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Abstract

In the �rst chapter, I employ high frequency data to study extreme price changes (i.e., price

jumps) in the Prague, Warsaw, Budapest, and Frankfurt stock market indexes from June 2003

to December 2010. I use the price jump index and normalized returns to analyze the distribution

of extreme returns. The comparison of jump distributions across di�erent frequencies, periods,

up and down moves, and markets suggests a possible relationship with market micro-structure.

I also show that the recent �nancial crisis resulted in an overall increase in volatility; however,

this was not translated into an increase in the absolute number of jumps. In the second paper,

I empirically analyze the price jump behavior of heavily traded US stocks during the recent

�nancial crisis. Namely, I test the hypothesis that the collapse of Lehman Brothers caused no

change in the price jump behavior. To accomplish this, I employ data on realized trades for 16

stocks and one ETF from the NYSE database. These data are at a 1-minute frequency and span

the period from January 2008 to the end of July 2009. I employ �ve model-independent and three

model-dependent price jump indicators to robustly assess the price jump behavior. The results

con�rm an increase in overall volatility during the recent �nancial crisis�after the collapse of

Lehman Brothers; however, the results cannot reject the hypothesis that there was no change

in price jump behavior in the data during the �nancial crisis. This implies that the uncertainty

during the crisis was scaled up but the structure of the uncertainty seems to be the same.

Finally, in the third chapter, I perform an extensive simulation study to compare the relative

performance of many price-jump indicators with respect to false positive and false negative

probabilities. I simulated twenty di�erent time series speci�cations with di�erent intraday noise

volatility patterns and price-jump speci�cations. The double McNemar (1947) non-parametric

test has been applied on constructed arti�cial time series to compare fourteen di�erent price-

jump indicators that are widely used in the literature. The results suggest large di�erences

in terms of performance among the indicators, but I was able to identify the best-performing

indicators. In the case of false positive probability, the best-performing price-jump indicator is

the one based on thresholding with respect to centiles. In the case of false negative probability,

the best indicator is based on bipower variation.

1



Abstract

V první kapitole studuji za pouºití vysokofrekven£ních dat extrémní pohyby, neboli cenové

skoky, hlavních akciových index· z Prahy, Var²avy, Budape²ti a Frankfurtu pro období mezi

£ervnem 2003 a prosincem 2010. Pouºívám index cenových skok· a normalizované výt¥ºky k

analýze extrémních výt¥ºk·. Porovnání distribucí skok· nap°í£ frekvencemi, délkami pam¥ti,

sm¥rem pohybu a trhy nazna£uje moºný vztah s mikro-strukturou trh·. Rovn¥º ukazuji, ºe

stávající �nan£ní krize zp·sobila vzr·st ve volatilit¥, ale nikoli nár·st cenových skok·. Ve druhé

kapitole empiricky analyzuji chování cenových skok· likvidních amerických akcií b¥hem sou£asné

�nan£ní krize. Jmenovit¥ testuji hypotézu, ºe kolaps Lehman Brothers nezp·sobil ºádnou zm¥nu

v chování titul· vzhledem k chování cenových skok·. K tomuto ú£elu pouºiji obchodní data

16 akcií a jednoho ETF z databáze NYSE. Tato data jsou na 1-minutové frekvenci a pokrývají

období od ledna 2008 do konce £ervence 2009. Dále pouºiji p¥t, na modelu nezávislých, a t°i,

na podkladovém modelu závislých, indikátor· cenových skok· k robustnímu odhadu chování

skok·. Výsledky potvrzují zvý²ené úrovn¥ volatility po pádu Lehman Brothers, ale výsledky

nemohou vylou£it hypotézu, ºe nedo²lo ke zm¥n¥ chování cenových skok· po této události. Toto

nazna£uje, ºe se celý cenový proces zv¥t²il, aniº by do²lo ke zm¥n¥ jeho struktury. Nakonec v t°etí

kapitole provádím extensivní simula£ní studii na porovnání relativní výkonnosti mnoha cenových

indikátor· vzhledem k fale²ným pozitivním a negativním pravd¥podobnostem. Simuluji dvacet

rozdílných £asových °ad s r·znými vzorci intradenní volatility a speci�kací cenových skok·.

Dále pouºiji dvojitý neparametrický McNemar·v test (McNemar, 1947) k porovnání výkonnosti

£trnácti r·zných indikátor· £asto pouºívaných v literatu°e. Výsledky nazna£ují velké rozdíly ve

výkonnosti indikátor·, mezi nimiº jsem ale byl schopný identi�kovat nejlep²í z nich. V p°ípad¥

fale²né negativní pravd¥podobnosti je nejlep²ím indikátorem ten, který je zaloºený na centilech.

V p°ípad¥ fale²né pozitivní pravd¥podobnosti je nejlep²í indikátor postavený bipower varianci.
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Preface

Properties of the price process of various �nancial assets has occupied in the attention of �nancial

econometricians since the time of Bachelier's paper (Bachelier et al., 2006). With the emergence of

information and telecommunication technologies, the �nancial markets have become more closely

correlated on a global scale due to increase in the speed of communication and complexity of the

�nancial network rocketed up. Thus, �nancial markets are unavoidably becoming unpredictable

and uncertain. Uncertainty or volatility means that when we observe the price process for any

�nancial instrument, we see that the price process follows a stochastic-like path. It is thus of great

interest for �nancial practitioners, policy makers and regulators to understand as many aspects of

the volatility as possible.

The volatility of �nancial assets, thankfully, carries some regularities, as was suggested by Mer-

ton (1976). It can be decomposed into two components: the �rst component correspondes to the

regular white noise, and the second to irregular but very extreme price movements, or price jumps.

The �rst component is relatively easy to handle analytically and all the calculations including

pricing of various �nancial assets and estimating the market risk are technically possible. Unfortu-

nately, it is not enough to work with the regular noise, as was shown by Andersen, Bollerslev, and

Dobrev (2007), and one has to include price jump�building elements which are hard to describe

analytically�to truthfully assess the risk, to price the �nancial assets and to understand the emer-

gence of catastrophic phenomena like market crashes. Though, without considering price jumps

properly, portfolia or �nancial markets are prone for instabilities, big loses and irrational panic.

Price jumps, despite their reported signi�cance, are still not fully resolved in the literature.

There is neither a clear agreement on what is the best technique to identify them in real price

time series, nor is there a consensus on what is the main source causing them. Many authors

dispute whether the main price jump source lies in the released news announcements or whether

they emerge endogenously as a consequence of positive feedback. This further stipulates the need

for deep theoretical and empirical study of price jumps. The literature also does not shed much

light on the correlation of price jumps across di�erent �nancial assets.

In this dissertation, I provide three studies which extend the understanding of price jumps in

�nancial markets in several ways. This dissertation was partially motivated by the �nancial turmoil
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observed on the global �nancial markets starting in mid-2008. Events three years later, however,

suggest that the study does not only serve to provide better understanding of what happened during

the �nancial crisis but also to prepare for the next one, which may be very soon.

In the �rst paper titled �Price Jumps in Visegrad-Country Stock Markets: An Empirical Analy-

sis,� I perform an empirical analysis of the price jump behavior of the Visegrad stock markets using

high frequency data. According to my best knowledge, this is the �rst study which focuses on the

Visegrad stock markets and compare them with the mature market in Germany. I employ 5-minute

data of the main stock market indexes for the period June 2003 to December 2010. Descriptive

statistics show a signi�cant deviation from the Gaussian distribution, which supports the presence

of jumps. I employ the price jump index and normalized returns to measure jumpiness of the above

mentioned markets. In particular, I study the distribution of price jumps across di�erent frequen-

cies, periods, and up and down movements. The results suggest a close relation of the price jump

behavior to the market micro-structure. Namely, low turnover and very tolerant margin trading

makes the behavior of the Prague Stock market index PX signi�cantly deviate from the other three

stock indices. Finally, I also show that the recent �nancial crisis was not transmitted to increased

number of price jumps, or jumpiness. On the other hand, the recent �nancial crisis caused the

stock market to behave in a more similar manner since the discrepancies in the price jump behavior

among them signi�cantly decreased during the �nancial turmoil.

In the second part of the thesis named �The Impact of the Lehman Brothers Collapse: Were

Stocks More Jumpy?,� I answer the question whether the collapse of Lehman Brothers�an event

considered by many people as a trigger of the recent �nancial crisis�caused more price jumps or

market panic on the �nancial markets. Namely, I test the hypothesis that the collapse of Lehman

Brothers caused no change in the price jump behavior. I employ 1-minute data on realized trades for

16 major stocks traded on the NYSE and one ETF tracking the performance of the S&P 500 index.

The data spans from January 2008 to the end of July 2009 with Lehman Brother's collapse standing

in the middle of the data set. I employ �ve model-independent and three model-dependent price

jump indicators to robustly assess the price jump behavior. The results con�rm a well-accepted

fact that �nancial problems caused a signi�cant increase in volatility; however, the results cannot

reject the hypothesis of no change in the price jump behavior. This is counter-intuitive since many

policy makers as well as investors characterize turmoil periods by increased volatility and increased
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number of extreme price movements. The results thus bring a new perception of the �nancial crises

and provides hints how to prepare for future crises.

Finally, in the part titled �The Identi�cation of Price Jumps,� I target the problem which ap-

pears throughout the literature: which price jump indicator is the most suitable for identi�cation

of real price jumps. The literature so far provides a broad range of various price jump indicators

based on di�erent theoretical grounds; however, they are usually tested using di�erent methodology

and thus one cannot directly compare them. The lack of direct comparison raises a question about

the �ndings used with a particular price jump indicator. To �ll this gap, I performed an extensive

simulation study to compare the relative performance of many price-jump indicators with respect

to false positive and false negative probabilities. I simulated twenty di�erent time series speci�ca-

tions with di�erent intraday noise volatility patterns and price-jump speci�cations, and applied the

double McNemar (1947) non-parametric test on constructed arti�cial time series to compare four-

teen di�erent price-jump indicators that are widely used in the literature. Surprisingly, the results

suggest large di�erences in terms of performance among the indicators. In addition to �nding the

discrepancies, I identi�ed the best-performing indicators. In the case of false positive probability,

the best-performing price-jump indicator is based on thresholding with respect to centiles. In the

case of false negative probability, the best indicator is based on bipower variation.

The three chapters of this dissertation give together a wide and robust picture on the problematic

of price jumps in �nancial markets. The three papers extend the literature in several ways and

suggest many di�erent future applications based on this research. Among others, the �rst chapter

suggests that policy makers, who plan, for example to introduce pension reform in the Czech

Republic, should not use the existing historical data for calculating pension fund performance and

risk analysis since the operation of pension funds may change the properties of the markets. The

second paper, on the other hand, helps �nancial regulators to prepare for �nancial crises. The

intuitive treatment of �nancial crisis as a period with increased volatility and higher number of

price jumps is not supported by the data. Finally, the third chapter provides a recipe how to

perform a meta-analysis over existing papers by de�ning two optimality criteria. The �ndings of

three chapters, however, open up more research questions to exploit, which I plan to address in my

future research.
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Part I

Price Jumps in Visegrad-Country Stock

Markets: An Empirical Analysis1

Abstract

I employ high frequency data to study extreme price changes (i.e., price jumps) in the Prague,

Warsaw, Budapest, and Frankfurt stock market indexes from June 2003 to December 2010. I use

the price jump index and normalized returns to analyze the distribution of extreme returns. The

comparison of jump distributions across di�erent frequencies, periods, up and down movements,

and markets suggests a possible relationship with the market micro-structure. I also show that

the recent �nancial crisis resulted in an overall increase in volatility; however, this was not

translated into an increase in the absolute number of jumps.

1An earlier version of this work has been published in Novotny, J., 2010. �Price Jumps in Visegrad Country Stock
Markets: An Empirical Analysis�, CERGE-EI Working Paper Series, 2010, No. 412, 33 pages. Work was presented
at the 6th CSE Biennial Conference, Prague, Czech Republic 11/2010, and at Mathematical Methods in Economics,
Kostelec upon Black Woods, Czech Republic, 9/2009. This study is supported by a GA�R grant (402/08/1376) and
by grant No. 271111 of the Grant Agency of Charles University. All errors remaining in this text are the responsibility
of the author.
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1 Literature Review and Motivation

The volatility of �nancial markets�or, in other words, the uncertainty of the price process for

various �nancial instruments�is a deeply studied phenomenon in the �nancial literature (see, e.g.,

Gatheral, 2006). However, most of the attention has been focused on the part of volatility known

as regular noise, which can be described by a standard Gaussian distribution. The remaining

component of volatility, known as price jumps, involves irregular but abrupt price changes. See

Merton (1976) for an early reference or the recent discussion of how to decompose volatility into

two parts by Giot et al. (2010). Price jumps substantially di�er from regular noise and are more

di�cult to explicitly de�ne and handle mathematically (Broadie and Jain, 2008; Johannes, 2004;

Nietert, 2001; Pan, 2002).

Price jumps, i.e., irregular and extreme price movements, are associated with various interesting

market phenomena. Price jumps can be connected to important issues in the market micro-structure,

such as the e�ciency of price formation, the provision of liquidity or the interaction between market

players.2 From a practical point of view, traders are also interested in analyzing price jumps since

they are a part of volatility and therefore associated with signi�cantly large losses and gains. Thus,

understanding price jumps helps to avoid big losses, improves portfolio performance and creates

better hedge positions. Finally, knowledge of price jumps is needed by �nancial regulators; see

Becketti and Roberts (1990) or Tinic (1995). Price jumps can be also used as a proxy to study

market (in)e�ciency, information �ows across markets including market panic or changes in the

information-driven trading. Overall, the study of price jumps can shed more light on a broad class

of market phenomena and signi�cantly extend the existing knowledge.

One of the major problems associated with price jumps is the lack of evidence of, and very

di�erent views about, their origins presented in the literature. For example, one stream in the

literature claims that price jumps primarily originate in news announcements. This stream is

represented by Lee and Mykland (2008) or Lahaye et al. (2011), where the authors con�rm in

their framework that the main source of price jumps are corporate statements or macroeconomic

news announcements. In addition, several authors, e.g., Hanousek et al. (2009), claim that news

announcements cannot be perceived absolutely, but rather only relative with respect to market

2See the survey in Madhavan (2000).
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expectations. Therefore relative departures from market expectations would be a source for price

jumps. Other authors, however, oppose the explanation that revealed news are a primary source of

price jumps and state that the main source of price jumps is the lack of liquidity on either the bid or

ask side.3 Further, the literature on behavioral �nance suggests another explanation for price jump

origins. For example, Schiller (2005) suggests that jumps are caused by the market participants

themselves, who create a fragile environment, which ends up in extreme reactions manifested as

price jumps. This is further supported by Taleb (2007), who connects extreme price movements

with the systemic properties of complex systems. The lack of a theoretical explanation of price

jumps means that empirical analysis is currently the only tool one can employ.

In addition to the main streams of literature, security trading itself provides several additional

explanations. Sudden price movements could be attributed to traders' responses to changes in

market mood. When the market mood changes, events are perceived di�erently and could result

in price jumps (see Andersen et al., 2007). For example, when a market bottoms out, it is not

a�ected by negative news, and even less-negative-than-usual news can cause an upswing. Such an

upswing could be further fueled by herd behavior. Market mood is also closely connected with a

phenomenon known from international �nance: in bad times markets are more correlated with each

other than in good times.4 Therefore, from a behavioral point of view, a change in market mood

can a�ect the way markets are correlated with the underlying economic fundamentals, supporting

the strong relation between price jumps and market mood.

Price jumps can also be a useful tool to study information spillover in �nancial markets. The

spread of price jumps can be perceived as a transfer of important information also known as infor-

mation �ow. In particular, an especially interesting case is a potential link between price jumps

and the revelation of insider information.5 Price jumps and their distribution in particular could

also re�ect the ine�ciency of �nancial markets. E�cient �nancial markets, as Fama (1970) puts it,

should re�ect all the available information and, therefore, a market with more price jumps should

be less e�cient.

In this paper, I empirically estimate a broad range of price jump properties for Central and

3For example, Joulin et al. (2008) and Bouchaud et al. (2006) study excess liquidity and its impact on the formation
of price jumps.

4See, for example, Erb et al. (1994); Ribiero and Veronesi (2002); and Knif et al. (2008).
5The insider trading dimension of price jumps was studied by Cornell and Sirri (1992) and Kennedy et al. (2006).

It causes problems for policy makers and other market participants.
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Eastern European (CEE) emerging markets in a discrete-time framework, which is suitable for

markets with low and irregular frequency of trades. I use high frequency data for the main stock

indexes6 from the countries of the Visegrad region7�small emerging economies regionally and cul-

turally close to each other. Further, as a benchmark I include the stock index from Germany as the

most important trading partner with mature �nancial markets. The data spans from June 2003 to

the end of 2010 and thus cover the period before the recent �nancial crisis, the phase before the

crisis as well as part of the recovery phase. To my best knowledge, this is the �rst study of price

jumps for small emerging markets that includes economic and �nancial interference and discusses

the impact of a �nancial crisis on extreme price movements. The rest of the paper is structured as

follows: Section 2 gives a short overview and classi�cation of various price jump indicators, Section

3 brie�y describes my methodology, in particular how I use non-parametric measures to compare

stock market jumpiness across time and markets, Section 4 describes the data, Section 5 is devoted

to my results, and �nally Section 6 concludes the paper.

