Fig. 2C). In addition, 

Bax/Bcl-2 ratio was also significantly increased in the 

myocardium in SHR after fed with choline (Fig. 2D-G). 

 

 
Fig. 2. Dietary choline exacerbated cardiac fibrosis and apoptosis in spontaneously hypertensive rats.  

(A) Representative Masson-stained myocardial sections. (B) Quantitative analysis of collagen volume fraction. (C) The changes of heart 

mass (heart weight / body weight × 100 %). (D-G) Representative western blots and quantitative analysis for Bax and Bcl-2 protein 

expression in heart tissues. GAPDH was used as the internal control. Results are expressed as mean ± SEM. A P of <0.05 was considered 

significant.  

 
Fig. 3. Dietary choline inhibited the endogenous production of H2S in spontaneously hypertensive rats.  

(A) H2S levels in plasma. (B) Representative western blots and quantitative analysis for CSE protein expression in heart tissues. GAPDH 

was used as the internal control. (C) CSE activity in heart tissues. Results are expressed as mean ± SEM. A P of <0.05 was considered 

significant. 
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Dietary choline inhibited the endogenous production of 

H2S in SHR 

As was shown in Fig. 3A, plasma H2S levels were 

significantly lower in SHR group than those in WKY 

group, which were decreased significantly further in SHR 

+ Choline group. As compared with WKY group, the 

protein expressions of CSE, the main enzyme for H2S 

production in the cardiovascular system, were 

significantly increased both in WKY + Choline group and 

SHR group, while there was no significant difference 

between SHR and SHR + Choline group (Fig. 3B). 

Although there was no significant difference between 

WKY and SHR group, the CSE activity was significantly 

decreased in SHR fed with choline (Fig. 3C). 

 

NaHS improved choline-induced cardiac dysfunction in 

SHR 

To investigate whether H2S plays a role in 

choline-induced cardiac dysfunction in SHR, NaHS, a H2S 

donor, was used. As was shown in Fig. 4A, NaHS 

treatment significantly increased plasma H2S levels in 

SHR fed with choline; meanwhile, it also increased LVEF 

and LVFS in SHR fed with choline (Fig. 4B-C). There was 

no significant difference in heart rate among the three 

groups (Fig. 4E) 

 

NaHS alleviated choline-induced cardiac fibrosis and 

apoptosis in SHR 

Masson’s trichrome staining showed that 

interstitial collagen volumes were markedly decreased in 

SHR + Choline + NaHS group as compared to those in 

SHR + Choline group (Fig. 5A-B). The heart mass was 

lower in SHR + Choline + NaHS group than those in SHR 

+ Choline group (Fig. 5C). In addition, Bax/Bcl-2 ratio 

was also significantly decreased in the myocardium in 

SHR fed with choline after NaHS treatment (Fig. 5D-G). 

 

 
 

Fig. 4. NaHS improved choline-induced cardiac dysfunction in spontaneously hypertensive rats. (A) H2S levels in plasma. (B) The changes 

of left ventricular ejection fraction (LVEF). (C) The changes of left ventricular fractional shortening (LVFS). (D) Representative M-mode 

images. (E) The changes of heart rate (HR). Results are expressed as mean ± SEM. A P of <0.05 was considered significant. 
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Fig. 5. NaHS alleviated choline-induced cardiac fibrosis and apoptosis in spontaneously hypertensive rats.  

(A) Representative Masson-stained myocardial sections. (B) Quantitative analysis of collagen volume fraction. (C) The changes of heart 

mass (heart weight / body weight × 100 %). (D-G) Representative western blots and quantitative analysis for Bax and Bcl-2 protein 

expression in heart tissues. GAPDH was used as the internal control. Results are expressed as mean ± SEM. A P of <0.05 was considered 

significant. 

 

Discussion 

 

In the present study, we found that choline 

aggravated cardiac dysfunction in HHD through inhibiting 

the production of endogenous H2S, which was reversed by 

supplementation of exogenous H2S. 

