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Summary 

We studied the expression of myosin heavy chain isoforms at 

mRNA and protein levels as well as fiber type composition in the 

fast extensor digitorum longus (EDL) and slow soleus (SOL) 

twitch muscles of adult inbred Lewis strain rats. Comparison of 

the results from Real Time RT-PCR, SDS-PAGE and fiber type 

analysis showed corresponding proportions of MyHC transcripts 

(MyHC-1, -2a, -2x/d, -2b), protein isoforms (MyHC-1, -2a, -2x/d, 

-2b) and fiber types (type 1, 2A, 2X/D, 2B) in both muscles. 

Furthermore, we found that slow MyHC-1 mRNA expression in 

the SOL was up to three orders higher than that of fast MyHC 

transcripts. This finding can explain the predominance of MyHC-1 

isoform and fiber type 1 and the absence of pure 2X/D and 

2B fibers in the SOL muscle. Based on our data presenting 

quantitative evidence of corresponding proportions between 

mRNA level, protein content and fiber type composition, we 

suggest that the Real Time RT-PCR technique can be used as a 

routine method for analysis of muscle composition changes and 

could be advantageous for the analysis of scant biological 

samples such as muscle biopsies in humans.  
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Introduction 
 

It is generally accepted that skeletal muscle fiber 
types are defined by myosin heavy chain (MyHC) 
isoform content, which is dependent on the level of 
expression of the specific mRNAs. Both fiber type 
composition, MyHC isoform content and mRNA 
expression can be determined by appropriate (semi) 
quantitative methods. The fiber type composition can be 
estimated e.g. by stereological analysis (Zacharova and 
Kubinova 1995), MyHC isoform content by SDS-PAGE 
(Talmage and Roy 1993), though some attempts to 
employ other approaches have been published (Říčný and 
Soukup 2011). MyHC transcript level determination was 
performed by in situ hybridization or by various 
modifications of RT-PCR (DeNardi et al. 1993, Esser et 
al. 1993, Lieber et al. 1993, Smerdu et al. 1994, Peuker 
and Pette 1995, 1997, Jänkälä et al. 1997, Wright et al. 
1997, Jaschinski et al. 1998, Jung et al. 1998, Stevens et 
al. 1999a,b, Weiss et al. 1999, Huey et al. 2001, Serrano 
et al. 2001, Smerdu and Eržen 2001, Caiozzo et al. 2003, 
Eizema et al. 2003, Sakuraba et al. 2005, Vadászová et 
al. 2006a,b, Vadászová-Soukup and Soukup 2007, 
Smerdu and Soukup 2008, for review see Pette et al. 
1999) until Real Time RT-PCR (qRT-PCR) became 
generally accepted (for review see Pfaffl 2004) and 
routinely used for MyHC analyses in rats (Pattison et al. 
2003, Zurmanova et al. 2008, Clause et al. 2012). It was 
found that the extensor digitorum longus (EDL) in Lewis 
rats, as well as in other strains (Novák et al. 2010), 
contains four fiber types (slow type 1, fast 2A, 2X/D and 
2B fibers). The fiber types are related to four MyHC 
isoforms (MyHC-1, -2a, -2x/d and -2b) and four mRNA 
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transcripts (MyHC-1, -2a, -2x/d and -2b) encoded by 
specific genes (for review see Schiaffino and Reggianni 
1996). The soleus (SOL) muscle also expresses four 
mRNAs isoforms, however, only the two MyHC-1 and  
-2a protein isoforms, as well as type 1 and 2A (2C) fibers 
are usually detected under physiological conditions 
(Soukup et al. 2002, 2009, Zacharova et al. 2005, 
Vadászová et al. 2006a,b, Vadászová-Soukup and 
Soukup 2007, Zurmanova et al. 2007, Smerdu and 
Soukup 2008, Novák and Soukup 2011, Soukup et al. 
2012, for review see Pette and Staron 1990, Schiaffino 
and Reggianni 1994, Soukup and Jirmanová 2000, 
Schiaffino 2010).  