2 Price Jump Indicators

The volatility of �nancial instruments can generally be decomposed into two parts: regular noise

and the remainder. Regular noise is characterized by an underlying Gaussian distribution that was

�rst identi�ed by Bachelier, see Bachelier's original work Bachelier (1900) or the book devoted to

this work (Bachelier et al., 2006) and ever since it has been extensively discussed in the literature.

The remaining part, known as price jumps, includes irregular but extreme price movements, and

has not been deeply studied in the economic literature. It is believed that these extreme price

movements are rather stemming from a Levy walk (Fama, 1965), which leads in distributions with

in�nite moments; see Levy (1925). This is in stark contrast to the Gaussian distribution where all

moments are �nite. Despite the fact that there exist models taking into account this component

(e.g., Merton, 1976), a deeper theoretical understanding of price jumps is still missing.

One of the fundamental problems of price jumps is choosing an appropriate identi�cation tech-

6In contrast to the existing studies, the indexes included in this work are not directly traded, which can have
consequences for the properties of their price process, namely, serial auto-correlation can have a slower decay.

7The Visegrad region actually consists of four countries: the Czech Republic, Poland, Hungary and Slovakia. The
sample does not include Slovakia since its �nancial market has very low capitalization and extremely low turnover,
and therefore it is not suitable for the high-frequency statistical analysis applied in this paper.
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nique. The literature contains a number of di�erent jump indicators based on di�erent assumptions.

Generally, I can divide the price jump indicators into two main categories: indicators aiming to ex-

actly identify the moments or periods when the price jump occurred and indicators evaluating the

statistical propensity of a given time series to undergo price jumps.

The �rst group of indicators are those employing higher moments like bipower variance and swap

variance. The bipower variance-based indicators deal with statistics coming from the di�erence

between the realized variance and the bipower variance: the measure of variance, which, as opposed

to the realized variance, is not sensitive to non-normal price movements.8 The swap variance-based

indicators were developed by Jiang and Oomen (2008) and rely on the di�erence between the realized

variance and the swap variance. The authors claim that that swap variance is more sensitive to

price jumps than bi-power variance and thus the indicator is more e�cient, which they support by

a Monte Carlo simulation study.

The second group of price jump indicators targets a measure of jumpiness, not the individual

jumps. One of the streams of indicators belonging to this group are those developed by Ait-

Sahalia along with various co-authors;9 however, these indicators are better suited to investigate

the properties of ultra-high-frequency data. Another stream of indicators measuring price jumpiness,

which will be employed in this paper, are the price jump index and normalized returns.10

The price jump index was introduced by Joulin et al. (2008) and is de�ned as an absolute value

of a return normalized by a moving average of the same quantity over a given window:

jT (t) =
|r(t)|

< |r(t)| >T
, (2.1)

where < |r(t)| >T denotes the equally weighted moving average of T values of absolute log-returns,

including the current value, i.e.,

8Bipower variance-based indicators were employed by Barndor�-Nielsen et al. (2006, 2008); Barndor�-Nielsen
and Shephard (2004), and Barndor�-Nielsen and Shephard (2006), Lee and Mykland (2008) further elaborated this
method and derived an indicator that tests for the exact moments when a price jump occurred. Bipower variance is
de�ned as a sum of absolute values of return with its lag value, while realized variance is just a sum of squares of
returns. Swap variance is construction, which takes into account both returns and prices. Proper de�nitions follow
later on in the subsequent chapters.

9See the papers by Ait-Sahalia (2004); Ait-Sahalia and Jacod (2009a,b), and Ait-Sahalia et al. (2009).
10These indicators belong to the �eld of statistical �nance, see e.g., Stanley and Mategna (2000) for further

references.
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< |r(t)| >T=
1

NT

T−1∑
i=0

|r(t− i)| , (2.2)

and NT stands for the actual number of observations in the time window to control for missing

observations.

The authors also employed a large data set of US stocks and showed that the price jump

index has a distribution with tails following power-law behavior, i.e., its probability distribution is

proportional to r−α, with a characteristic coe�cient corresponding to an inverse cubic distribution,

or α ≈ 4. The prominent role of the inverse cubic distribution in the �nancial high-frequency data

was con�rmed by other studies.11 On the other hand, the inverse cubic distribution is close to a

distribution describing Levy-like behavior with in�nite volatility.

Normalized returns, on the other hand, are de�ned as centered returns normalized by their

standard deviation:12

rnT (t) =
r(t)− < r(t) >T

σT (t)
, (2.3)

where < r(t) >T is de�ned in a similar way as in equation (2.2), and σT (t) is the standard

deviation�or the realized volatility with respect to the L2 measure�calculated from the same

set of T returns. Such a de�nition allows me both to compare the di�erent price time series and to

compare periods with di�erent market volatility.

Eryigit et al. (2009) study price jumps for a broad range of stock market indexes with the help

of normalized returns. They focus mainly on the functional form of the tail distribution and test

a broad range of possible tails of price jump distributions. The big Chinese emerging markets are

studied by Jiang et al. (2009) using normalized returns, where the authors show that power-law

behavior is valid only for long-term moving averages, while for a short-term history, the tail behavior

behaves in a more exponential-like manner. Novotny (2010) employed these indicators, as well as

several other price jump indicators, to study the change in the price jump behavior during the recent

�nancial crisis and found no signi�cant change in the price jump behavior due to the �nancial crisis

11Plerou et al. (1999) and Gopikrishnan et al. (1999), among others.
12Plerou et al. (1999) and Gopikrishnan et al. (1999) employed normalized returns to study price jumpiness for

US stocks and the S&P 500 index using high-frequency data. They con�rm that the tail distribution of normalized
returns for US stocks follows a distribution close to the inverse of the cubic one, i.e., they do not behave either as a
pure Gaussian or as a Levy-like distribution with in�nite variance.
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for the most capitalized US stocks.

In this paper I am interested in measuring to what extent the jumpiness of the Visegrad markets

has been a�ected by the recent �nancial crisis and how price jump indexes depend on a chosen

frequency, as well as analyzing the (a)symmetry of jump distribution. In such a setup, the primary

concern lies in the measure of price jumps per a certain period, or, in other words, in the measure for

propensity of indexes to undergo a jump. Therefore, I would rather focus on the overall propensity

of �nancial markets to be jumpy than to focus on the more rigorous hypothesis of testing a given

period for the presence of one or more price jumps.13 Hence, in my comparison I will use two main

price jump indicators from the second group: the price jump index and normalized returns.

3 Methodology

I employ two measures for price jumps: the price jump index introduced in equation (2.1) and

normalized returns de�ned by equation (2.3). The two de�nitions of the price jump indicators are

close to each other but still they are signi�cantly di�erent. The similarity lies in the normalization

with respect to recent history expressed by dividing the returns by the realized volatility. The

moving average of the absolute returns and standard deviation represent two di�erent de�nitions

of the realized volatility. It is easy to show that standard deviation is relatively more sensitive to

extreme returns compared to the average of absolute returns. Hence, normalized returns are on

average more suppressed.

In this section I will show what parameters I opted to use for particular price jump indicators

(and why), how I estimated the characteristic coe�cient α describing a parameter for the tail

behavior, and how the whole comparative analysis was conducted.

3.1 Memory of Market History

Both de�nitions of price jump indicators require a choice of parameter T driving the length of the

history to which I compare the recent returns. With this I am able to estimate the propensity

of price jumps, i.e., the rate and size of price jumps with respect to the recent market situation.

Parameter T is chosen relatively and is de�ned as a number of time steps. Hence, the same value
13For the most extensive overview of the broad class of price jump indicators available in the literature and an

analysis of their performance see Hanousek et al. (2011).
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of T has a di�erent absolute length in minutes for di�erent frequencies. The length of the time

window de�nes the �ltering property of the price jump indicator, i.e., it is related to the frequency

of processes that will be captured by the chosen indicator. Generally, the longer the moving average,

the more sensitive the indicator is with respect to low frequency processes (cycles), and the more

insensitive the indicator would be to high frequency events. On the other hand, a very short time

window does not take into account slowly varying processes and considers only fast and abrupt

changes.

When using the price jump indicator I will, therefore, employ a wide range of values for T ,

which allows me to capture processes at all time scales. The literature suggests that price jump

properties are �lter dependent. For example, Plerou et al. (1999) show that the longer the time

window T , the higher the probability of the occurrence of extreme events.14 In addition, the authors

also provide empirical evidence that for a short time window T , the behavior of the tail distribution

for normalized returns is rather exponential and thus di�erent from power-law behavior, which was

observed for long time windows by many authors.15

To capture the views and recommendations made by various authors I therefore employ the

following sequence of time windows: T = 12, 24, 100, 1000, 2000, and 5000 time steps. Naturally,

the length in minutes depends also on the frequency used. I applied steps T = 12 and 24 to focus

on the immediate e�ects during the same trading day. Time widows T = 100 and longer are taken

to study the behavior of long-term averages, as suggested in the above-mentioned literature.

3.2 Estimating Tail Behavior

Joulin et al. (2008), among others, show that the tail distribution of the price jump index jT (t) for

various �nancial assets should behave similarly as ∝ s−α
(f)
T , i.e.,

P (jT > s) ∼ s−α
(f)
T , (3.1)

where α(f)
T depends both on the frequency of the data and the length of the time window T . For

the sake of simplicity, in the following formulas and expressions, I will omit the frequency index.

The index for the time window T will be kept explicit in all expressions. Let me note that the

14This is also supported by the theoretical and empirical evidence presented by Kleinert (2009).
15Except the previously mentioned authors, Joulin et al. (2008) do not reject the presence of power-law behavior.
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values of the estimated parameter α(f)
T , or α, are associated with certain distributions. For example

several authors claim that the characteristic parameter α tends to be around 4 for a large set of

US stocks, which corresponds to the inverse cubic distribution.16 On the other hand, the value of

α ≤ 3 indicates Levy-like behavior with in�nite volatility, see Kleinert (2009). It is clear that the

following rule holds: the lower α is, the more likely extreme price jumps will be observed.

The characteristic coe�cient α, as de�ned in the previous relation (3.1), is estimated for both

the price jump index and normalized returns. To obtain an equation suitable for the estimation

procedure, I �rst linearize relation (3.1) into the form

lnP (j > s) ∝ −α ln s . (3.2)

Assuming that the tail part follows such a power-law behavior, I can formulate the linear equation

as

lnP (j > s) = α0 − α ln s+ ν , (3.3)

where α0 is an intercept and ν is assumed to be a homogenous Gaussian noise stemming from the

statistical nature of the data. This equation holds j above some tail threshold values sj .

In the next step, I employ the following algorithm to estimate the characteristic coe�cient:

Using OLS, I estimate α in equation (3.3) for various tail intervals and the resulting value of α is

from the OLS regression with the highest R2. Such an algorithm is both simple and corresponds

to the linearization of the tail distribution.17 Using this algorithm, I perform two steps at once:

identifying the linear part of the tail�implicit estimation of the tail threshold sj�and estimating

its properties�estimation of α.

3.3 Comparative Analysis

The idea of my comparative analysis is based on a very simple and intuitive approach. I aim to

estimate the characteristic coe�cients α over various sub-samples representing di�erent phases of the

market, di�erent time frequencies, etc. Associated non-parametric tests comparing the underlying

16This was also con�rmed by Plerou et al. (1999) and Gopikrishnan et al. (1999).
17An alternative approach would rely on using the MLE or Principal Component Analysis as in Vaglica et al.

(2008).
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distributions (or the equality of α coe�cients) would actually test if the propensity to jump of the

price indexes has changed. I can therefore test if the jumpiness of stock market indexes is di�erent

in di�erent time periods like during the recent �nancial crisis; I can test the (a)symmetry of jumps

up and down, as well as the sensitivity of α to particular high frequencies. This relatively simple

setup allows me to study the jump component of the price generating process in more detail.

For the above-mentioned comparison I need to use a test that will be distribution-free, i.e., a

non-parametric test with a null hypothesis that two or more sets of estimated parameters have the

same distribution. The non-parametric feature of the test is necessary since I cannot assume any

underlying distribution of the estimated parameters. Moreover, I also require that the chosen test(s)

would have good �nite sample properties even for small samples. Taking all of these considerations

together. I opted for two non-parametric tests: the Wilcoxon rank-sum test and the Kruskal-Wallis

test.

The Wilcoxon Rank-sum Test18 is a non-parametric statistical test used to compare whether

two samples drawn from the independent populations have equally large values. The test itself

goes in two steps. In the �rst step, all observations are ranked together according to their value

no matter what sample they belong to. The sum of all the ranks assigned to all observations is

equal to N (N + 1) /2, where N is the number of observations in both samples together. When

both samples are equally distributed, the sum of ranks tends to be equal. Therefore, in the second

step, two statistics are constructed:

Ui =
∑

i∈Samplei

ranki −
ni (ni + 1)

2
, (3.4)

where ni is the number of observations in sample i and ranki is the rank of observation i.

For large samples, the sum of the two later statistics, U = U1 + U2, is asymptotically equal to

a normal distribution.19 For convenience, I employ standardized statistics

z =
U −mU

σU
, (3.5)

18For the original reference, see Wilcoxon (1945). A modi�cation of the test is known as the Mann-Whitney test;
see Mann and Whitney (1947).

19For small values, statistics have to be compared with signi�cance tables.
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with mean mU = n1n2
2 and standard deviation σU =

√
n1n2(n1+n2+1)

12 , which is asymptotically equal

to z ∼ N (0, 1).

The Kruskal-Wallis Test20 is a non-parametric statistical test used to test the null hypothesis

that K independent samples were drawn from distributions with the same median. The test is

a direct generalization of the Mann-Whitney U test for two samples. The test follows a similar

strategy to the later test of Wilcoxon and goes in two steps. In the �rst step, all observations are

ranked together according to their value no matter what sample they belong to. In the second step,

the Kruskal-Wallis statistics is calculated according to the following formula:

KW = (N − 1)

∑K
i=1 ni (r̄i − r̄)2∑K

i=1

∑
j∈Samplei (rj − r̄)2

, (3.6)

where ni is the number of observations in sample i, r̄ = (N + 1) /2 is the average rank of the

entire sample, r̄i =
(∑

j∈Samplei rj

)
/ni, N is total number of observations, and K is the number

of independent samples. The KW statistics is for large values of all ni asymptotically equal to

KW ∼ χ2
K−1. The KW statistics for a small size of the sample is presented in statistical tables.21

4 Data and Descriptive Statistics

I use 5-minute-frequency data for the main indexes from the Prague Stock Exchange (PSE, the

PX index), the Budapest Stock Exchange (BSE, the BUX index), the Warsaw Stock Exchange

(WSE, the WIG20 index), and the Frankfurt Stock Exchange (FSE, the DAX index); the data

spans from June 2003 to December 2010. The period included in the sample starts just before the

three emerging markets joined the European Union and goes until the end of 2010. The sample

covers the period before the recent �nancial crisis, its beginning phases at the end of 2007 and

beginning of 2008, the full emergence of �nancial crisis in 2008 and 2009 and, �nally, a certain period

of the recovery until the end of 2010. It thus describes the market evolution of three culturally,

historically, geographically, and economically connected countries along with Germany, representing

an EU benchmark: a country with more matured �nancial markets and institutions as well the major

20For the reference see Kruskal and Wallis (1952).
21Statistical software like Stata contains these values and automatically checks whether one can use asymptotic

values or exact values.
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EU trading partner of the other countries.

Since the main purpose of this paper is to study market dynamics and especially the propensity

of each particular market to extreme price changes (i.e., jumps), I have cut o� the very beginning

and the very end of each trading day. The cut-o� at the beginning of the trading day is performed

due to the di�erent construction of the market indexes used. Generally, any market index can be

either dividend-included or dividend-excluded. In my case, the DAX and BUX indexes are dividend-

included, while the PX and WIG indexes are dividend-excluded. This obviously causes di�erent

behavior at the market opening due to the ex-dividend day e�ects.22 Moreover, the beginning-of-day

cut-o� could have a negative e�ect on the observed propensity to sizable price moves. This is, �rst,

because I remove the period close to the opening, when markets react to overnight events. Second,

the cut-o� data could show even an opposite and smoother reaction to the (overnight) events since

markets could in the very �rst moments over-react negatively to negative events, and after this

abrupt overshooting, they could positively and smoothly move up to adjust the previous (cut-o�)

price change. These e�ects have to be taken into account when I make �nancial implications. The

cut-o� at the end of the trading day is performed for similar reasons: some markets have a di�erent

�nal stage (such as a �nal auction), so cutting o� the very end also avoids a possible bias in the

data.23 Nevertheless, the cut-o� occurs long enough after US markets open, therefore I do not lose

signi�cant market moves associated with the start of US trading.