HHD is one of the most common complications 

of hypertension and its progression is largely dependent on 

the stage of hypertension. In the early stage of 

hypertension, the increased left ventricular wall stress 

caused by hypertension-induced pressure overload leads to 

myocardial hypertrophy as a compensatory mechanism to 

maintain and even improve cardiac function. In the late 

stage of hypertension, sustained pressure overload induces 

cardiomyocyte apoptosis and ventricular remodeling 

which further leads to eventual decompensation of cardiac 

function [19]. As a most widely used animal model of 

essential hypertension and its cardiovascular 

complications, SHR was used to explore the progression 

of HHD in the current study. It was reported that SHR 

progressively developed hypertension starting around 5-6 

weeks after birth and an active phase of cardiac 

hypertrophy was observed between 16 and 20 weeks with 

enhanced cardiac function [20]. At the end of the 

experiment, the rats were about 20 weeks old in the present 

study. And then LVEF and LVFS, used as measures of 

systolic function, were increased significantly in SHR as 

compared to WKY; meanwhile the heart mass was higher 

in SHR than WKY, indicating the existence of cardiac 

hypertrophy in SHR. In agreement with our study, Lee et 

al. reported that the maximal rate of LV pressure rise 

(+dP/dt), an indicator of systolic function, was increased 
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significantly and the left ventricular mass index for body 

weight and cardiomyocyte sizes were also increased in 16-

week-old SHR, indicating the early development of 

ventricular hypertrophy [21]. Long-lasting cardiac 

hypertrophy could induce collagen accumulation, 

increased fibrosis, and cardiomyocyte apoptosis in the 

ventricle wall, but our result showed that SHR had no 

significant myocardial fibrosis and apoptosis as compared 

to WKY, also indicating the early stage of cardiac 

hypertrophy. On the contrary, in Li's study [22], LVEF was 

measured in SHR and WKY using in vivo cardiac 

magnetic resonance imaging and LVEF was significantly 

decreased in SHR as compared with that in WKY at 8 

weeks of age. However, in our study, LVEF and LVFS, 

which was measured by echocardiography, were 

significantly increased in SHR group as compared to those 

in WKY group. Our results were also in line with Conrad's 

study which found that active tension was greater in the 

12-month SHR group than in the 12-month WKY group 

and the 20-month SHR group [23]. In addition, Li's study 

found that LVEF significantly decreased in SHR but did 

not change in WKY rats from 1 to 2 months of age. 

However, previous study had reported that the EF index-

afterload relations i.e., a measure of the contractile state, 

of the 6- and 12-month-old SHR were similar to those of 

the normotensive rats of all ages and a depression in the 

contractile state of the SHR occurred at 18 months [24]. 

The difference in cardiac function detection methods 

might be the reason for the different results between the 

studies. 

Although choline was an essential dietary nutrient 

and plays a wide range of physiological roles in human 

health, contradictory findings were published on choline 

and its metabolites and heart diseases. Prolonged choline 

deficiency was reported to induce cardiac dysfunction [25] 

and choline, as a methyl donor, alleviated cardiac 

hypertrophy in SHR by regulating DNA methylation [26]. 

On the other hand, it was found that plasma levels of 

choline and its microbial-derived metabolites, TMAO, 

were both elevated in patients with chronic HF [27]. In 

addition, high intake of choline exacerbated cardiac 

dysfunction, fibrosis, and inflammation in HF with 

preserved ejection fraction [28]. In line with this finding, 

our study also found that there was a significant decrease 

in cardiac function and an increase in fibrosis and 

apoptosis in SHR fed with choline. In addition, although 

there was no significant difference in hypertrophy, 

apoptosis, and cardiac function between WKY and WKY 

+ Choline group, the mean values of these measurements 

were higher in WKY fed with choline, and similar to those 

in SHR. The above results indicated that choline 

administration might induce myocardial hypertrophy in 

WKY and it accelerated the transition from a 

compensatory to decompensatory stage in HHD of SHR, 

however the mechanisms behind this remained to be 

elucidated. 

H2S, as one of the gasotransmitters, is 

endogenously biosynthesized from L-cysteine by CSE in 

cardiovascular system and plays a protective role in HHD 

[29-30]. Consistent with previous reports [31-32], we 

found that plasma H2S levels were significantly lower in 

SHR group than those in WKY group; meanwhile it was 

decreased significantly further in SHR fed with choline. 