The main purpose of the present study was to 
compare the relative proportions of MyHC transcripts and 
translated MyHC isoform protein levels and fiber type 
composition using qRT-PCR, SDS-PAGE and 
stereological fiber type analysis of immunochemically 
stained muscle cross sections in the slow SOL and fast 
EDL muscles of adult Lewis rats. The second aim was to 
determine the quantitative differences between slow 
MyHC-1 and fast MyHC-2a, -2x/d and -2b transcripts in 
an attempt to explain the predominance of MyHC-1 
isoform and type 1 fibers in the SOL muscle in adult 
Lewis rats.  
 
Materials and Methods 
 
Animals  

Experiments were performed on 12 adult (13.8 
to 16.8 months old) female inbred Lewis strain rats 
obtained from the authorized laboratory rat-breeding unit 
of the Institute of Physiology, Academy of Science of the 
Czech Republic, v. v. i., Prague, (Accreditation No. 1020/ 
491/A/00). They were housed at 23±1 °C and at 12-hour 
light-dark cycle periods with ad libitum access to water 
and a complete laboratory diet. The maintenance and 
handling of experimental animals were in accordance 
with the EU Council Directive (86/609EEC) and the 
investigation was approved by the Expert Committee of 
the Institute of Physiology, Academy of Sciences of the 
Czech Republic, v. v. i., Prague. The animals were 
anesthetized with intraperitoneal injections of 1 ml 
(100 mg) of Narketan (Ketaminum ut hydrochloridum) 
per 1000 g of body weight, followed by 0.5 ml (10 mg) of 
the myorelaxant Xylapan (Xylazinum ut hydrochloridum) 
per 1000 g of body weight (Vetoquinol S.A. France and 
Vetoquinol Biowet Poland, respectively) and sacrificed 
by an overdose of the anesthetic. Both EDL and SOL 

muscles were excised from left and right hind limbs, the 
left muscles were immediately frozen in liquid nitrogen 
until used for quantitative RT-PCR, the right muscles 
were frozen as well and the middle portion was used 
immediately for preparation of cross cryosections 
followed by myofibrillar adenosine-triphosphatase 
(mATPase) reaction and immuno-staining, the other 
portions were stored at –80 °C until used for SDS-PAGE 
analysis.  

 
Quantitative Real Time RT-PCR  

The primers against four MyHC isoform 
transcripts (described in detail in Zurmanova et al. 2008) 
were designed using the Gene Runner program (Hastings 
Software).  

 
RNA isolation and RT-PCR  

Total cellular RNA was extracted from each 
muscle sample using the TRIZOL Reagent (Invitrogen). 
The purity and integrity of the RNA preparations was 
checked spectroscopically and by agarose gel 
electrophoresis. One µg of total RNA was converted to 
cDNA using the RevertAidTM H Minus First Strand 
cDNA Synthesis Kit (Fermentas) using oligo (dT) 
primers according to the manufacturer’s instructions. 
Samples of cDNA (1 µl) were amplified in 25 μl of PCR 
reaction mixture containing iQTM SYBR Green Supermix 
(Bio-Rad) plus 1 μM of each MyHC isoform-specific 
primers according to the manufacturer’s instructions. 

PCRs were performed on a Light Cycler (Roche 
Ltd.) as described previously (Waskova-Arnostova et al. 
2013) using the following temperature profile: initial 
denaturation at 95 °C for 2 min, followed by 38 cycles 
consisting of denaturation at 95 °C for 30 s, annealing at 
54 °C for 30 s and elongation at 72 °C for 20 s. 
Fluorescence was acquired in each cycle after heating the 
samples to 80 °C eliminating the noise of primer dimers 
(Pfaffl 2001). At the end of each run, melting curve 
analysis was performed to ascertain the presence of a 
single amplicon. The data used for calculation were the 
mean of crossing point (Cp) values obtained from qPCR 
performed in triplicates. We verified that the variation of 
triplicates did not exceed 0.5 Cp. Standard curves were 
generated for each pair of primers using 3-fold serial 
dilution of cDNA. The efficiency of the PCR 
amplification for each primer pair was then calculated 
from the standard curve to state precisely the relative 
expression. The level of analyzed transcripts was 
normalized to the level of the reference gene 
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glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 
transcripts with regard to the specific PCR efficiency (E) 
for each gene as follows: 

 

Normalized amount = (1+E)Cp reference transcript/(1+E)Cp target transcript 
 

Non-template and non-RT reactions were 
performed as controls. The quantitative data are the 
means of four measurements and these are presented as 
the ratio of values for individual mRNAs. 