Cutting o� the initial phase of the market is also necessary when one wants to treat markets

in a panel-like manner. Nevertheless I do not use a panel-like approach for these CEE markets.

The reason stems from the fact that the stock exchanges open and close at di�erent times. When

markets open they usually accommodate information that happened overnight. Thus, comparing

markets at the beginning/end of the day can result in a situation where one of the markets is just

in the opening/closing stage while the others are relatively far from the boundaries of their trading

days. This could produce some false signals and lower market correlation.

22Dividend-excluded market indexes measure the price performance of markets without including dividends. This
means that on any given day, the price return of an index captures the sum of its constituents' free-�oat-weighted
market capitalization returns. For a description of the dividend structures and the particular composition of the stock
market indexes, see the o�cial web pages for the four stock exchanges: www.bcpp.cz, www.bse.hu, www.gpw.pl, and
www.deutsche-boerse.com. For an illustration of how the dividend process in�uences the price process (for the
dividend-included DAX index), see Fengler et al. (2007).

23For example, the Prague Stock Exchange has a closing auction from 4:20 p.m. to 4:27 p.m. Traders may postpone
some trades from the trading hours to the closing auction and thus the trading hours may not fully capture the trading
activity.
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Figure 4.1: Distribution of returns (left panel) and standard deviation of returns (right panel) over
the trading day.
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Note: The left panel of the �gure describes the distribution of returns over a trading day using a 5-minute frequency.

Plotted are distributions for all four indexes: PX, BUX, WIG, and DAX. The right panel of the �gure captures the

distribution of the standard deviation over a trading day using the same 5-minute frequency for the four indexes

depicted in the same order. The initial double peak for the WIG index is caused by the fact that the stock exchange

changed its operating hours in the middle of the sample from 10:00 to 9:00.
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In order to provide a valid inference, I �rst summarize in Figure 4.1 the distribution of returns

and the standard deviation over the entire trading day (without any cut-o�) for all four indexes

at a 5-minute frequency.24 The �gure on the left side shows that the three emerging markets

have on average negative returns during the opening period, i.e., all three markets drop during the

opening phase. On the contrary, the mature market does the opposite, i.e., it slightly increases in

value. In addition, PX has the most abrupt changes (likely also fueled by the fact that PX is a

dividend-excluded index), which is further supported by the �gure on the right, where I present

the distribution of the standard deviation. Besides the well-known U-shape distribution during the

trading day, which is again the strongest for the PX index and less pronounced for the German

market, I can see a small increase in volatility during the lunch period and during the opening of

the US markets.

More speci�cally, the stock exchanges studied here have the following trading hours: PX (the

Czech Republic) from 9:15 to 16:00, DAX (Germany) from 9:00 to 17:30, BUX (Hungary) from

9:00 to 17:00, and WIG (Poland) from 9:00 to 16:20.25 As discussed earlier, because of possible

sensitivity to (the size of) the cut-o� trading periods at the beginning and end of the trading day,

I consider various cut-o�s running from 10 to 30 minutes and present the sensitivity analysis in

Appendix A. For the purpose of my analysis I will present the results associated with the largest

cut-o� (30 minutes). In the following pictures, graphs and computations, I distinguish between two

types of time: clock time and trading time. Trading time skips the cut-o� in the early morning and

late afternoon phases and the relevant variables are stacked into one time series with no gaps, i.e.,

the last minute at the end of the trading period is followed by the �rst minute of the next trading

period.

The e�ect of cutting o� the very �rst and very last moments of the trading period on the

distribution of extreme movements is depicted in Figure 4.2. The �gure shows the distribution of

the number of extreme returns over the trading day for both the entire trading day without any

cut-o� (solid line), and for the day with the cut-o� (dashed line). Extreme returns are de�ned as

24In addition, for sensitivity tests I have constructed all the relevant variables also on three lower frequencies: 10,
15, and 30 minutes.

25The PX opening hours were originally 9:30 to 16:00 but changed on June 30, 2008 to 9:15 to 16:00. BUX originally
operated from 9:00 to 16:30 and on December 2, 2010, trading hours were prolonged until 17:00. WSE originally
operated from 10:00 to 16:00, but from October 3, 2005, exchange trading started at 9:30 and closed at 16:10 and
this was further modi�ed on September 1, 2008, when market operations were extended from 9:00 to 16:10.
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Figure 4.2: Distribution of extreme returns over the trading day.
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Note: Shown is the distribution of extreme returns over a trading day using a 5-minute frequency. Extreme returns

are de�ned as returns below the 2.5th centile or above the 97.5th centile, calculated over the entire period. The solid

line takes into account the entire trading day, while the dashed line refers to the trading day with the beginning and

end cut o�. The double peak for the WIG index is caused by the fact that the stock exchange changed its opening

hours in the middle of the sample from 10:00 to 9:00.
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Table 4.1: Basic statistics of returns.

Index f N µ σ S K

5 135 893 -2.515e-06 0.932e-03 -0.284 31.13

PX
10 68 100 -4.363e-06 1.444e-03 -0.493 26.12
15 45 693 -5.087e-06 1.887e-03 -0.550 26.95
30 22 517 -1.189e-05 2.736e-03 -0.580 19.45
5 148 248 -1.545e-05 1.277e-03 0.025 63.45

BUX
10 75 057 -2.681e-05 1.869e-03 -0.398 39.66
15 50 668 -3.801e-05 2.326e-03 -0.888 34.20
30 26 271 -7.282e-05 3.469e-03 -0.560 18.57
5 137 238 -7.646e-06 1.428e-03 0.040 12.74

WIG
10 69 218 -1.369e-05 2.017e-03 -0.025 11.67
15 46 509 -1.866e-05 2.447e-03 0.070 11.34
30 23 765 -4.083e-05 3.523e-03 0.047 12.26
5 173 382 -1.889e-06 1.114e-03 -0.129 24.52

DAX
10 87 632 -3.978e-06 1.576e-03 -0.111 22.66
15 59 055 -5.020e-06 1.923e-03 -0.106 17.83
30 30 460 -6.160e-06 2.837e-03 -0.211 25.12

Note: The table summarizes the standard statistics of log-returns r(t) for all four market indexes used in this study;

in brackets is the corresponding stock exchange: PX (Prague Stock Exchange), BUX (Budapest Stock Exchange),

WIG (Warsaw Stock Exchange), and DAX (Frankfurt Stock Exchange). All four frequencies were used: 5-, 10-,

15-, and 30-minute. The table shows: frequency (f), the number of observations (N), mean returns (µ), standard

deviations (σ), skewness (S), and kurtosis (K). I have employed Jarque-Bera statistics to test the deviation from

normality. Since in all cases the Jarque-Bera statistics had the p-value < 0.0001, I reject a normal distribution of

returns for all indexes and frequencies.

those that are below the 2.5th centile or above the 97.5th centile, calculated over the entire sample.

The two lines tend to coincide for all four indexes, except for a small deviation for the BUX index.

The coincidence of the two lines combined with the information in Figure 4.1 means that the initial

and/or �nal periods do not contain signi�cantly more price jumps. The overall pattern of the data

depicted in the left panel of Figure 4.1 suggests that the initial moments consist of returns with

the same sign rather than being dominated by extreme downward movements. However, the right

panel of Figure 4.1 still shows that the spread of returns tends to be higher in the initial period.

4.1 Descriptive Statistics

The descriptive statistics of returns provide the �rst hints about the possible properties of price

jumps. The �rst four centered moments can be found in Table 4.1.

Table 4.1 shows that the means of returns are shifted toward negative values. The standard
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deviation is increasing with decreasing frequency, or with increasing sampling intervals ∆t, and is

roughly in agreement with the known scaling law; see Stanley and Mategna (2000),

σ∆t ∝
√

∆t . (4.1)

A further measure reported in Table 4.1 is skewness, which is a measure of the asymmetry of the

distribution. The results show that the PX, BUX, and DAX indexes have negative skewness and

thus their distributions have longer negative tails. On the other hand the WIG index shows positive

skewness over all the frequencies, which supports the claim that the WIG index is dominated by

positive jumps. The next column with reported kurtosis shows that all time series are leptokurtic,

which supports the presence of a fat-tail distribution, or in other words, the presence of extreme

price jumps not coming from a Gaussian distribution. This fact is also veri�ed by very low p-values

for the Jarque-Bera statistics, which rejects for all reported cases the null hypothesis that data come

from an i.i.d. Gaussian distribution.

5 Results

I employ two price jump indicators to assess the price jump properties of four stock market indexes

from the Visegrad region and Germany using high frequency data.26 I employ returns at a 5-minute

frequency, accompanied by returns at three lower frequencies (10, 15, and 30 minutes) for the sake

of robustness. To fully explore the �ltering properties, I take time windows equal to T = 12, 24,

100, 1000, 2000, and 5000 time steps and plot the distribution of the price jump index for all six

time windows and all four frequencies. Since the literature suggests a deviation from power-law

behavior,27 in Figure 5.1 I plot the linearized version of equation (3.3) for the PX index.28

26The body of the main text presents the main results. Many complementary results are further presented in
Appendix B.

27See Plerou et al. (1999) and Kleinert (2009).
28The other indexes show similar patterns and detailed results are available upon request.
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Figure 5.1: Log transformed version of the tail part of the price jump index distribution for the PX
index.
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Note: The distribution was calculated using all four frequencies and six di�erent time windows T . The two short-term

windows have a more suppressed occurrence of extreme events compared to the four long-term windows. The symbols

used in this table are: T = 12 (thick solid) , T = 24 (thick dash) , T = 100 (solid), T = 1000 (dash), T = 2000 (short

dash), and T = 5000 (dash dot).

The �gure clearly shows that the longer the time window T , the higher the probability of the

occurrence of extreme events and that a short time window produces a non-linear distribution. Both

observations are in agreement with the literature. Since the main scope of this paper is the domain

of power-law behavior, I employ in the following the longest time window T = 5000 and estimate

and present here characteristic coe�cients α solely for this �lter.
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Table 5.1: Estimated characteristic coe�cient αT for the price jump index.

5-minute 10-minute 15-minute 30-minute
Index T αT (σα) t αT (σα) t αT (σα) t αT (σα)

5000 3.716 (0.035)
a
> 3.408 (0.030)

a
< 3.654 (0.030)

a
< 3.939 (0.077)

PX 2000 4.021 (0.043)
a
< 4.337 (0.067)

a
> 4.085 (0.055)

a
< 4.411 (0.111)

1000 3.640 (0.035)
a
< 4.712 (0.097

a
> 4.372 (0.067)

a
< 5.259 (0.129)

5000 3.879 (0.032)
a
> 3.341 (0.028) ≈ 3.407 (0.030) ≈ 3.503 (0.062)

BUX 2000 4.814 (0.075)
a
> 3.739 (0.034) ≈ 3.692 (0.041) ≈ 3.678 (0.057)

1000 4.757 (0.066)
a
> 3.925 (0.075) ≈ 3.875 (0.059)

b
> 4.039 (0.050)

5000 5.236 (0.087)
a
> 4.776 (0.092)

a
> 4.489 (0.097)

a
> 3.913 (0.067)

WIG 2000 5.202 (0.124) ≈ 5.405 (0.228)
b
> 5.395 (0.133)

a
> 4.009 (0.070)

1000 6.683 (0.248)
c
< 7.612 (0.415) ≈ 6.052 (0.179)

a
> 4.232 (0.124)

5000 4.221 (0.043)
a
> 3.906 (0.030)

a
> 3.617 (0.054)

a
> 3.091 (0.027)

DAX 2000 4.723 (0.059)
a
> 4.285 (0.043)

a
> 3.718 (0.067)

a
> 3.126 (0.044)

1000 4.526 (0.044)
a
< 4.738 (0.048)

a
> 4.077 (0.080)

a
> 2.583 (0.068)

Note: The estimation was done for all four indexes�PX (Prague Stock Exchange), BUX (Budapest Stock Exchange),

WIG (Warsaw Stock Exchange), and DAX (Frankfurt Stock Exchange)�all four frequencies�5-, 10-, 15-, and 30-

minute�and for time windows T = 5000, T = 2000, and T = 1000. The value in the brackets is the standard

deviation. The higher the standard deviation, the worse the estimation of the characteristic coe�cient was found.

Column t denotes the result of the t-test with the null hypothesis that the two estimated coe�cients are equal. The

inequality sign illustrates the relation between the estimated coe�cients, when I can reject the null hypothesis of no

di�erence between them. Superscripts a , b, and c denote the signi�cance level at which I reject the null hypothesis:

a for 99%, b for 95%, and c for 90%. Asymptotic normal distributions were used.

5.1 Scaling of Price Jumps

I estimate the characteristic coe�cients α for both price jump indicators using the linearized equa-

tion (3.3) and the algorithm in which I use the OLS regression maximizing the R2. First, I report

in Table 5.1 the estimated characteristic coe�cients for the price jump index using all four indexes

and all four frequencies. Comparing the characteristic coe�cients for the highest frequency, the PX

index has the lowest signi�cant value of all the indexes. This suggests the presence of extreme price

jumps on the PX index. At the other pole stands the WIG index.

The smaller frequencies also reveal another important pattern that further distinguishes the

behavior of the PX index compared to the other three indexes. For the other three indexes, the

characteristic coe�cient decreases with decreasing frequency. This implies that more extreme events

are present for lower frequencies, which is in agreement with general understanding. In the case of the
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PX index; however, I observe signi�cantly di�erent behavior. Namely, the characteristic coe�cient

for the 30-minute frequency is higher than the characteristic coe�cient for the 5-minute frequency,

even exceeding the 95% con�dence interval. This suggests the presence of speci�c determinants

on the Prague Stock Exchange that cause a deviation from the rest of the group. I denote this

deviation from the standard behavior as the �PX Puzzle�.

There are several possible market-speci�c explanations for the PX Puzzle. First, it could be

the role of dividends, since the PX index is a dividend-excluded index and a number of the major

components of the PX index o�er a dividend yield well above 5%. Therefore, the decline of the PX

index due to the dividend day could send false signals, which are initially followed by extreme price

movements; however, they are smoothed away very soon. If this were so, I would also observe a

�WIG puzzle,� but I do not. Second, one can further argue that the explanation of the PX Puzzle

lies in the small turnover and liquidity of the exchange itself.29 The price of stocks traded at such

an exchange could easily be in�uenced, especially over a short period of time. This explanation uses

the parallel between the volume of traded assets and the mass in dynamics. The heavier an object

is (i.e., more liquid trading), the more e�ort has to be expended to make it move. Consequently,

fast movements, when viewed from a longer perspective, are averaged out and the movements are

not so jumpy. The capitalization of the PSE is not extremely high; some stocks have a very low

free-�oat and a low frequency of trades. Such a combination can contribute to this phenomenon as

well.

Finally, the market micro-structure point of view o�ers a complementary argument for the

presence of the PX Puzzle. Namely, the representative investor at the Prague Stock Exchange is

di�erent from the one in Warsaw. The PSE is dominated by foreign investors, while WSE possesses

a large number of domestic institutional investors, namely pension funds, which are obliged to invest

in domestic assets. Further, the regulatory di�erences may also explain the observed PX Puzzle.

The PSE has much weaker regulatory requirements especially on the side of margins, where investors

may enjoy much higher leverage when compared to the other three exchanges.30

29Several of the major stocks listed at the PSE are actually cross-listed abroad on more mature and bigger stock
exchanges. Sometimes for a short period local prices depart signi�cantly and then�likely using arbitrage trading�the
prices are quickly driven closer to the stock prices on the main (abroad) stock exchange.

30Fortune (2001) discusses the positive correlation between the rate of margin lending and market volatility.
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Table 5.2: Up/down asymmetry for the price jump index and normalized returns.

5-minute 10-minute 15-minute 30-minute
PJI NR PJI NR PJI NR PJI NR

∑
PX -b +a -a +a +a +a +a +a +a

BUX - +a - -a -a -a -a -a -a

WIG +a +a +a +a +a +a +a +a +a

DAX + +a +c +a + +a + +a +a∑
0 +a +c +a +a +a +a +a

Note: The estimation was done for all four indexes�PX, BUX, WIG, and DAX�and all four frequencies�5-, 10-,

15-, and 30-minute. The length of the time window is T = 5000. In each entry, the characteristic coe�cients for

positive and negative price jumps were compared. When computing the actual signi�cance level, I used the asymptotic

normality of estimated coe�cients α. The symbol + means that α+
T is lower than α−T , i.e., more price jumps are

observed in the upward direction and similarly for the symbol −. Superscripts a , b, and c denote the signi�cance

level at which I reject the null hypothesis: a for 99%, b for 95%, and c for 90%. In addition, the table presents the

marginal e�ects with respect to frequencies and stock market indices.

