The large-scale interaction between short GRB jets and disk wind outflows
Gerardo Urrutia
Short GRBs are produced by relativistic jets arising from binary NS-NS or NS-BH mergers. Since the detection of the first unambiguous off-axis GRB 170817A, we learned that energy distribution in the jet plays an important role in explaining the GRB emission. The structure and dynamics are modified during the first seconds of the jet interaction with a post-merger environment. Conventional studies often assume this environment as a simple homologous and symmetrically expanding wind. However, post-merger outflows exhibit complex dynamics influenced by the accretion disc evolution. Moreover, the r-process nucleosynthesis influences the thermodynamics and properties of the post-merger neutron-rich environment. During the talk, I will show the results of numerical simulations studying the impact of realistic post-merger disc outflow over the jet dynamics at large scales. Our results are substantially different from the typical model with symmetric homologous wind. a) the impact of the r-process on initial wind pressure leads to significant changes in the jet collimation and cocoon expansion; b) the angular structure of thermal and kinetic energy components in the jets, cocoons, and winds differ concerning simple homologous models, hence it would affect the predictions of GRB afterglow emission; c) the temporal evolution of the structure reveals conversion of thermal to kinetic energy being different for each component in the system (jet, cocoon, and wind); d) post-merger environments influence energy structure and material dispersion, altering the interaction between jets and disk winds.
ASU Praha - Spořilov