 
Immunocytochemistry  

Muscle fiber types were determined on fresh 
frozen muscle cross sections 10 μm thick incubated with 
different mouse monoclonal antibodies (mAbs) specific 
for rat MyHC isoforms BA-D5 (MyHC-1), SC-71 
(MyHC-2a), F-35 (all MyHC except -2x/d) and BF-F3 
(MyHC-2b) (cf. Schiaffino et al. 1986, Developmental 
Studies Hybridoma Bank). Additionally, mAbs anti Slow 
(MyHC-1) and anti-Fast (MyHC-2), both provided by 
Biotrend or Medac/Novocastra, were used to further 
distinguish slow and fast MyHC isoforms. Primary 
antibody binding was revealed using donkey secondary 
antibody conjugated with HRP (Jackson Immunoresearch 
Laboratories, USA). (For a detailed description see 
Smerdu and Soukup 2008, Soukup et al. 2009). 

 
Sodium dodecyl sulphate polyacrylamide gel 
electrophoresis (SDS-PAGE)  

For SDS-PAGE, the muscle samples 
(approximately 30 mg) were thoroughly cut using 
scissors in 5 volumes of ice-cold washing buffer (5 mM 
Na-phosphate pH 7.0, 20 mM NaCl, 1 mM EGTA), 
centrifuged 5 min/12000 x g. The pellet was re-suspended 
in 3 volumes of extraction buffer (100 mM 
pyrophosphate pH 8.4, 5 mM EGTA, 1 mM 
dithiothreitol), extracted for 30 min on ice by shaking and 
centrifuged 5 min/12000 x g. The supernatant was diluted 
1:4 with the sample buffer (125 mM TRIS-HCl pH 6.8, 
1 mM EDTA, 5 % SDS, 5% mercaptoethanol, 0.1 % 
bromophenol blue, 20 % glycerol) and 5 μl of the sample 
(1 μg of protein per well) were loaded onto the gel. 
MyHC isoforms were separated by SDS-PAGE 
(Talmadge and Roy 1993) using MiniPROTEAN3 Cell 
(Bio-Rad Ltd.) at a constant voltage (100 V) for 18-19 h 
at 4 °C. After MyHC isoform separation, the gels were 
either silver-stained (Blum et al. 1987) or stained by 
Coomassie Brilliant Blue and Bismarck Brown R (Choi 
et al. 1996). The individual MyHC isoforms were 
densitometrically evaluated at two gels from each sample 

using the imaging system (Fujilab, Japan) and the AIDA 
3.28 computer program (Advanced Image Data Analyser, 
Germany) (for further details see Říčný and Soukup 
2011). 

 
Quantitative morphological analysis  

The numerical (N) proportions (%) of muscle 
fiber types were assessed by 2-D stereological methods 
using the principles of an unbiased counting frame and 
point counting (Zacharova and Kubinova 1995). The 
stereological measurements were performed using the 
C.A.S.T. Grid System (Olympus, Albertslund, Denmark). 
In order to achieve a realistic estimate of the measured 
parameters, the concrete arrangement of the stereological 
system (number of points, size of the counting frame, 
scanning interval) was selected according to muscle 
section size and fiber composition on the basis of efficacy 
analysis described in our previous papers (Zacharova and 
Kubinova 1995, Zacharova et al. 1997, 1999, 2005). 

  
Statistical analysis  

The data were expressed as mean ± SD. 
Differences between transcript and protein levels and 
fiber type composition were evaluated using the Kruskal-
Wallis One Way Analysis of Variance on Ranks followed 
by all pairwise multiple comparison procedures (Dunn´s 
method), mRNA difference between EDL and SOL 
muscles (Fig. 3) by Mann-Whitney Rank Sum Test 
(SigmaStat program, Systat Software, Germany).  
 