5.2 Is There an Up/Down Asymmetry?

Intuitively, the distribution of extreme positive and negative price movements can be di�erent. To

assess this intuition on quantitative grounds, I estimate the characteristic coe�cients for positive and

negative price movements separately. For the normalized returns this modi�cation comes naturally

from the de�nition. In the case of the price jump index, I estimate the characteristic coe�cients

separately for positive and negative movements, while the average of absolute returns is composed of

a given history no matter what the sign of the returns was. I focus on the quantitative comparison

between price jumps up and down. Table 5.2 summarizes the results of a battery of pair-wise

comparisons, with null hypothesis H0: Means of positive and negative jumps are same, i.e., α(+)
T =

α
(−)
T . 31 A positive or negative mark in the table cells denotes whether I observe more price jumps

up or down for a given indicator, index, and frequency, i.e., if a given cell contains the + symbol,

the coe�cient α(+)
T is smaller than α(−)

T and, thus, more extreme price jumps occur in the upward

direction. In addition, the signi�cance level of the test is denoted using superscripts a, b, and c (1%,

5%, and 10%); no superscript means that the di�erence is not statistically signi�cant.

Intuitively, one would expect that I will observe more negative extreme price movements than

positive ones. In terms of the symbols used in Table 5.2, I should observe substantially more −

31For every index and every frequency, I calculated the characteristic coe�cient separately for negative and positive
movements. Then I conducted a test using the mean and standard errors of α(+)

T and α(−)
T using asymptotic normality.
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than +. However, the reverse is true: + dominates in the table in all rows and columns with the

exception of the BUX index. If I can say that I observe an asymmetry, then CEE markets (with

the exception of BUX) show signi�cantly larger positive than negative extreme price movements.

This result is robust since both price jump indicators show very similar patterns.

One can speculate that the fact that I observe larger positive extreme price movements can be

caused by the data cut-o�s at the beginning and end of the trading days. In other words, returns

driving the intuitive asymmetry should occur mainly in the truncated period, i.e., shortly after the

open and/or shortly before the close I should see signi�cant drops in returns. Although the data

shows some negative trends in the cut-o� periods (see Figure 4.1), the downward movements at the

beginning of trading days are not dominated by extreme price jumps but rather smooth adjustments

with the same downward orientation (see Figure 4.2).

5.3 Stability of Results � Analysis by Quarters

The previous results were produced using the entire sample. However, the presence of business

cycles with repeating peaks and troughs or the recent �nancial crisis may suggest that the price

generating process is not stable over time, and I can thus expect a variation in extreme price

movements. That is, α coe�cients may not be stable over time. Therefore, I divide the data set

into smaller sub-samples, repeat the computations on sub-samples, and test the stability of the

characteristic coe�cients α over time. Since the estimation of the characteristic coe�cient requires

a large amount of data, the shortest time period for computing α's and therefore for testing their

stability is three months. For all stock market indexes, frequencies, up and down movements,

and price jump indicators, I estimate the characteristic coe�cients and perform a battery of tests,

comparing the obtained results.

First, I repeat the analysis of the asymmetry between movements up and down using the quar-

terly estimated characteristic coe�cients. I run the Wilcoxon rank-sum test described above to

compare the sizes of the characteristic coe�cients up and down for every stock market index and

both price jump indicators (i.e., H0: Ranks of the values of positive and negative jumps are the

same, so α̃(+)
T = α̃

(−)
T ). I was not able to reject the hypothesis of the stability of the characteristic

coe�cients in a single case. Therefore, I conclude that the propensity of the studied price indexes

to show price jumps are stable over time.
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Table 5.3: Comparing indexes pair-wise.

F D PJI NR

↑ PX
c
<DAX≈WIG≈BUX PX≈DAX≈WIG≈BUX

5
↑ PX

a
<WIG; DAX

c
<BUX; PX

a
<BUX PX

c
<WIG; DAX

c
<BUX; PX

b
<BUX

↓ PX
b
<DAX≈BUX

b
<WIG PX

c
<BUX≈DAX≈WIG

↓ PX
b
<BUX; DAX

a
<WIG; PX

a
<WIG PX

b
<DAX; BUX

c
<WIG; PX

a
<WIG

↑ PX≈BUX≈WIG≈DAX PX≈BUX≈WIG≈DAX

10
↑ PX

c
<WIG; BUX≈DAX; PX<bDAX PX

c
<WIG; BUX≈DAX; PX

b
<DAX

↓ PX
b
<BUX≈DAX≈WIG PX≈ BUX≈DAX≈WIG

↓ PX
a
<DAX; BUX≈WIG; PX

a
<WIG PX

b
<DAX; BUX

b
<WIG; PX

a
<WIG

↑ PX≈BUX≈WIG≈DAX PX≈BUX≈WIG≈DAX

15
↑ PX≈WIG; BUX≈DAX; PX

c
<DAX PX≈WIG; BUX≈DAX; PX≈DAX

↓ PX
c
<WIG≈DAX≈BUX PX≈BUX≈DAX≈WIG

↓ PX≈DAX; WIG≈BUX; PX
c
<BUX PX

b
<DAX; BUX≈WIG; PX

b
<WIG

↑ PX≈BUX≈WIG≈DAX PX≈WIG≈BUX≈DAX

30
↑ PX≈WIG; BUX≈DAX; PX

b
<DAX PX

c
<BUX; WIG≈DAX; PX

b
<DAX

↓ PX≈DAX≈BUX≈WIG PX≈DAX≈WIG≈BUX

↓ PX≈BUX; DAX≈WIG; PX
b
<WIG PX≈WIG; DAX≈BUX; PX≈BUX

Note: I estimate the characteristic coe�cients α± for every quarter and every index. I compare the order of indexes

using the (pair-wise) Wilcoxon rank-sum test. The test was performed for every frequency F and both directions D:

up ↑ and down ↓. The letter in the superscript of the inequality mark denotes the signi�cance level at which I can

reject the null hypothesis (i.e., the equality of coe�cients): a stands for 99%, b for 95%, and c for 90%.

Then, I reverse the approach to the data and study the di�erence between stock market indexes

using all frequencies and both price jump indicators with separate directions. Table 5.3 depicts

the pair-wise mutual ordering of indexes for every frequency, both price jump indicators and both

directions. The pair-wise comparison was performed using a battery of Wilcoxon rank-sum tests

(see Mann and Whitney, 1947). If the di�erence is signi�cant, I denote the inequality sign with

the signi�cance level a for 99% , b for 95%, and c for 90%. Otherwise, I use the symbol ≈ for

indexes with (statistically) equal α. Let me note that the results may show that all four indexes are

pair-wise indistinguishable even though the di�erence between those on the di�erent sides of the

relation is statistically signi�cant.

The results show that major di�erences are observed on higher frequencies, something I would

expect intuitively. Another pattern, which is consistent across all frequencies, both jump price
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indexes, and up and down movements, is the fact that PX was clearly the most jumpy index (i.e.,

smallest α) while WIG presented the smallest propensity to jump.

5.4 The E�ect of Financial Crisis on Price Jumps

We can follow the strategy of pair-wise comparisons and ordering the indexes by their jumpiness

or more precisely by their characteristic coe�cient α also for periods before, during, and after the

economic crisis. For that purpose I de�ne the �nancial crisis as the period that started at 2009/Q1

and lasted until 2010/Q4, thus eight quarters in total.32 The above ordering of the indexes and a

comprehensive summary of all non-parametric comparisons are presented in Table 5.4.

I used the Wilcoxon test to compare the characteristic coe�cients before and during the crisis

for every stock market index, every frequency and both price jump indicators with both directions

separately. I have also included the di�erence between the characteristic coe�cient up and down,

or ∆ = αUp − αDown.

Table 5.5 contains the Wilcoxon statistics for the test between the period before the crisis and

the period during the crisis. The results suggest that there was no prevalent change in the price jump

component of the price-generating process. The di�erence between the characteristic coe�cients

up and down further strengthens the �ndings and suggests, except in three cases, no change before

or during the crisis. This result is in agreement with Novotny (2010) and suggests that there was

either no change in the underlying price generating process at all or the entire price generating

process was scaled up in such a way that the distribution of extreme price movements was similar.33

Using Figure 5.2, which depicts the standard deviation of returns for all four stock market indexes

at a 5-minute frequency, I can conclude that the latter explanation is the case, i.e., the overall price

generating process scaled up during the crisis, but the rate of price jumps remained untouched.

To illustrate the behavior of the characteristic coe�cients more closely. Figure 5.3 contains the

estimated characteristic coe�cient quarterly for the price jump index and at a 5-minute frequency.

The �gure further contains ±σ bands of the estimated coe�cient. The �gure suggests several

quarters with unusually high values of the estimated coe�cient, which rather appear to be outliers

32For robustness I also consider several di�erent speci�cations, for example with the crisis starting at 2008/Q4
(nine quarters of �nancial crisis). The results were very similar, therefore I do not present them here but they are
available upon request.

33The absolute size of the extreme price movements depends on the current overall volatility; therefore, in the
latter case, the absolute size of price jumps would be di�erent.
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Table 5.4: Comparing indexes pair-wise: Before and during the crisis.

F P D PJI NR

↑ PX≈DAX
c
<BUX≈WIG PX≈DAX≈BUX≈WIG

5

B
↑ PX

a
<BUX; DAX

b
<WIG; PX

a
<WIG PX

b
<BUX; DAX

b
<WIG; PX

a
<WIG

↓ PX
b
<DAX≈BUX

c
<WIG PX

c
<DAX≈BUX

c
<WIG

↓ PX
b
<BUX; DAX

a
<WIG; PX

a
<WIG PX

c
<BUX; DAX

b
<WIG; PX

a
<WIG

↑ WIG≈PX≈DAX≈BUX WIG≈PX≈DAX≈BUX

C
↑ WIG

c
<DAX; PX≈BUX; WIG

b
<BUX WIG≈DAX; PX≈BUX; WIG

a
<BUX

↓ PX≈BUX≈DAX≈WIG PX≈BUX≈WIG≈DAX
↓ PX≈DAX; BUX≈WIG; PX

c
<WIG PX≈WIG; BUX≈DAX; PX

c
<DAX

↑ PX≈BUX≈DAX≈WIG PX≈BUX≈DAX≈WIG

10

B
↑ PX

b
<DAX; BUX≈WIG; PX

b
<WIG PX

b
<DAX; BUX≈WIG; PX

b
<WIG

↓ PX
b
<DAX≈BUX≈WIG PX≈BUX≈DAX≈WIG

↓ PX
b
<BUX; DAX≈WIG; PX

a
<WIG PX

c
<DAX; BUX≈WIG; PX

a
<WIG

↑ WIG≈PX≈BUX≈DAX BUX≈PX≈WIG≈DAX

C
↑ WIG≈BUX; PX≈DAX; WIG

b
<DAX BUX≈WIG; PX≈DAX; BUX≈DAX

↓ PX≈BUX≈WIG≈DAX BUX≈PX≈WIG≈DAX

↓ PX
c
<WIG; BUX

b
<DAX; PX

b
<DAX BUX≈WIG; PX

c
<DAX; BUX

b
<DAX

↑ PX≈BUX≈DAX≈WIG PX≈BUX≈DAX≈WIG

15

B
↑ PX≈DAX; BUX≈WIG; PX≈WIG PX≈DAX; BUX≈WIG; PX≈WIG

↓ PX≈DAX≈WIG≈BUX PX
c
<WIG≈DAX≈BUX

↓ PX
c
<WIG; DAX≈BUX; PX

b
<BUX PX

b
<DAX; WIG≈BUX; PX

c
<BUX

↑ PX≈WIG≈BUX≈DAX PX≈WIG≈BUX≈DAX

C
↑ PX≈BUX; WIG≈DAX; PX

c
<DAX PX≈BUX; WIG≈DAX; PX≈DAX

↓ BUX≈PX≈WIG≈DAX BUX≈PX≈DAX≈WIG
↓ BUX≈WIG; PX≈DAX; BUX≈DAX BUX≈DAX; PX≈WIG; BUX≈WIG
↑ PX≈ BUX≈DAX≈WIG PX≈DAX≈WIG≈BUX

30

B
↑ PX

c
<DAX; BUX≈WIG; PX

c
<WIG PX≈WIG; DAX≈BUX; PX≈BUX

↓ PX≈DAX≈BUX≈WIG PX≈WIG≈DAX≈BUX
↓ PX≈BUX; DAX≈WIG; PX

c
<WIG PX≈DAX; WIG≈BUX; PX≈BUX

↑ BUX≈PX≈WIG≈DAX PX≈WIG≈BUX≈DAX

C
↑ BUX≈WIG; PX≈DAX; BUX≈DAX PX≈BUX; WIG≈DAX; PX

c
<DAX

↓ BUX≈DAX≈PX≈WIG DAX≈WIG≈PX≈BUX
↓ BUX≈PX; DAX≈WIG; BUX≈WIG DAX≈PX; WIG≈BUX; DAX≈BUX

Note: I estimate the characteristic coe�cients α± for every quarter and every index. I employ the Wilcoxon test to

compare the order of indexes pair-wise. The test was performed for every frequency F , both directions D: up ↑ and
down ↓, and both phases P : before the crisis B and during the crisis C. The �nancial crisis is de�ned as the period

starting at 2009/Q1 and lasting until the end of the sample at 2010/Q4. A letter denotes the signi�cance level at

which I can reject the null hypothesis: a for 99%, b for 95%, and c for 90%. This is the signi�cance at which I can

say that the indexes are di�erent.
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Table 5.5: Financial crisis de�ned as 2009/Q1 � 2010/Q4.

Index D
5-minutes 10-minutes 15-minutes 30-minutes
PJI NR PJI NR PJI NR PJI NR

↑ -2.38b -2.00b -1.38 -1.05 0.44 -0.11 -1.16 -0.22
PX ↓ -2.22b -1.33 -1.27 -1.55 -1.22 -1.22 -1.38 -1.05

(↑ − ↓) -0.83 -1.69c -0.56 -0.72 1.10 0.24 -0.13 0.78
↑ -1.55 -0.50 -1.33 -0.44 -0.55 -0.33 -0.44 -0.44

BUX ↓ -0.50 -0.94 0.50 0.44 -0.16 0.05 -0.11 -0.94
(↑ − ↓) -0.61 -0.40 -1.53 -1.10 -0.67 -1.05 -0.08 0.29
↑ 2.11b 1.88c 1.77c 0.22 0.66 0.44 -0.33 -0.11

WIG ↓ 0.22 0.38 0.16 0.33 -1.44 -1.22 -1.16 -0.38
(↑ − ↓) 0.72 1.21 1.15 -0.83 1.26 1.80c 0.35 -0.45
↑ -1.61 -1.72c -1.88c -1.61 -1.33 -1.38 -1.00 -2.27b

DAX ↓ -1.50 -2.00b -1.55 -1.27 -1.44 -1.50 0.16 0.00
(↑ − ↓) 1.26 1.42 -0.51 -0.18 0.24 0.40 -1.42 -1.96b

Note: I estimate the characteristic coe�cients α± for every quarter and every index. I employ the Wilcoxon test to

compare the characteristic coe�cients for the periods before the �nancial crisis and during the �nancial crisis. The

crisis is de�ned as the period starting at 2009/Q1 and lasting until 2010/Q4. The directions of the price jumps D are

as follow: symbol ↑ stands for price movements up, the symbol ↓ for movements down, and symbol (↑ − ↓) stands for
the di�erence between them. A letter denotes the signi�cance level at which I can reject the null hypothesis: a for

99%, b for 95%, and c for 90%. That is the signi�cance at which I can say that the indexes are di�erent. A positive

(negative) value in a cell means that the median of the distribution for the characteristic coe�cients α before the

crisis is greater (smaller) than the median for α during the crisis.
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Figure 5.2: Standard deviation for returns by quarter.
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Figure 5.3: Estimated characteristic coe�cient.
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in the estimation. The results do not con�rm the intuitive hypothesis that during the �nancial

crisis, the estimated characteristic coe�cients are signi�cantly and in this case visibly lower than

before the crisis.

6 Conclusion

I performed an extensive analysis of price jumps using high-frequency data (5-, 10-, 15-, and 30-

minute frequencies) for three emerging stock market indexes (PX, BUX, and WIG20) from the

CEE Visegrad region. As a benchmark representing a geographically close and mature EU market,

I use the German DAX index. The time period of the data is June 2003 to December 2010.

For my analysis I employed two di�erent indicators of price jumps: the price jump index and

normalized returns. The analysis of returns revealed that the data substantially deviates from a

Gaussian distribution and tends to support the presence of price jumps. I also analyze the intuitive

asymmetry to observe more larger negative extreme price movements compared to positive ones.

However, the reverse is true and the intuitive asymmetry favoring negative price jumps does not

hold, moreover, this result was robustly con�rmed by both indicators.

Further, the Prague Stock Exchange di�ers with respect to the presence of price jumps when

lower frequencies are used. Based on the theory, one would assume that the lower the frequency, the

more price jumps will be observed. However, the PX index reveals almost the opposite behavior,

supporting the hypothesis that the behavior of the PX index signi�cantly di�ers from the remaining

three market indexes. One can speculate that this di�erence could be explained by the composition

of the PX index: a small number of components, a relatively high number (and weight) of stocks

with dual trading, prices determined in other exchanges, and some components not being traded

with high frequency. Simply, a relatively small number of trades with a few stocks could have a

large impact on the entire PX index. These explanations, however, would need additional analysis

and the market micro-structure perspective should be tested across the markets, which is beyond

the scope of this study.