Notably, CSE were markedly decreased in humans with 

hypertension [33], and the similar results also were found 

in SHR [34]. In addition, the use of DL-propargylglycine 

(a CSE inhibitor) [35] or knockout of CSE protein [36] 

dramatically elevated the level of basal blood pressure in 

animal research. Therefore, the CSE expression or activity 

was involved in the pathogenesis of hypertension and its 

complications. In present study, the protein expression of 

CSE did not change between SHR and SHR + Choline 

group, but it was upregulated both in WKY + Choline 

group and SHR group. The increased expression of CSE 

protein could be explained as a compensatory mechanism; 

however, this compensation did not increase plasma H2S 

levels due to oxidative stress that accelerated the 

metabolism of H2S in HHD. This compensatory 

mechanism had also been reported by previous studies in 

which a higher CSE expression was observed in 

myocardial tissue, but H2S level was decreased in plasma 

[37]. Then, we detected the activity of CSE and found that 

the CSE activity was significantly decreased in SHR fed 

with choline. The above results indicated that choline 

inhibited the CSE activity to decrease H2S plasma levels 

in SHR. The catalytic activity of CSE was found to be 

inhibited by inflammatory stimuli and activated by Akt 

signaling pathway or intracellular calcium [38]. It was 

reported that choline could induce inflammation by 

NLRP3 inflammasome activation and IL-1β production 

[39]. Choline also could reduce the overload of 

intracellular Ca2+ in isolated myocytes [40]. Meanwhile 

the decrease of intracellular Ca2+ could inhibit the 

activation of AKT pathway [41]. All of this might be 

responsible for the choline-induced decrease in CSE 

activity. Subsequently, to confirm our hypothesis that 

choline exacerbated HHD in SHR by inhibiting 

endogenous H2S production, NaHS, an exogenous H2S 
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donor, was used in our study. The results showed that 

NaHS treatment significantly increased plasma H2S levels, 

ameliorated cardiac dysfunction and inhibited cardiac 

fibrosis and apoptosis in SHR fed with choline. In HHD, 

sustained pressure overload led to cardiomyocyte 

hypertrophy and cardiac fibroblasts proliferation, 

migration, and activation ensuing in cardiac hypertrophy 

and fibrosis. There was some overlap between the inducing 

mechanisms of cardiac hypertrophy and fibrosis，

including over-activated sympathetic nervous (SNS) and 

renin-angiotensin-aldosterone (RAAS) systems, increased 

inflammation and oxidative stress, and altered energy 

metabolism [42-43]. Accumulating evidence suggested 

that H2S played a protective role in cardiovascular disease 

by inhibiting SNS and RAAS over-activation, reducing 

inflammation and oxidative stress and ameliorating energy 

metabolism [44-45]. The pathological mechanisms of 

cardiac hypertrophy and fibrosis involved complex 

cellular and molecular signaling cascades which shared 

dissimilarities as well as commonalities. There were some 

common molecular targets between cardiac hypertrophy 

and fibrosis, such as mitogen-activated protein kinase 

(MAPK), Wnt, AMP-activated protein kinase (AMPK), 

and sirtuins [46-49]. While, H2S had been reported to not 

only inhibit the MAPK and Wnt signaling pathway, but 

also activate the AMPK and sirtuins signaling pathway 

[50-53]. The difference between cardiac hypertrophy and 

fibrosis was that increases in intracellular Ca2+ ([Ca2+]i) 

concentration and Ca2+-dependent signaling pathways, 

including calcineurin/nuclear factor of activated T cells 

signaling and calmodulin-dependent kinase II signaling, 

was the main cause of cardiac hypertrophy [54]; while the 

transforming growth factor-β (TGF-β) and matrix 

metalloproteinases (MMPs) signaling pathway was the 

major canonical pathway in cardiac fibrosis [43, 55]. 

Recent advancements demonstrated that H2S significantly 

reduced [Ca2+]i concentration [56], inhibiting TGF-β 

pathway [57], and suppressed MMP hyperactivity [58] by 

S-sulfhydrating the cysteine switch motif, which might be 

beneficial for improving cardiac hypertrophy and fibrosis 

from different perspectives. Uncontrolled pathological 

cardiac hypertrophy and fibrosis was usually associated 

with increased cellular senescence and cell death that 

would promote systolic and diastolic dysfunction, 

eventually leading to HF. Regarding the molecular 

pathogenesis, modes of regulated necrosis, such as 

apoptosis, ferroptosis, necroptosis and pyroptosis played 

important roles in HF [59]; while H2S was been found to 

alleviate the above death modes [60-63]. Therefore, the 

above pathway might be the key target of H2S in the 

treatment of HHD. 

There were several weakness and limitations in 

the present study. Firstly, direct evidence of how choline 

regulated CSE activity needs to be found. Secondly, the 

exact mechanism of H2S improving HHD in our study 

needed to be further explored in future studies.  

In conclusion, choline induced cardiac 

dysfunction in HHD through inhibiting the production of 

endogenous H2S, which was reversed by supplementation 

of exogenous H2S donor. Therefore, H2S was a potential 

therapeutic agent for HHD. 
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