Results 
 
MyHC mRNAs analysis by qRT-PCR  

Our measurements revealed that the analyzed 
EDL and SOL muscles of adult Lewis rats expressed all 
four MyHC-1, -2a, -2x/d and -2b transcripts (Figs 1-3). 
The highest expression levels in the EDL were 
demonstrated for fast MyHC-2b followed by MyHC-2x/d 
isoform transcripts, which together formed more than 
90 % of all MyHC transcripts and exceeded the level of 
the slower MyHC-2a isoform transcript almost ten times 
and that of MyHC-1 nearly 30 times (Figs 1 and 3). On 
the other hand, in the SOL muscle, although all four 
MyHC RNAs were detected, the major MyHC-1 
transcript was two to three orders higher than the fast 
isoforms and it formed more than 99 % of all MyHC 
isoform RNAs (Figs 2 and 3). Differences in the level of 
individual transcripts between both muscles were highly 
significant (Fig. 3). 
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Fig. 1.                                                                                                     Fig. 2.  
 

 
Figs 1. and 2. Relative values (expressed as percentage) of slow MyHC-1 and fast MyHC-2a, -2x/d and -2b mRNAs as determined by 
qRT-PCR (dark columns), of MyHC-1, -2a, -2x/d and -2b isoform content as determined by SDS-PAGE (hatched columns) and fiber type 
proportions of type 1, 2A, 2X/D and 2B as determined by immunocytochemistry and quantitative fiber type analysis (blank columns) in 
the extensor digitorum longus (Fig. 1.) and soleus (Fig. 2.) muscles of adult female Lewis strain rats. Note the similarity of proportions 
between mRNA level, MyHC isoform content and fiber type percentage in case of each isoform. Statistics was performed using the 
Kruskal-Wallis One Way Analysis of Variance on Ranks. * indicates significant difference (p≤0.05) against MyHC transcript; # indicates 
significant difference (p≤0.05) against SDS-PAGE.  
 
 

 
 
Fig. 3. Expression of slow MyHC-1 and fast MyHC-2a,  
-2x/d and -2b mRNAs in the extensor digitorum longus (EDL, 
blank columns) and the soleus (SOL, hatched columns) muscles 
of adult female inbred Lewis strain rats. Results are expressed in 
arbitrary units (a.u.). Note the great difference between the 
transcript levels in the SOL compared to the differences present 
in the EDL muscle. Statistics was performed using Mann-Whitney 
Rank Sum Test. Significant difference between same MyHC 
transcripts in the EDL against SOL: * p≤0.01.  

 

MyHC protein analysis by SDS-PAGE  
The SDS-PAGE technique also confirmed the 

presence of all four MyHC-1, -2a, -2x/d and -2b protein 
isoforms, but consistently only in the EDL muscles. A 
major proportion consisted of the fastest MyHC-2b and  
-2x/d isoforms forming about 85 % of all MyHC protein, 
followed by the -2a isoform. The three fast isoforms thus 
formed 97 % of MyHC content, the rest consisting of the 
slow MyHC-1 isoform (Fig. 1). In contrast to EDL, SOL 
muscle contained a dominant 98.5 % proportion of 
MyHC-1 protein isoform supplemented by MyHC-2a 
(Fig. 2). MyHC-2x/d and -2b isoforms were absent in all 
but one analyzed muscle. 