I have estimated the price jump properties quarter by quarter. This allows me to compare the

estimated characteristic coe�cients across stock market indexes and over time. I have thus employed

quarterly estimates and the Wilcoxon test and shown that there is no signi�cant di�erence in the
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distributions of the characteristic coe�cients up with respect to those moving down. Further, I have

answered the question whether the price-generating process, or its price jump component, di�ers

for all stock market indices. The results of the Kruskal-Wallis test used with quarterly estimates

suggests a deviation among the indexes for high-frequency returns. A detailed pair-wise comparison

using the Wilcoxon test revealed that it is the PX index that causes the disagreement and the

results thus further support the presence of the PX Puzzle. Another pattern which is consistent

across all frequencies for both price jump indexes and up and down movements show that the PX

was clearly the most jumpy index while WIG had the smallest propensity to jump. This calls for

further research, suggesting a link between the market micro-structure and jump propensity. In

particular, higher market volatility and also higher propensity to jump is explained by di�erences in

the population of investors (Prague is dominated by foreign investors, while Warsaw is dominated

by strong domestic institutional investors, namely pension funds), di�erences in the regulatory

framework in Prague, (where there are much weaker margin regulatory requirements and much

higher leverage possibilities).

Finally, I tested for the stability of the price jump component over time and in particular during

the recent �nancial crisis. The statistical tests suggest that the price jump component is stable

before and during the �nancial crisis, although there are a few cases when the processes were

di�erent. These disagreements occurred especially for high-frequency data.

Overall, I aim to cast light on the issue of extreme price movements which frighten both market

practitioners and �nancial regulators in the environment of small emerging markets. A quantitative

understanding of price jumps can obviously help to decrease the risk connected with irregular but

abrupt price changes and can be used to develop various �nancial models. The empirical analysis

presented in this study can also serve as a starting point for a larger study of the integration of

�nancial markets, including the role of market micro structure and the regulation of price jumps.
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Appendix A � Stability of the Results with Respect to Cut-o�s

The estimations of the characteristic coe�cients α intuitively depend on the cut-o� of the data at

the beginning and end of the trading day. The intuition stems from the well-known U -shape in the

intraday volatility. which is also con�rmed by Figure 4.2. Therefore, I perform a sensitivity test of

the estimation of characteristic coe�cients with respect to the cut-o� at the beginning and end of

the trading day.

Namely, I estimate the characteristic coe�cient for the year 2010 using all four stock market

indexes, four frequencies, and T = 5000 with three di�erent cut-o�s: First, I cut-o� 30 minutes

at the beginning and end of the trading day. Second, I cut-o� 20 minutes at both sides of the

trading and, �nally, I cut-o� 10 minutes. I employ the OLS algorithm described in the main

section and estimate characteristic coe�cients. Then, I employ a t-test to compare in a pair-wise

manner the estimated characteristic coe�cients estimated from di�erent cut-o�s but using the same

stock market index and frequency. The null hypothesis of such a test states that both estimated

characteristic coe�cients�corresponding to two di�erent cut-o�s�are statistically the same. The

alternative hypothesis states the opposite.

The OLS algorithm itself decides what part of the tail is optimal for estimation, thus the number

of points in every estimation is in general di�erent. Therefore, the asymptotic distribution of such

a test changes for every estimation and is equal to χ2
n1+n2−2, where n1 corresponds to the number

of points for the estimation of the �rst characteristic coe�cient and n2 for the second characteristic

coe�cient.

The results of the sensitivity test are summarized in Table 6.1. For every stock market index

and every frequency, I present three results corresponding to pair-wise comparisons of 30-minute

vs. 20-minute cut-o�s, 20-minute vs. 10-minute cut-o�s, and 10-minute vs. 30-minute cut-o�s.

The entry in the table contains t-statistics and level of signi�cance at which I can reject the null

hypothesis about the equality of the two estimates. In addition, the sign of the t-statistic suggests

the direction of the inequality. Namely, a positive sign suggests that the characteristic coe�cient

corresponding to the �rst member of the pair is bigger than the other one, and vice versa for a

negative sign.

The results does not suggest dramatic sensitivity of the estimation with respect to the length of
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Table 6.1: Sensitivity test with respect to the cut-o� period.
30 vs. 20 20 vs. 10 10 vs. 30

PX

5-minute 4.244a −0.646 −3.193a

10-minute −0.237 0.580 −0.176
15-minute 0.641 6.896a −4.350a

30-minute −1.195 −0.694 13.062a

BUX

5-minute −1.155 1.266 −0.070
10-minute −0.908 −0.550 1.462
15-minute 2.268b −4.153a 0.836
30-minute 0.577 −2.581b 2.162c

WIG

5-minute −3.002b −0.159 2.765b

10-minute −1.011 −1.169 2.202c

15-minute −1.167 1.115 0.343
30-minute 2.353c 1.505 −3.269b

DAX

5-minute −2.039c 0.172 1.697
10-minute 0.050 −1.165 1.611
15-minute 2.157c −4.643a 0.389
30-minute −0.254 −3.468b 3.476a

Note: Each entry contains t-statistics for the null hypothesis that the two estimated characteristic coe�cients α

corresponding to two di�erent cut-o�s are the same. Due to the nature of the OLS algorithm, the asymptotic

distribution of the t-tests is equal to χ2
n1+n2−2, where n1 corresponds to the number of points for the estimation of

the �rst characteristic coe�cient and n2 for the second characteristic coe�cient. Letters state at which signi�cance

level the null hypothesis can be rejected, namely: a for 99%, b for 95%, and c for 90%. In addition, the positive sign

of the t-statistics suggests that the characteristic coe�cient corresponding to the �rst member of the pair is bigger

than the other one, and vice versa for the negative sign.

the cut-o� although there are signi�cant deviations, i.e., there are entries where t-statistics suggests

that one can reject the null hypothesis and rather accept the alternative hypothesis. The results

suggest that most of the di�erences can be found for a pair of 10-minute vs. 30-minute cut-o�s.

This is intuitive since these two pairs corresponds to two time series which are the most di�erent

with each other.

The biggest discrepancy is for the Prague Stock Exchange, and 30-minutes frequency for a

pair of 10-minute and 30-minute cut-o�s. The t-statistic of 13.062 suggests that the characteristic

coe�cient for a 10-minute cut-o� is bigger than the one for the 30-minute cut-o�. This further

strengthens the presence of the PX Puzzle of the decreasing probability to observe a price jump for

lower frequencies for the year 2010.
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Table 6.2: Estimated characteristic coe�cient α±T for the price jump index.

α±T (σα) 5-minute 10-minute 15-minute 30-minute

PX + 3.739 (0.033) 3.729 (0.062) 3.363 (0.048) 3.462 (0.086)
- 3.624 (0.041) 3.128 (0.033) 3.854 (0.067) 3.782 (0.065)

BUX + 3.919 (0.045) 3.384 (0.025) 3.746 (0.074) 3.688 (0.081)
- 3.848 (0.035) 3.354 (0.041) 3.300 (0.059) 3.397 (0.061)

WIG + 4.305 (0.078) 4.261 (0.086) 3.959 (0.084) 3.171 (0.091)
- 7.396 (0.368) 5.225 (0.187) 4.827 (0.191) 4.096 (0.159)

DAX + 3.942 (0.038) 3.885 (0.049) 3.396 (0.056) 2.875 (0.044)
- 4.409 (0.054) 4.004 (0.040) 3.771 (0.069) 3.348 (0.045)

Note: The estimation was done for all four indexes�PX, BUX, WIG, and DAX�using all four frequencies�5-, 10-,

15-, and 30-minute�and the time window T = 5000. The characteristic coe�cient is calculated separately for upward

movements (+) and downward movements (−). The value in the bracket is the standard deviation.

Appendix B � Complementary Estimations

This appendix comprises further complementary results which do not �t into the main body.

Addendum: Is There an Up/Down Asymmetry?

Intuitively, the distribution of extreme positive and negative price movements can be di�erent. To

assess this intuition on quantitative grounds, I estimate the characteristic coe�cients for positive

and negative price movements separately. For normalized returns, this modi�cation comes naturally

from the de�nition. In the case of the price jump index, I estimate the characteristic coe�cients

separately for positive and negative movements, while the average of absolute returns is composed

of a given history no matter what the sign of the returns was.

Table 6.2 contains estimates using the price jump index, while Table 6.3 contains the estimates

using normalized returns. Characteristic coe�cients for positive and negative movements estimated

separately are presented here for all four indexes using all four frequencies and the longest time

window.

Stability of Results � Analysis by Quarters

The previous results were obtained using the entire sample. However, the presence of business

cycles with ever repeating peaks and troughs or the emergence of the recent �nancial crisis rather

suggests that the price generating process is not stable over time and one can thus expect a variation
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Table 6.3: Estimated characteristic coe�cient α±T for normalized returns.

α(σα) 5-minute 10-minute 15-minute 30-minute

PX + 3.731 (0.015) 3.741 (0.027) 3.768 (0.048) 3.945 (0.052)
- 3.949 (0.023) 3.877 (0.030) 4.125 (0.031) 3.975 (0.048)

BUX + 3.815 (0.023) 4.008 (0.029) 3.895 (0.028) 3.663 (0.046)
- 5.015 (0.046) 3.310 (0.023) 3.387 (0.050) 3.505 (0.033)

WIG + 4.681 (0.033) 4.530 (0.041) 3.821 (0.043) 3.093 (0.034)
- 7.103 (0.172) 5.321 (0.074) 5.564 (0.098) 4.946 (0.140)

DAX + 4.144 (0.026) 3.398 (0.036) 3.915 (0.049) 2.447 (0.023)
- 4.850 (0.036) 4.711 (0.039) 4.139 (0.029) 3.360 (0.029)

Note: The estimation was done for all four indexes: PX, BUX, WIG, and DAX. The length of the time window is

T = 5000. The value in the bracket is the standard deviation. The estimated characteristic coe�cients are for both

negative (−) and positive (+) sides of the normalized returns. Parameters were estimated using the standard OLS

algorithm.

in the extreme price movements. Therefore, I divide the sample into shorter sub-samples and do

the analysis on these sub-samples. Since the estimation of the characteristic coe�cient requires

large statistics, the shortest suitable period available for this purpose are quarters. Therefore, for

every stock market index, every frequency and both price jump indicators, I estimate characteristic

coe�cients corresponding to price movements up and down separately.

First, I repeat the analysis of the asymmetry between movements up and down using the quar-

terly estimated characteristic coe�cients. I run the Wilcoxon rank-sum test described above to

compare the medians of the characteristic coe�cients up and down for every stock market index

and both price jump indicators.

Table 6.4 contains the z-values of the Wilcoxon statistics. The results do not suggest the

rejection of the null hypothesis stating that there is no di�erence between the two samples of the

characteristic coe�cients. This, however, does not directly answers the question about asymmetry

since I explicitly broke the link between two characteristic coe�cients corresponding to the same

quarter. The results suggest that the di�erence, or asymmetry, between characteristic coe�cients

up and down is rather subtle and may potentially switch quarter by quarter.

Then, I change the way how I approach the data and study the di�erence between stock market

indexes using all frequencies and both price jump indicators with separated up/down directions. I

employ the Kruskal-Wallis non-parametric test and test the null hypothesis that the four samples of

characteristic coe�cients obtained for all quarters independently come from the same distribution.
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Table 6.4: Up/down asymmetry for the price jump index and normalized returns calculated quar-
terly.

5-minute 10-minute 15-minute 30-minute
PJI NR PJI NR PJI NR PJI NR

PX -0.01 -0.43 0.01 0.20 -0.29 -0.60 -0.05 0.21
BUX -1.28 -1.48 0.01 -0.05 0.45 -0.20 -0.38 0.05
WIG 1.35 0.95 0.53 -0.16 0.16 0.05 0.18 -0.32
DAX -0.20 0.58 0.51 0.01 0.01 -0.34 -1.33 -1.42

Note: I have estimated characteristic coe�cients α± for every quarter and every index and employed the Wilcoxon

test to compare the distributions of the characteristic coe�cient up and down. The table captures the z-value for the

price jump index and for normalized returns. The H0 states there is no asymmetry. Superscripts a , b, and c denote

the signi�cance level at which I reject the null hypothesis: a for 99%, b for 95%, and c for 90%. The positive/negative

value means that the median of the distribution for characteristic coe�cients α+ is greater/smaller than the median

for α−. This means that price jumps down are more/less likely than price jumps up.

Table 6.5: Comparing indexes using characteristic coe�cients.

5-minute 10-minute 15-minute 30-minute
PJI NR PJI NR PJI NR PJI NR

Up 12.97a 7.69c 5.86 6.27c 2.84 2.60 4.27 4.65
Down 19.09a 12.05a 13.40a 11.51a 4.76 6.18 4.64 1.63

Note: I have estimated characteristic coe�cients α± for every quarter and every index. I have employed the Kruskal-

Wallis test to compare the distributions of characteristic coe�cients for all four stock market indexes, where H0 states

that all four indexes have characteristic coe�cients drawn from the same distribution. Entry in the table corresponds

to the χ2
3-statistics of this test. The letter denotes the signi�cance level at which I reject the null hypothesis: a for

99%, b for 95%, and c for 90%, i.e., signi�cance at which I can say that the indexes are di�erent.
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Table 6.6: Comparing indexes using rankings.

5-minute 10-minute 15-minute 30-minute
PJI NR PJI NR PJI NR PJI NR

Up 16.22a 8.62b 11.19b 12.05a 3.82 3.71 7.08c 3.82
Down 25.37a 12.74a 15.48a 14.39a 6.74c 3.02 3.65 1.19

Note: I have estimated characteristic coe�cients α± for every quarter and every index. Then, I have sorted out

stock market indexes for every quarter according to the estimated characteristic coe�cient. I have employed the

Kruskal-Wallis test to compare the distributions of rankings, where H0 states that all four indexes have characteristic

coe�cients drawn from the same distribution. Entry in the table corresponds to the χ2
3-statistics of this test. The

letter denotes the signi�cance level at which I reject the null hypothesis: a for 99%, b for 95%, and c for 90%, i.e.,

signi�cance at which I can say that the indexes are di�erent.

Table 6.5 contains the Kruskal-Wallis test statistics for every frequency, every price jump indica-

tor and every direction. The statistics follow asymptotically χ2
3 distribution. The results show that

for higher frequencies, I can reject the null hypothesis that stock market indexes have characteristic

coe�cients coming from the same distribution, or, put in plain English, the indexes have di�erent

underlying price generating processes. The lower frequencies, on the other hand, do not allow me

to reject the null hypothesis. I can therefore conclude that di�erences between the stock exchanges

are prevalent at higher frequencies and for lower frequencies, the stock markets seems to be closer

to each other.

I further deepen the previous analysis and focus on ordering of the stock market indexes with

respect to the estimated characteristic coe�cient at every quarter using all four frequencies and

both price jump indicators with both directions separately. Thus, I translated the characteristic

coe�cients into rankings having values between 1 and 4.34

Table 6.6 contains the Kruskal-Wallis statistics for distribution of rankings performed in a sim-

ilar manner as the test with characteristic coe�cients. The results agree with those based on the

characteristic coe�cient and the disagreement between the stock market indexes is even more pro-

nounced at higher frequencies�higher con�dence levels at which I can reject the null hypothesis. In

addition, there is also a small disagreement at lower frequencies. Hence, by combining both results,

I can conclude that the price jump component part of the underlying price generating process is

di�erent for higher frequencies and vanishes with decreasing the sampling frequency.

34The convention is that 1 is assigned to the stock market index with the lowest characteristic coe�cient for this
quarter using a particular price jump indicator and direction. If two or more stock market indexes have the same
value os characteristic coe�cients, I assign them the lowest rank.
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Table 6.7: Comparing indexes pair-wise.

5-minute 10-minute 15-minute 30-minute
PJI NR PJI NR PJI NR PJI NR

PX
BUX

U -3.32a -2.37b -1.44 -0.86 -0.91 -0.95 -1.22 -1.70c

D -2.15b -1.77c -1.99b -0.84 -1.83c -1.13 -0.91 -1.46

PX
WIG

U -2.70a -1.79c -1.77c -1.93c -1.31 -1.18 -1.48 -1.20
D -4.02a -3.09a -3.33a -3.18a -1.86c -2.28b -1.99b -0.42

PX
DAX

U -1.84c -1.46 -2.39b -1.99b -1.64c -1.51 -1.99b -2.03b

D -2.06b -2.17b -2.94a -2.39b -1.61 -2.25b -1.02 -0.43

BUX
WIG

U 0.29 0.98 -0.07 -1.40 -0.43 -0.49 -0.34 0.31
D -2.39b -1.63c -1.37 -1.97b 0.23 -0.67 -1.18 0.45

BUX
DAX

U 1.75c 1.72c -0.56 -1.40 -0.43 -0.51 -0.80 -0.54
D 0.03 -0.73 -1.02 -1.61 -0.09 -0.58 -0.07 0.71

WIG
DAX

U 1.17 0.73 -0.60 -0.21 -0.07 -0.21 -0.21 -0.62
D 2.67a 1.53 -0.27 -0.10 -0.20 0.00 1.40 0.40

Note: I have estimated characteristic coe�cients α± for every quarter and every index. I have employed Wilcoxon

test to compare the order of indexes pairwise. Financial crisis is de�ned as period starting at 2009/Q1 and lasting

till the end of the sample 2010/Q4. Symbol U stands for price movements Up and symbol D for movements Down.