 
Fiber type immunohistochemical analysis  

In the EDL muscles, we confirmed using 
quantitative fiber type analysis the presence of all four 
fiber types, namely slow type 1, fast 2A, 2X/D and 2B. 
The fastest 2B and 2X/D fibers formed more than 75 % 
and together with 2A fibers, they represented up to 95 % 
of all fibers (Fig. 1). In the SOL muscle, quantitative fiber 
type composition analysis determined by 
immunocytochemistry demonstrated a dominant presence 
of slow type 1 fibers stained with BA-D5 mAb 
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specifically recognizing slow MyHC-1 isoform 
supplemented by about 1 % of fast 2A fibers stained by 
SC-71 mAb specifically recognizing fast MyHC-2a 
isoform. All fibers in the SOL muscle were stained by 
BF-35 mAb, recognizing all MyHC isoforms except 
MyHC-2x/d, which showed the absence of pure fast 
2X/D fibers. Similarly, there were no 2B fibers stained by 
BF-F3 mAb specifically recognizing this fiber type. In 
both muscles transitional hybrid type 2C (1C) fibers were 
found, which stained to a variable extent by anti-slow and 
anti-fast mAbs. Figures of histochemical and immuno-
cytochemical reactions were presented earlier in our 
papers (e.g. Soukup et al. 2002, 2009, 2012, Novák et al. 
2010).  
 
Discussion 
 
Comparison of MyHC mRNA, protein level and fiber type  

Our results confirmed the presence of similar 
proportions of MyHC mRNA transcripts, protein 
isoforms and fiber types of all four MyHC-1, -2a, -2x/d 
and -2b isoforms in the EDL and SOL muscles. 
Furthermore, in the SOL muscle, both fastest MyHC 
isoforms at the transcript and protein levels were 
markedly less represented suggesting an explanation for 
the absence of 2X/D and 2B fibers. In the EDL muscle, 
the highest levels of MyHC-2b and -2x/d mRNA were 
about one order higher than the level of the minor  
MyHC-1 and even less than one order when compared to 
MyHC-2a mRNA. The lowest amount of the MyHC-1 
transcript corresponding to a minor representation of the 
slow MyHC-1 protein isoform and of the slow type 1 
fibers in the EDL, as well as the dominant presence of the 
slow type 1 transcript, isoform and fiber type in the SOL 
muscle, are in agreement with the results of previous 
studies in Lewis rats (Soukup et al. 2002, 2009, 
Zacharova et al. 2005, Smerdu and Soukup 2008, Novák 
et al. 2010, Novák and Soukup 2011).  

In the EDL, the amount of MyHC mRNAs 
increased in the same order as did the content of MyHC 
protein isoforms and the percentage of fiber types, i.e. 
type 1 < 2a < 2x/d < 2b (cf. Fig. 1). Interestingly, the 2A 
fibers in the EDL were present in a higher percentage 
than would correspond to the MyHC-2a transcript level 
and MyHC-2a isoform content. Our stereological 
evaluation suggested that about 5 to 10 % of fibers 
considered to be 2A fibers according to the reaction with 
SC-71 mAb were in fact 2C/1C fibers. The same can be 
true for the type 1 fibers, as some of these could be 

detected by BA-D5 mAb, although they would rather 
belong to the 1C/2C fibers. If so, then in the EDL, the 
percentage of 2A and type 1 fibers would be lower and 
that of 2X/D and 2B higher than shown in Figure1. In 
such case, the significant difference found between fiber 
type and MyHC isoform or transcript percentage might 
be lower or disappear. This would further support our 
suggestion that there is close correlation among 
transcript, protein and fiber type levels. The question of 
correct determination of fiber type percentage can be 
further raised by the difference in the avidity of mAbs 
used for the detection of MyHC isoforms. Both mAbs 
BA-D5 (anti slow MyHC-1) and SC-71 (anti fast  
MyHC-2a) can be used highly diluted (1:200), while  
BF-35 (anti MyHC-2x/d) and BF-F3 (anti MyHC-2b) 
usually have to be used undiluted. This could especially 
effect the determination of 2X/D fibers, because BF-35 
mAb is a negative marker of 2X/D fibers. This means that 
even a small amount of MyHC-1 or -2a recognized by 
high affinity BAD-5 and SC-71 mAbs can mask the 
possible existence of 2X/D fibers. This problem can be 
partially overcome by using the new 6H1 mAb 
specifically recognizing the MyHC-2x/d isoform. 

Absence of MyHC-2x/d and -2b isoforms and 
2X/D and 2B fibers in the SOL muscle can be explained 
by the extremely low MyHC-2x/d and -2b transcript 
levels. The absence of 2X/D and 2B fibers in the SOL is 
supported by stereological analysis of mean fiber 
diameters (fiber areas), which revealed that all fibers in 
the SOL muscles have similar diameters in contrast to the 
EDL, where type 2B and 2X/D fibers always exhibit 
significantly greater diameters compared to 2A and type 
1 fibers (unpublished data from Cast Grid analysis). 
 
Mechanisms of regulations of MyHC genes transcription  

It is generally supposed that the MyHC mRNA 
level defines the amount of subsequently synthesized 
protein (Pette and Staron 1990, Schiaffino and Reggiani 
1996, Pette et al. 1999, Pette 2002, Caiozzo et al. 2003, 
Schiaffino 2010). Many of the dynamically regulated cell 
processes (e. g. mRNA stability, formation of splicing 
variants, regulation of translation or protein stability) may 
result in a lower correlation between mRNA expression 
and protein level. Evidently, fiber type composition can 
flexibly react to physiological demands within the given 
genetic range (Eržen et al. 1996, Snoj-Cvetko et al. 
1996a,b) and, as already concluded, the extent of each 
MyHC isoform expression is determined by the level of 
their mRNA. The molecular control of muscle diversity 
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and plasticity have been studied for a long time and it 
seems that the neural input generated via the nerve 
impulse pattern plays an important, if not decisive, role 
(for review see e.g. Pette and Staron 1993, Schiaffino and 
Reggiani 1994, 1996, Buonanno and Rosenthal 1996, 
Pette et al. 1999, Soukup and Jirmanová 2000, Pette 
2002, Asmussen et al. 2003, Schiaffino 2010). However, 
the way of neural input conversion into gene expression 
is still a matter of speculation (for review see Buonanno 
and Fields 1999, Pette 2002, Schiaffino 2010). One of the 
most promising suggestions attempting to explain the 
effect of neural input on gene expression relies on the 
serine/threonine phosphatase called calcineurin. If the 
Ca2+ level in the sarcoplasm remains high due to tonic 
excitation (characteristic e. g. of the anti-gravity function 
of the SOL muscle), calcineurin is activated and can 
dephosphorylate the nuclear factor of activated 
thymocytes (NFAT) in the case of “slow muscle genes”, 
which afterwards enters the nucleus and associates with 
MEF2 (belonging to the family of myocyte enhancing 
factors). These can then bind together to the slow  
MyHC-1 isoform promotor and thus induce expression of 
MyHC-1 mRNA. In fast muscles, like EDL, the neural 
impulse pattern is characterized by irregular short bursts 
of activity resulting in fluctuation of Ca2+ concentration 
that is not high enough to activate calcineurin and start 
the whole cascade of events described above. On the 
other hand, it was suggested that calcineurin has only a 
modulatory role, rather than being a primary regulator of 
slow MyHC gene expression (Pandorf et al. 2009). It 
remains to be also established whether maturation of fast 
fibers is accompanied by epigenetic modifications at the 
MyHC-1 gene locus that make this gene essentially 
inaccessible for transcription or whether gene expression 
is also controlled at the post-transcriptional level 
(Schiaffino 2010). 
 
 

Conclusions 
 
Using three different methods, we demonstrate 

the existence of corresponding proportions of MyHC at 
the level of mRNA transcripts (MyHC-1, -2a, -2x/d, -2b), 
protein isoforms (MyHC-1, -2a, -2x/d, -2b) and fiber 
types (type 1, 2A, 2X/D, 2B). Markedly low expression 
of MyHC-2x/d and MyHC-2b mRNAs in comparison 
with MyHC-1 mRNA in the SOL muscle clearly shows 
why MyHC-2x/d and MyHC-2b protein isoforms are 
usually not present at amounts detectable by silver 
staining of electrophoretic gels and why there are no 
2X/D and 2B fibers detected on muscle sections by 
immunocytochemical staining. As already suggested long 
time ago for RT-PCR (Wright et al. 1997), we conclude 
that Real Time RT-PCR can be used as a routine method 
wherever analysis of MyHC and/or muscle composition 
changes is needed. If the same correlation is proven in 
humans, Real Time RT-PCR could be used in the case of 
muscle biopsies, as it requires much smaller samples 
compared to the other two methods.  
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