The positive/negative value means that median of the distribution for characteristic coe�cients α corresponding to

the �rst index is bigger/smaller than the median for α of the second index. The letter denotes the signi�cance level

at which I reject the null hypothesis: a for 99%, b for 95%, and c for 90%, i.e., signi�cance at which I can say that

the indexes are di�erent.

Table 6.6 contains the Kruskal-Wallis statistics for the distribution of rankings performed in a

similar manner as the test with characteristic coe�cients. The results agrees with those based on

the characteristic coe�cient, and the disagreement between the stock market indexes is even more

pronounced at higher frequencies�higher con�dence levels at which I can reject the null hypothesis.

In addition, there is also a small disagreement at lower frequencies. Hence, by combining both

results, I can conclude that the price jump component part of the underlying price generating

process is di�erent for higher frequencies and venishes with decreasing sampling frequency.

Finally, the results do not give me an answer to whether the disagreement among stock market

indexes is equally distributed nor whether there is only one outsider which is the cause of the

violation for the overall test. To answer this question, I perform a pair-wise comparison of the

characteristic coe�cients for all stock market indexes using the Wilcoxon statistics.

Table 6.7 contains Wilcoxon z-values for the pairwise test of the characteristic coe�cients of

the stock market indexes. The results clearly shows that the PX index deviates from the rest of

the group at high frequencies, i.e., at 5-, and 10-minutes frequencies. At some cases, the di�erence
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prevails even for lower frequencies; however, the disagreement is not so strong. The results thus

supports the existence of the �PX Puzzle� as was advocated in the main text and suggest that it is

the high-frequency phenomena, which is the cause of the Puzzle and the deviation of the PX index

from the rest of the group.

Stability of Results � The E�ect of Crisis

I further extend the above performed analysis and extend it by a dimension of the �nancial crisis.

Namely, I repeat the previous analysis but for two separated periods: before the �nancial crisis

period and during the �nancial crisis period. The analysis is performed with quarterly sub-samples

and the �nancial crisis is assumed to last from 2009/Q1 until 2010/Q4.

Table 6.8 contains the pair-wise comparison of the stock market indexes using the Wilcoxon

statistics for the period of the �nancial crisis, as well as for the period before the �nancial crisis.

The results clearly suggests that before the �nancial crisis, there was big disagreement among the

stock market indexes, while during the �nancial crisis, the disagreement disappeared. This can be

explained by the fact that during the crisis the stock market indices were collectively driven down

by the global market panic, which made them behave in very similar ways. During the crisis, most

of the shocks which hit the markets were common for the entire �nancial world and thus the stock

markets were more close to each other with respect to properties of extreme price movements. On

the other hand, before the crisis, the stock markets had more independence to evolve independently

and one could easily face more idiosyncratic shocks, e.g., revealing the performance of national

economy, which a�ected only one of the stock market indices. The analysis thus suggests that

�nancial crisis caused a change in the collective behavior of �nancial markets, where the di�erences

among them signi�cantly decreased.
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Table 6.8: Comparing indexes pair-wise.

5-minute 10-minute 15-minute 30-minute
PJI NR PJI NR PJI NR PJI NR

During the crisis

PX
BUX

U -1.19 -0.92 -0.48 -0.22 -0.92 -0.39 0.30 -0.66
D -0.57 -0.83 -0.04 -0.22 0.04 0.13 0.39 -0.57

PX
WIG

U 0.66 -1.28 -0.04 -0.13 -0.48 -0.30 -0.04 -0.39
D -1.72c -0.13 -1.72c -1.45 -0.39 -1.54 -0.83 0.13

PX
DAX

U -1.01 -0.57 -1.01 -0.83 -1.89c -1.01 -0.75 -1.81c

D -0.83 -1.81c -2.42b -1.72c -1.01 -1.28 0.30 0.48

BUX
WIG

U 2.07b 2.78a 1.45 -0.39 0.39 0.04 -0.13 0.30
D -1.54 -0.92 -1.45 -1.45 -0.66 -1.54 -1.36 0.39

BUX
DAX

U 0.83 1.10 -0.66 -1.10 -0.48 -1.01 -1.28 -1.36
D -0.75 -0.83 -2.07b -2.07b -1.28 -1.45 -0.22 0.66

WIG
DAX

U -1.89c -1.45 -1.98b -0.92 -1.45 -1.28 -0.66 -1.36
D 0.22 -0.92 -1.28 -0.83 -0.48 0.30 1.36 0.48

Before the crisis

PX
BUX

U -3.08a -2.15b -1.18 -1.15 -0.53 -1.05 -1.53 -1.46
D -2.18b -1.84c -2.15b -1.32 -2.29b -1.67c -1.36 -1.46

PX
WIG

U -3.66a -2.91a -2.39b -2.35b -1.18 -1.32 -1.80c -1.05
D -3.66a -2.80a -2.91a -2.84a -1.73c -1.70c -1.94c -0.63

PX
DAX

U -1.63 -1.53 -2.25b -2.04b -0.70 -0.87 -1.94c -1.05
D -2.04b -1.84c -2.04b -1.70c -1.39 -2.01b -1.42 -0.94

BUX
WIG

U -1.46 -0.53 -1.22 -1.39 -1.11 -0.94 -0.25 0.12
D -1.91c -1.77c -0.91 -1.49 -0.80 0.43 -0.49 0.36

BUX
DAX

U 1.67c 1.18 -0.36 -0.80 -0.08 0.08 -0.29 0.25
D 0.84 -0.01 0.25 -0.53 0.67 0.43 0.15 0.36

WIG
DAX U 2.39b 2.01b 0.67 0.43 0.87 0.43 0.32 0.32

D 2.70a 2.01b 0.77 0.53 0.01 -0.18 0.67 0.15

Note: I have estimated characteristic coe�cients α± for every quarter and every index. I have employed the Wilcoxon

test to compare the order of indexes pairwise. The �nancial crisis is de�ned as the period starting at 2009/Q1

and lasting till the end of the sample 2010/Q4. Symbol U stands for price movements Up and symbol D for

movements Down. The positive/negative value means that the median of the distribution for characteristic coe�cients

α corresponding to the �rst index is bigger/smaller than the median for α of the second index. The letter denotes

the signi�cance level at which I reject the null hypothesis: a for 99%, b for 95%, and c for 90%, i.e., signi�cance at

which I can say that the indexes are di�erent.
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Part II

The Impact of the Lehman Brothers Collapse:

Were Stocks More Jumpy?35

Abstract

This paper empirically analyzes the price jump behavior of heavily traded US stocks during

the recent �nancial crisis. Namely, I test the hypothesis that the collapse of Lehman Brothers

caused no change in the price jump behavior. To accomplish this, I employ data on realized

trades for 16 stocks and one ETF from the NYSE database. These data are at a 1-minute

frequency and span the period from January 2008 to the end of July 2009, where the recent

�nancial crisis is generally understood to have begun with the plunge of Lehman Brothers shares

on September 9, 2008. I employ �ve model-independent and three model-dependent price jump

indicators to robustly assess the price jump behavior. The results con�rm an increase in overall

volatility during the recent �nancial crisis triggered by the Lehman Brothers' fall; however, the

results cannot reject the hypothesis that there was no change in price jump behavior in the data

during the �nancial crisis. This implies that the uncertainty during the crisis was scaled up but

the structure of the uncertainty seems to be the same.

35This part was published as "Were Stocks during the Crisis More Jumpy?: A Comparative Study", CERGE-
EI Working Paper Series, 2010, No. 416, 57 pages. In addition, this work was further presented at the following
conferences: The 29th International Conference MME 2011, Janska Dolina, Slovakia, 09/201; Warsaw International
Economic Meeting, Warsaw, Poland, 07/2011; MFS Annual Conference, Rome, Italy, 06/2011; Prague Economic
Meeting, Prague, Czech Republic, 06/2011; and RCMFI Workshop, Crete, Greece, 06/2011. This study is supported
by a GA�R grant (402/08/1376) and by grant No. 271111 of the Grant Agency of Charles University. All errors
remaining in this text are the responsibility of the author.
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1 Motivation

Financial markets are uncertain even where there is no crisis. Uncertainty means that when I observe

the price process for any �nancial instrument, I see that the price process follows a stochastic-like

path. This path can be with or without a deterministic drift; however, the price process is in

any case disturbed by noise movements. The noise movements, known as market volatility, make

the price unpredictable. However, the unpredictability of the price movements is not a priori a

negative feature; it is rather the nature of �nancial markets since many di�erent interests meet

there. Unpredictability, though, can carry important information when the markets are working

properly and no one has an inappropriate informative advantage. Thus, it is of great interest to

describe the noise movements as accurately as possible (Gatheral, 2006). Such a description can

then be used both in the �nancial industry to minimize risk and in theoretical economics, where

various models of �nancial behavior are proposed. In addition, a deeper empirical understanding of

market volatility during the recent �nancial crisis can shed some light on the crisis itself and thus

helps to deal with future crises. In this work, I contribute to this �eld by studying the behavior of

the extreme noise movements of high-frequency stock returns.

The literature suggests that �nancial markets reveal a striking characteristic of noise price move-

ments. These noise movements can be decomposed into two components, see e.g., Giot, Laurent,

and Petitjean (2010), which are very di�erent in nature. The �rst component, termed regular noise,

represents noise that is frequent but does not bring any abrupt changes. Regular noise stems from

the statistical nature of the markets, where markets are simply a result of the interplay of many

di�erent market players with di�erent incentives and di�erent �nancial constraints. This interaction

of many di�erent agents can be mathematically described as a standard Gaussian distribution. It is

its Gaussian nature that makes the �rst component it easy to deal with in mathematical models of

the price processes of �nancial instruments. Hence, various characteristics of �nancial instruments

can be established and expectations can be calculated.

The second component, known as price jumps, is rare but very abrupt price movements. Price

jumps do not �t into the description of the �rst noise component and thus have to be treated on

their own; see e.g., Merton (1976). However, the mathematical description of price jumps cannot

be easily handled. Therefore, the calculations of various market characteristics in the presence of
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price jumps are very di�cult (Pan, 2002; Broadie and Jain, 2008). The serious problems in the

mathematical description of price jumps are very often the reason why price jumps are wrongly

neglected. In addition, it is still not clear what the main source of price jumps is.

A possible explanation of the source of these jumps says that they originate in the herd behavior,

or irrationality, of market participants (Cont and Bouchaud, 2000; Hirshleifer and Teoh, 2003). An

illustration of such behavior is a situation when a news announcement is released, and every market

participant has to accommodate the impact of that announcement. However, this herding behavior

can provide an arbitrage opportunity and can be thus easily questioned. Another explanation is

that the source of price jumps can lie in hidden liquidity problems (Bouchaud et al., 2004; Joulin

et al., 2008). A hidden liquidity problem is when either the supply or the demand side faces a lack

of credit and thus is not able to prevent massive price changes. Both of the presented explanations

are very di�erent in nature. Thus, it is impossible to predict a priori what the change would be in

price jump behavior in the recent �nancial crisis.

The two components of the noise movements together contribute to the volatility of the market.

In this paper, I focus on both components of market volatility separately and study the change

of each of them over time, with an explicit focus on the period of the recent �nancial crisis. It is

widely accepted that periods of �nancial turbulence cause higher volatility on the market as investors

become more nervous and tend to over-react to bad signals (Andersen et al., 2007a). However, it

is still not well described empirically how the two components of market volatility change during

the crisis. Thus, this study focuses on this issue. Let us assume that a ratio between the two

components during the not-so-bad times varies in some speci�c range. The question would be how

would the same ratios vary during bad times, namely, how would the ratio of price jump volatility

to regular noise volatility change during the recent �nancial crisis.

The goal of my paper is to explicitly answer two questions. First, I ask whether an overall

increase in market volatility during the recent �nancial crisis occurred. Second, I focus on the part

corresponding to price jump volatility and ask whether the behavior of price jumps changed during

the recent �nancial crisis. To answer these questions, I employ 16 highly traded stocks and one

Exchange Traded Fund (ETF) from the North American exchanges found in the TAQ database.

These highly traded stocks represent a signi�cant portion of the traded �nancial assets. Data

from the TAQ database are originally at the tick level; thus, I have to integrate them to a 1-minute
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frequency. The data set spans from January 2008 to July 2009. It is found that the overall volatility

signi�cantly increased in September 2008 when Lehman Brothers �led for Chapter 11 bankruptcy

protection. In addition, the periods immediately after this announcement reveal signi�cantly higher

levels of volatility. However, the ratio between the regular noise and price jump components of

volatility does not change signi�cantly during the crisis. The results suggest individual cases where

the ratio increases as well as decreases. Thus, it is not possible to draw any industry-dependent

conclusions.

This paper contributes to the understanding of market volatility in several ways. In addition

to con�rming the increase in volatility during the recent �nancial crisis, namely during the period

after the Lehman Brothers announced collapse, I extend the discussion of the decomposition of

volatility into two components, which has not been well developed in the literature. I employ

various technical indicators to estimate the rate of price jumps, i.e., the second component of

volatility. This shows that my approach has several advantages. First, such an approach makes

results more robust. Second, many papers focus on one of the indicators employed in my work and

thus a direct comparative analysis is not possible. A comparative analysis, however, is one of the

outcomes of my paper because I use several indicators on the same data. Third, I employ both

model-dependent and model-independent indicators of price jumps on the same data. The same

data set containing real prices used for both kinds of indicators is the reason why a comparison of

the results can shed light on the validity of the underlying models, which are tacitly assumed to be

valid when the model-dependent indicators are derived.

2 Literature Review

2.1 Price Jumps

The literature contains a broad range of ways to classify volatility. Each classi�cation is suitable for

an explanation of a di�erent aspect of volatility or an explanation of volatility from a di�erent point

of view; see e.g., Harris (2003) where the volatility is discussed from the �nancial practitioners'

points of view. In the context of my work, the most important aspect is to separate the Gaussian-

like component from price jumps. This separation can be seen in the �rst pioneering papers dealing

with price jumps (see e.g., Merton, 1976, or a summary in Gatheral, 2006). Recently, the division
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in the Gaussian-like component and price jumps was used by Giot et al. (2010). Despite the fact

that the motivation for this separation can be purely mathematical, it can be advocated by �nancial

intuitions.

The �rst reason lies in the primary cause of price jumps. The literature supports two main

explanations of the source of price jumps. Bouchaud et al. (2004) and Joulin et al. (2008) advocate

jumps are mainly caused by a local lack of liquidity on the market or what they call relative liquidity.

In addition, the two papers also claim that an e�ect of news announcements on the emergence of

price jumps can be neglected. On the contrary, Lee and Mykland (2008) and Lahaye et al. (2010)

conclude that news announcements are a signi�cant source of price jumps. They also show a

connection between macroeconomic announcements and price jumps on developed markets.

Price jumps, understood as an abrupt price change over a very short time, are also related to

a broad range of market phenomena that cannot be connected to the noisy Gaussian distribution.

For example the ine�cient provision of liquidity caused by an imbalanced market micro-structure

can cause extreme price movements (see the survey in Madhavan, 2000). Price jumps can also

re�ect moments when some signal hits the market or a part of the market. Therefore, they can

serve as a proxy for these moments and be utilized as tools to study market e�ciency (Fama,

1970) or phenomena like information-driven trading; see e.g., Cornell and Sirri (1992) or Kennedy,

Sivakamur, and Vetzal (2006). An accurate knowledge of price jumps is necessary for �nancial

regulators to implement the most optimal policies; see Becketti and Roberts (1990) or Tinic (1995).

Finally, the non-Gaussian price movements in�uence the models employed in �nance to estimate the

performance of various �nancial vehicles (Heston, 1993; Bates, 1996; Scott, 1997; Gatheral, 2006).

2.2 Review of the Price Jumps Empirics

Generally, a price jump is understood as an abrupt price movement that is much larger when

compared to the current market situation. The advantage of this de�nition is that it is model-

independent: it does not require any speci�c form of an underlying price-generating process. On

the other hand, this de�nition is too general and hard to explicitly de�ne and test. The best way

to treat this de�nition is to de�ne the indicators for price jumps that ful�lls the intuitive de�nition.

The indicators are by de�nition parametrized. These parameters govern, for example, the length of

the history to which returns are referred or a certain threshold.
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Alternatively, price jumps can be de�ned in such a way where some speci�c form of the underlying

price process is assumed. The most frequent approach in the literature is based on the assumption

that the price of asset St follows a stochastic di�erential equation, where the two components

contributing to volatility, i.e., regular noise and price jumps, are modeled as

dSt = µtdt+ σtdWt + YtdJt , (2.1)

where µt is a deterministic trend, σt is time-dependent volatility, dWt is standard Brownian motion

and YtdJt corresponds to the Poisson-like jump process (see e.g., Merton, 1976). The term σtdWt

corresponds to the regular noise component, while the term YtdJt corresponds to price jumps. Both

terms together form the volatility of the market. Based on this assumption for the underlying

process, one can construct price jump indicators and theoretically assess their e�ciency. Their

e�ciency, however, deeply depends on the assumption that the underlying model holds. Any devi-

ation of the true underlying model from the assumed model can have serious consequences on the

e�ciency of the indicators.

The remaining part of this section discusses the price jump indicators based on both approaches:

the model-independent price jump indicators and the model-dependent price jump indicators.

Model-independent Indicators

The model-independent price jump indicators do not require any speci�c form of underlying price

process. This paper introduces the following indicators to measure the rate of price jumps in �nancial

markets: extreme returns, temperature, p-dependent realized volatility, the price jump index, and

the wavelet �lter.

Extreme Returns

Price jumps are intuitively understood as very high or very low returns. This intuitive understanding

of price jumps gives rise to the de�nition of an extreme returns indicator testing for the presence of

a price jump at a given particular time t. Hence, a price jump is present at time t if the return at

time t is above some threshold. The threshold value can be selected in either of two ways. It can

be selected globally, where there is one threshold value for the entire sample, e.g., the threshold is
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a given centile of the distribution of returns over the entire data set. Or, it can be selected locally,

i.e., some sub-samples have di�erent threshold values. A global de�nition of the threshold allows us

to compare the behavior of returns over the entire sample. However, the distribution of returns can

vary, e.g., the width of the distribution can change due to changes in market conditions, and thus

the global de�nition of the threshold is not suitable to directly compare price jumps over periods

with di�erent market conditions.

There are three versions of the extreme returns indicator. The �rst de�nition gives rise to

absolute returns |rτ |. In this case, a price jump occurs at time τ if the absolute return exceeds

the (100 − X)-th centile of the entire distribution of absolute returns. This de�nition assumes a

symmetric distribution centered around zero.

Second, the assumption about centering the distribution around zero is omitted. Then, centered

absolute returns can be de�ned as |rτ − 〈rτ 〉S |. Hence, a price jump occurs at time τ if the centered

absolute return exceeds the (100 − X)-th centile of the entire distribution of centered absolute

returns. In this de�nition, < X >S stands for the mean taken over the entire sample.

Third, the extreme price jump indicator can be de�ned generally without any assumption about

the speci�c symmetry of the underlying distribution. In this case, a price jump occurs at time τ if

the return is either below the X/2-th centile or above the (100−X/2)-th centile, where centiles are

calculated from the entire sample.

Temperature

Kleinert (2009) shows that high-frequency returns at a 1-minute frequency for the S&P 500 and the

NASDAQ 100 indices have the property that they have purely an exponential behavior for both the

positive as well as negative sides.36 The distribution can �t the Boltzmann distribution,

B(r) =
1

2T
exp

(
− |r|
T

)
, (2.2)

where T is the parameter of the distribution conventionally known as the temperature, and r stands

for returns. The distribution is assumed to be symmetrically centered around zero. The parameter

T governs the width of the distribution; the higher the temperature of the market, the higher

36There is a small exception at the tails of the distribution.

57



the volatility. This follows from the fact that the second centered moment for this distribution is

σ2
T = 2T 2. Silva, Prange, and Yakovenko (2004); Kleinert and Chen (2007); Kleinert (2009) and

Kleinert (2009) document that this parameter varies slowly, and its variation is connected to the

situation on the market.

p-dependent Realized Volatility

Realized volatility can be calculated in a standard way as the second centered moment in a given

sample. This de�nition is a special case in the general de�nition of the p-dependent realized volatility

pRV p
T (t) =

(
t∑

τ=t−T+1

|rτ |p
)1/p

, (2.3)

where the sample over which the volatility is calculated is represented by a moving window of length

T (see e.g., Dacorogna, 2001). The interesting property of this de�nition is that the higher the p

is, the more weight the outliers have. Since price jumps are simply extreme price movements, the

property of realized volatility can be translated into the following statement: The higher the p is,

the more price jumps are stressed. Naturally, the ratio of two realized volatilities with di�erent p

can be thus used as an estimator of price jumps.

Price Jump Index

The price jump index jT (t) at time t (as employed by Joulin et al., 2008) is de�ned as

jT,t =
|rt|

< |rt| >T
, (2.4)

where the history is simply calculated as < |rt| >T= 1
T

∑T−1
i=0 rt−i and T is the market history

employed.

The distribution of the price jump index jT,t for extreme price movements shows fat tails, i.e.,

P (jT > s) ∝ s−α
(f)
T , (2.5)

where αT is usually called the characteristic coe�cient and explicitly depends on the length of the

time window T , and s is a threshold value for the price jump index. It generally holds that the
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lower the α, the more jumpy the time series is on average. The characteristic coe�cient serves as a

measure of the jumpiness of the data.

Wavelet Filter

The Maximum Overlap Discrete Wavelet Transform (MODWT) �lter represents a technique that

is used to �lter out e�ects at di�erent scales. In the time series case, the scale is equivalent to

the frequency, thus, the MODWT can be used to �lter out high frequency components of time

series. This can be also described as the decomposition of the entire time series into high- and

low-frequency component e�ects (see e.g., Gencay et al., 2002).37 The MODWT technique projects

the original time series into a set of other time series, where each of the time series captures e�ects

at a certain frequency scale.

Applying the MODWT technique, the original time series {Xt} is deconstructed as {Xt} =∑N
i=1{W̃i,t}+ {Ṽ2,t}. The time series

{
W̃1,t

}
consists of the fastest e�ects. The time series

{
W̃i,t

}
with a higher index i capture e�ects at lower frequencies. Finally, the

{
ṼN,t

}
is a time series after

�ltering out the e�ects captured by the N previous time series
{
W̃i,t

}
. The construction of the

MODWT �lter for N = 2 is de�ned as

W̃1,t =

L−1∑
l=0

h̃1,lXt−lmodN and, W̃2,t=
∑L−1

l=0 h̃1,lṼ1,t−2lmodN (2.6)

and

Ṽ1,t =
L−1∑
l=0

g̃1,lXt−lmodN and, Ṽ2,t =
L−1∑
l=0

g̃1,lṼ1,t−2lmodN , (2.7)

where h̃l and g̃l are coe�cients de�ning a given wavelet �lter.

The most straightforward way to study the contribution of processes at certain scales is to

calculate the energy decomposition of the price time series. The energy decomposition of the time

series for N = 2 is de�ned as ‖X‖2 =
∥∥∥W̃1

∥∥∥2
+
∥∥∥W̃2

∥∥∥2
+
∥∥∥Ṽ2

∥∥∥2
, where ‖X‖ is the standard L2 norm.

37The high-frequency component is intuitively connected to price jumps.
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Model-dependent Indicators

Model-dependent indicators assume a speci�c form of the underlying price process. The remaining

part of this section follows the main stream in the literature and assumes that the price process is

governed by equation (2.1), where we assume that price increments can be explicitly written as a

Gaussian noise plus some a non-homogenous price jump process. Three indicators are introduced

in this paper: the integral and di�erential indicators based on the di�erence between the bi-power

variance and standard deviation, and the bi-power statistics for the identi�cation of price jumps.

The Di�erence between Bi-power Variance and Standard Deviation

Barndor�-Nielsen and Shephard (2004) discuss the role of the standard variance�the second cen-

tered moment�in the models where the underlying process follows equation (2.1). In such a case,

the standard variance captures the contribution from both the noise and the price jump process.

In addition, the authors show that a de�nition exists for the realized variance, which does not take

into account the term with price jumps. Such a de�nition is called the realized bi-power variance.

The di�erence between the standard and the bi-power variance can be used to de�ne indicators that

assess the jumpiness of the market. Generally, there are two ways to employ bi-power variance: the

di�erential approach and the integral approach.

The Di�erential Approach The standard variance is de�ned as

σ̂2
t =

1

T − 1

t−1∑
τ=t−T

(rτ− < rτ ′ >T )2 (2.8)

with < rτ ′ >T= 1
T

∑T−1
i=0 rt−i.

The bi-power variance is de�ned according to Barndor�-Nielsen and Shephard (2004) as

ˆ̂σ2
t =

1

T − 2

t−1∑
τ=t−T+2

|rτ | |rτ−1| . (2.9)

The ratio between the two variances, de�ned as RS/BPt = σ̂2
t /

ˆ̂σ2
t , satis�es by de�nition R

S/BP
t ≥

1. The higher the ratio, the more jumps are contained in the past T time steps back. This method

is called a di�erential since it treats the jumpiness of the markets at every time step.
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The Integral approach The integral approach is motivated by the work of Pirino (2009). The

integral approach employs the two cumulative estimators for the total volatility over a given period.

The �rst one is the cumulative realized volatility estimator de�ned as

RVDay =
∑
Day

(rτ )2 , (2.10)

where the sum runs over all prices inside a given period.

The second estimator is the bi-power cumulative volatility estimator de�ned in an analogous

way to equation (2.9):

BPVDay =
π

2

∑
Day

|rτ | |rτ−1| , (2.11)

where the sum runs over all entries inside a given period and π/2 is a normalization constant. This

estimator does not take into account the contribution of price jumps. Analogously to the previous

case, the ratio of the two cumulative estimators de�ned as RRV/BPVDay = RVDay/BPVDay serves as

a measure of the relative contribution of price jumps to the overall volatility over the particular

period.

Bi-power Test Statistics

The bi-power variance can be used to de�ne the proper statistics for the identi�cation of price

jumps one by one. This means testing every time step for the presence of a price jump as de�ned

in equation (2.1). These statistics were developed by Andersen et al. (2007b) and Lee and Mykland

(2008) and are de�ned as Lt = rt/ˆ̂σt, where all the symbols are in agreement with the previous

de�nitions. Following Lee and Mykland, the variable ξ is de�ned as

maxτ∈An |Lτ | − Cn
Sn

→ ξ , (2.12)

where An is the tested region with n observations and the employed parameters are Cn = (2 lnn)1/2

c −
lnπ+ln(lnn)

2c(2 lnn)1/2
, Sn = 1

c(2 lnn)1/2
and c =

√
2/
√
π.

In the presence of no price jumps the variable ξ has the cumulative distribution function P (ξ ≤

x) = exp (e−x). The knowledge of the underlying distribution can be used to determine the critical
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value ξCV at a given signi�cance level. Whenever ξ is higher than the critical value ξCV , the

hypothesis of no price jump is rejected, and such a price movement is identi�ed as a price jump. In

contrast, when ξ is below the critical value, we cannot reject the null hypothesis of no price jump.

Such a price movement is then treated as a noisy price movement. These statistics can be used to

construct a counting operator for the number of price jumps in a given sample.

3 Data and Descriptive Statistics

3.1 Data Selection

I employ a set of 16 stocks and one ETF from the Trade and Quote database (TAQ) established

by the NYSE. The data ranges from the beginning of January 2008 to the end of July 2009. The

selected time span covers the critical period of the Lehman Brothers collapse in September 2008

and long periods before and after this event. Table 3.1 summarizes the selected stocks, where stocks

are ordered alphabetically according to their tickers.

The stocks used for this analysis accord to several criteria. First, all the stocks are heavily traded

with a large intraday stock �ow. This fact is important for the derivation of the homogeneous time

series, which is extensively described in the following section. Second, the stocks and the ETF

selected for this study are of the high market importance. Market importance can be judged in

several ways. The most obvious is the market capitalization of the company and its inclusion into

the main stock market indices. Therefore I include stocks that are a substantial part of the S&P

500 index. Since the S&P 500 index is a capitalization-weighted stock market index, the larger

its weight, the more capitalized a company is. I also include stocks with a large weight in the

Dow Jones Industrial Average index.38 This index is price-weighted, and therefore a large share

in the index is taken by companies whose shares have the highest price. In addition, this index

is considered to be a representative benchmark of the industrial performance of the US economy.

Therefore selecting companies with a large weight in this index enables me to track changes in US

industrial performance.

In addition to the companies selected due to their weights in the two main indexes, I have also

included Citigroup, Inc. This stock was badly hit during the recent �nancial crisis and its value

38The exact composition of the Dow Jones Industrial Average index is discussed in the Appendix.
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dramatically declined. However, this company traditionally has a large impact on �nancial markets,

which advocates its inclusion.

Finally, I have also included an Exchange Traded Fund (ETF) which tracks the performance

of the S&P 500 index.39 This ETF serves as a vehicle�in reality it is quite popular and highly

traded�for those who want to be exposed to the S&P 500 index performance as a whole. The ETF

represents the benchmark for the performance of the US economy, which is why it is important for

this study. Therefore, this ETF re�ects the overall trends on the market since the excess movements

by any single stock is smoothed out by other stocks.

In conclusion, the stocks selected for this analysis are important representatives of the US stock

markets. They cover the markets from a market capitalization point of view as well as from an

industrial point of view. However, the selection is still small and thus enables me to keep track of

each stock during the analysis.

3.2 Data Frequency

The TAQ database contains two separate databases: realized trades and quotes. Data with quotes

are useful to calculate the depth of the market, to study the market micro-structure or to estimate

a fair price at a given tick, but a database with realized trades cannot be used on its own for any

estimation of the price process on the tick-level or to study the market micro-structure. In this

work, I derive the data at a 1-minute frequency from the database with realized trades. The data

at a 1-minute frequency are de�ned as an equally weighted average over all trades inside a given

minute. Such an average captures fully the trading activity over the entire period. In addition, this

method smooths out the possible discrepancies in the data as well as the known problem with the

bid-ask bounce (Huang and Stoll, 1997; Hasbrouck, 2002).

The equally weighted average of realized trades requires a su�cient amount of tick data in

every minute. The selection of stocks, as described above, assures this requirement. To illustrate

this, Table 3.1 contains the average daily traded volumes for March 2010. The very large volumes

demonstrate that the selected stocks and the ETF have very large intraday activity.40

39The ETF does not track the S&P 500 index precisely since the value of the ETF includes maintenance fees.
40The small number of realized trades per minute does not smooth out the bid-ask bounce. This consequently leads

to a wrong estimate of the price in this particular minute. Therefore, I have included a formal check, which counts
the number of realized trades per minute. Whenever the number of realized trades is less than 15�an empirically
chosen threshold�the price for this minute is obtained by interpolation. This check assures that no spurious price
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3.3 Data Filtering

Following the o�cial data description provided by the NYSE (see the NYSE o�cial website), I

discard observations with the CORR �ag�an indicator denoting an ex post correction of the given

tick�di�erent from zero as well as all entries with the COND �ag equal to Z�COND with a value

of Z denotes delayed entries. Following the paper by Brownlees and Gallo (2006), I then test the

data for the presence of signi�cant outliers. These outliers also have to be carefully discarded from

the data. However, when the activity is high, the net e�ect of the outlier is averaged out when

taking the equally weighted average over a given minute; therefore, I employ the condition used in

Brownlees and Gallo (2006)

|p(t)− pk(t)| < 3σk(t) + γ , (3.1)

where pk(t) is an average calculated for the moving window running ±k periods around time t, and

σk(t) is a standard deviation calculated on the same time window. Based on Brownlees and Gallo

(2006), I have chosen γ = 0.005 and k = 5.

3.4 Trading Hours

The data from the database come in tape time from 4:00:00 to 19:59:59. The trading hours for the

exchanges included in the database are from 9:30:00 to 15:59:59. The trades realized before the

o�cial trading hours are in what is known as pre-opening market hours, while the trades realized

after the o�cial trading hours are in after-market hours. During the trading hours, I calculate the

price of the stock at a given minute as an average of prices for all valid realized trades in this minute.

In this work, I study the main trading period and therefore completely discard after-market

hours. The pre-opening hours, however, cannot be easily discarded. This comes from the fact

that in a few cases, I need to estimate the current situation on the market, which is simply some

statistics over a moving window going a given number of time steps back. Naturally, this can cause

some problems for the initial moments of the trading day, where no data in the trading hours are

available. Therefore, I employ the data from the pre-opening period to estimate the situation on

the market before the o�cial opening occurs.

jumps will be created.
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Since the pre-opening period is not heavily traded, I have introduced the following empirical

rule to estimate the situation on the market in the pre-opening period: I separate the two hours

preceding the opening hours into 10-minute blocks, where each block will have a separate price.

The price in the block is calculated as an average over all trades in the block. If the activity in

the block is not high enough, if the number of trades is less than 50, the price for a given block is

taken as the same as the price in the �rst minute following the block. The prices are estimated in

a backward direction starting at the immediate moments preceding the opening of the markets.41

This procedure utilizes more information for a given trading day compared to the case where the

pre-opening hours would be completely cut o�.

3.5 Descriptive Statistics

The descriptive statistics of returns provide the �rst insight into the behavior of price jumps. Returns

are de�ned in a standard way as rt = log (Rt/Rt−1), where Rt is the average price of the stock (or

ETF) for time t. Time is measured in minutes. Figure 3.1 depicts the �rst four moments of

the distribution of returns�the measures of mean, standard deviation, skewness and kurtosis�

calculated daily, i.e., every trading day.

The results show that the mean �uctuates around zero. The rate of �uctuations has increased

during the crisis. The �rst swing does not come directly after Lehman Brothers �ling for bankruptcy

protection.42 However, it took some time for the markets to realize the oncoming problems. One

month after the plunge of Lehman Brothers' shares, the markets were in crisis. At this time, we

observed a big swing in the �uctuations of shares. In addition, mainly the stocks from the banking

sector (Bank of America, Citigroup and Wells Fargo) experienced other signi�cant turbulent periods

starting in January 2009 and continuing in the �rst three months of 2009. The excessive movements

in the means of returns can be explained by the market mood changing every day and stocks soaring

one day and falling the next day.

Similar patterns can be concluded from the �gure with standard deviation. In this case, however,

the period with increased volatility started directly after the Lehman Brothers' problems. The

41First, I estimate the price for the period 9:20 to 9:29. If there is a low number of trades, the price is taken as the
price at 9:30. Second, I estimate the price for the period 9:10 to 9:19. If there is a low number of trades, I take the
price at 9:20, which is the price of the entire �rst block.

42The big plunge of Lehman Brothers shares occurred on September 9, 2008. This date corresponds to the Day174
in the Sample.
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problems escalated and the volatility reached towards new heights. In addition, the banking sector

and oil industry showed strong increases in volatility in the �rst months of 2009.

Skewness, on the other hand, does not reveal any striking systematic di�erence during the crisis.

The measure of skewness oscillates but without any systematic pattern or without any change of

rate in oscillations during the crisis. The measure of kurtosis, on the other hand, reaches very high

values at the beginning of the crisis. After these heights, the kurtosis seems to be signi�cantly

lower. This means that the underlying distribution of returns was at the beginning of the crisis

highly leptokurtic, i.e., with fatter tails and thus with a higher rate of price jumps, while after the

�rst weeks of crisis, at the end of October 2008, the kurtosis reaches pre-crisis levels and the values

show lower variance. This suggests �slimmer� tails on average with a low rate of price jumps.

3.5.1 Jarque-Bera statistics

In addition to the �rst four moments, a more subtle test is needed to test for the non-normality of

returns and, thus, for the presence of price jumps. A standard test to address this question is to

employ the Jarque-Bera statistics (Jarque and Bera, 1980) de�ned as JB = N
6

(
S2 + (K−3)2

4

)
, with

S being the measure of skewness, K the measure of kurtosis and N the number of observations.

The test is asymptotically equal to χ2
2 and speci�es the null hypothesis that data are iid and come

from a Gaussian distribution. The alternative hypothesis means either a deviation from a Gaussian

distribution or a non-iid feature of the underlying generating process.

Figure 3.2 depicts the result of the Jarque-Bera test. Namely, the Jarque-Bera statistics is

calculated for every stock on a daily basis. Every day, the Jarque-Bera statistics is compared to the

critical value of the χ2
2 distribution at the 95% con�dence level. For every stock and every trading

day, there are two possible outcomes: the test statistics is either equal to or below the critical value

or it exceeds the critical value. In the former case, we fail to reject the null hypothesis and tend to

accept the fact that the underlying process is iid and follows a Gaussian distribution. In the latter

case, we reject the null hypothesis and accept the alternative hypothesis. The situation where the

Jarque-Bera statistics did not exceed the critical value is marked by a cross. In addition, the �gure

contains a vertical line denoting the day when the Lehman Brothers problems occurred.

An eye check of the results con�rms the observations inferred from the previous �gure measuring

a kurtosis. After the emergence of the crisis in October, there is a signi�cant period of time where
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Figure 3.2: Jarque-Bera statistics for returns.
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Note: The Jarque-Bera statistics was calculated for every stock and every trading day separately. Then, the statistics

were compared with the critical value at the 95% con�dence level. The �gure contains 17 lines�one for each stock.

Whenever there is a cross, the Jarque-Bera statistics did not exceed the critical value and therefore the null hypothesis

of returns to come from iid Gaussian distribution cannot be rejected. The vertical line corresponds to September

9th, 2009�the day when the Lehman Brothers problems started.

the Jarque-Bera statistics are rather low and even below the critical value. This, unsurprisingly,

corresponds to the period with low levels of kurtosis. In addition, a visual inspection suggests

that the ETF behaves according to the iid Gaussian distribution more often than other stocks.

This comes from the fact that the ETF mimics the composition of the S&P 500 index and is thus

composed of many underlying stocks, where extremes coming from a single stock are averaged out

and only those extremes which occurred at the same time remain.
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4 Methodology

I �rst summarize the price jump indicators used for this study and then outline the procedure for

how the indicators were employed.

4.1 Indicators

The Literature Review section contains an extensive overview of the price jump indicators. To

summarize, I shall employ the following set of price jump indicators:

1. Model-independent indicators

(a) Extreme returns

(b) Temperature

(c) p-dependent realized volatility

(d) The price jump index

(e) The wavelet �lter

2. Model-dependent indicators

(a) The di�erence between bi-power variance and standard deviation

(i) The di�erential approach

(ii) The integral approach

(b) Bi-power test statistics

The indicators, as they are explained in the previous sections, are by construction very di�erent.

Besides the obvious division of model-independent and model-dependent indicators, they can also

be divided from another point of view: whether they aim to exactly identify price jumps or rather

to assess the jumpiness of the markets. The jumpiness of the markets is understood as a measure of

the rate of price jumps occurring during a speci�ed period without counting price jumps explicitly.

In both cases, I shall refer tothem as price jump measures.

The price jump indicators that identify price jumps explicitly are extreme returns and bi-power

test statistics. The rest of the indicators can be utilized to construct exact price jump indicators;

however, they are employed as a measure of jumpiness throughout this work. Therefore, whenever

the two periods are compared with respect to price jumps, they are either compared by counting

the number of price jumps or by comparing the measure of price jumps, i.e., the jumpiness.
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4.2 De�nition of the Financial Crisis � Collapse of Lehman Brothers

The main goal of this work is to answer the question whether the current �nancial turmoil caused any

change in the price jump behavior in the �nancial markets using high-frequency data. I approach

the problem by dividing the entire sample into sub-samples corresponding to individual trading

days. For every day, I assess the number of price jumps or the measure for jumpiness. Then I

compare the statistics of these measures for days before the crisis with the statistics for days during

the crisis.

Deciding when the crisis started and how long it lasted is not clear and cannot be done explicitly.

I rather focus on the situation on the �nancial markets around the collapse of Lehman Brothers.

This event is clearly signi�cant, causing the panic on the �nancial markets among professionals as

well as general public and thus it is considered as one of the events characterizing the �nancial

turmoil starting in mid-2008. Therefore, I consider the plunge of the shares of Lehman Brothers

on September 9, 2008 as the �rst main event triggering the �nancial crisis. Based on this event, I

de�ne the �nancial crisis as a structural break in the behavior of �nancial markets. I employ two

di�erent versions of the breaking scheme:

• The Permanent Break (PB): The crisis started on September 9, 2008 and lasted until the

end of the sample.

• The Temporary Break (TB): The crisis started on September 9, 2008 and lasted 30 trading

days or for 1.5 months.

The �rst scheme is intuitive and aims to describe the permanent change on the �nancial markets

due to the collapse of big bank. Thus, in this scheme, I assume that the e�ect of the �nancial

crisis was permanently present on �nancial markets at least until the end of July 2009. The second

scheme, however, focuses solely on the most problematic days following the plunge of shares. The

period of 30 working days was chosen based on the news and the behavior of �nancial markets.

The two schemes thus provide di�erent pictures. The �rst scheme answers the question about a

permanent change in the behavior of �nancial markets, while the second scheme rather focuses on

the immediate panic that spread through the �nancial markets and a�ected the trading habits of

market participants.
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The estimation of price jumps, or jumpiness, itself is done by employing the battery of tests

described above. The tests were developed in the literature and very often require a �ne-tuning

process to obtain unbiased results. The �ne-tuned indicators then allow us to measure the number of

price jumps, or the jumpiness, at absolute levels. This de�nes the cardinal measure of price jumps.

Having in hand the cardinal measure, the absolute numbers of price jumps can be interpreted on

their own as well as the price jumps being identi�ed with particular events at given moments. Such

a formulation is, however, too strong to answer the main question: how can we compare the days

relatively.

The weak formulation of employing the indicators is to use them as an ordinal measure. The

indicators used in this way are not required to be absolutely unbiased. The bias in the number of

price jumps can be present as soon as it is proportional to the number of price jumps. This still

allows me to compare days with respect to the number of price jumps truthfully, i.e., to assess which

of the days, or general periods, were more jumpy.

In the remaining part of this section, I employ the battery of tests described in the preceding

sections. I explicitly test the following hypothesis: The recent �nancial crisis caused no statistically

signi�cant change in the price jump properties of the price time series.

4.3 The Trading Days

The sample of price times series employed in this work covers the period spanning from January 2,

2008 to July 31, 2009. I divide the entire sample into sub-samples, each corresponding to one trading

day. On every sub-sample, I apply the price jump indicators. Then I test for di�erences across days.

The length of the sub-sample was chosen intuitively. This enabled me to obtain reasonable statistics

within a day as well as between days.

Days in the sample are denoted in �Day in Sample� (DiS) units. The advantage of these units

compared to calendar days is it makes the �gures smooth, without gaps corresponding to weekends

and holidays. The seeming disadvantage is that calendar days cannot be easily identi�ed. Therefore,

Table 4.1 provides a frame of reference for a conversion between DiS and calendar days. In addition,

some important dates are mentioned in the table explicitly.
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Table 4.1: Conversion table for �Day in Sample� units and calendar days.

DiS Calendar DiS Calendar DiS Calendar

1 Jan 2nd, 2008 148 Aug 1st, 2008 254 Jan 2nd, 2009
22 Feb 1st, 2008 169 Sep 2nd, 2008 274 Feb 2nd, 2009
42 Mar 3rd,2008 174 Sep 9th, 2008 293 Mar 2nd, 2009
62 Apr 1st, 2008 190 Oct 1st, 2008 315 April 1st, 2009
84 May 1st, 2008 203 Oct 20th, 2008 336 May 1st, 2009
105 Jun 2nd, 2008 213 Nov 3rd, 2008 356 Jun 1st, 2009
126 Jul 1st, 2008 232 Dec 1st, 2008 378 Jul 1st, 2009

Note: The table includes September 9th, 2008, when the Lehman Brothers' shares plunged, the beginning of the

�nancial crisis. The table also includes October 20th, 2008. This day is used to de�ne the end of the temporary

break.

4.4 Hypotheses to Test

The indicators employed in this work measure the jumpiness of the �nancial markets on a daily basis.

The indicators can be divided into two groups according to the way the daily measure is achieved.

First, there are indicators that by construction estimate one number for every day. The second

group of indicators gives an estimate of jumpiness for every tick. Then, the measure of jumpiness

per day is obtained based on these tick estimates. These two di�erent groups of indicators also

imply di�erent hypotheses to test with di�erent meanings.

Thus, I form four di�erent hypotheses in this work, two for each of the two groups of price jump

indicators.

Group I: One Number per Trading Day The �rst group of indicators gives exactly one

number per trading day. I divide the sample of trading days into two sub-samples. These two

sub-samples are formed by trading days occurring during the crisis or not during the crisis. The

period of the �nancial crisis is de�ned above.

Hypothesis I-A: The null hypothesis of this test says that the two sub-samples come from

the same distribution. The main scope of this test is to compare whether the estimated price jump

measures changed during the crisis.

Test: I employ the two-sample Wilcoxon test (see the Appendix) and test whether the estimated

price jump measures for the two sub-samples come from the same distribution.
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Hypothesis I-B The null hypothesis states that the variance of the two sub-samples, i.e.,

during and not during the crisis, are the same. This tests whether the trading days in either of

the two sub-samples were on average more heterogeneous. In other words, this procedure tests the

heterogeneity of the trading days between the sub-samples.

Test: I employ the standard F -test and compare whether the variance of the estimated price

jump measures changed during the crisis. The F -test is de�ned as

S2
C

S2
No−C

∼ F(NC−1,NNo−C−1) , (4.1)

where S2 is the standard deviation of the characteristic coe�cient calculated during the crisis �C�

and outside the crisis �No − C�. The NC is the number of days the crisis lasts and NNo−C is the

complement to the total number of days in the sample.

Group II: One Number per Tick The second group of price jump indicators gives one number

per tick, in my case one number per minute. Having in hand these numbers, I calculate the mean

and variance of these numbers per trading day. Analogously to the previous case, I divide the

sample into two sub-samples.

Hypothesis II-A The null hypothesis of this test says that the two sub-samples composed of

daily means come from the same distribution. The main scope of this test is to compare whether

the estimated price jump measures changed during the crisis.

Test: I employ the two-sample Wilcoxon test and test whether the daily means of the estimated

price jump measures for the two sub-samples come from the same distribution.

Hypothesis II-B The null hypothesis of this test says that the two sub-samples composed of

daily variances come from the same distribution. The main scope of this test is to question whether

the heterogeneity inside the trading days changed during the �nancial crisis.

Test: I employ the two-sample Wilcoxon test and test whether the daily variances of the

estimated price jump measures for the two sub-samples come from the same distribution.
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5 Results

This section summarizes the results when all the price jump indicators are employed. The price

jump indicators are described in the same order as above.

5.1 Model-independent Indicators

5.1.1 Extreme Returns

Extreme returns de�ne price jumps globally. Figure 5.1 shows the number of absolute returns per

day above the 90th, 95th, and 99th centile calculated from the distribution of the same quantity

over the entire period. Figure 5.2 shows the number of absolute centered returns per day above the

90th, 95th, and 99th centile calculated from the distribution of the same quantity over the entire

period. Figure 5.3 shows the number of returns per day below/above the 5/95th, 2.5/97.5th, and

0.5/99.5th centiles calculated from the distribution of the same quantity over the entire period,

respectively.

The �gures suggest that the period following the plunge of Lehman Brothers' shares is charac-

terized by an increase in extreme returns. However, this does not directly respond to the question

about the behavior of price jumps when price jumps are understood as much extreme movements

bigger compared to the current market situation. Rather, the increased levels of the extreme returns

indicator suggests a rise in market volatility. In addition to the period following the problems of

Lehman Brothers, the turmoil period also appeared in the beginning of 2009, when extreme returns

also sky rocketed.

5.1.2 Temperature

The temperature T is estimated according to equation (2.2). The equation is non-linear, however, a

practical way to approach it is to log-linearize it and then apply the standard least squares method.

The linearized equation (2.2) reads

lnB(r) = ln
1

2T
− 1

T
r . (5.1)

To estimate the parameter T , we assume that the previous equation, due to the �niteness of the
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Figure 5.4: Temperature.
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Note: Temperature is estimated for returns for every stock and every trading day based on eq. (2.2). The stocks are
numbered according to Table 3.1.

sample, has the form

lnB(r) = ln
1

2T
− 1

T
r + ν , (5.2)

where ν is the homogeneous Gaussian noise. From this equation, the inverse of the temperature

can be directly estimated. When the estimation is carried out, returns are by de�nition assumed to

be symmetrical with respect to the origin.

Figure 5.4 shows the estimated temperature for every stock calculated day by day. The tem-

perature does not distinguish price jumps. Therefore, these results support the same conclusion as

those obtained from the extreme returns indicator. The period after Lehman Brothers' problems

emerged is characterized by increased market volatility. In addition, the banking sector (Bank of

America, Citigroup, and Wells Fargo) shows signi�cantly higher market volatility at the beginning

of 2009.
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5.1.3 p-dependent Realized Volatility

I employ equation (2.3) for two particular values of p = 1 and p = 4. The realized volatility with

p = 4 is relatively more sensitive to price jumps compared to the realized volatility with p = 1. I

employ this di�erence between them to construct the following price jump indicator de�ned as

pRV
p/p′

T (t) ≡ pRV p
T (t)/pRV p′

T (t) , (5.3)

where pRV p
T (t) is de�ned by equation (2.3), and the two parameters governing the sensitivity to

price jumps are p = 4 and p′ = 1. In addition, this price jump indicator is de�ned for each time and

takes into account the history of the T preceding time steps, including the current time. I employ

two time windows for history: T = 60 and T = 120. The history at the beginning of the trading

day is calculated from the pre-opening period, as is extensively discussed in the preceding sections.

This indicator captures the change in price jumps in the following way: If there is an extreme

movement in either of the T time steps of the preceding window, the indicator will be higher

compared to the situation without any price jump. The indicator keeps its higher value until the

price jump is present in the moving window. The �rst occurrence of the high value of the indicator

suggests the occurrence of a price jump.

I will explicitly test Hypothesis II-A and Hypothesis II-B, i.e., whether the means and the

variances of the estimated ratio de�ned by equation (5.3) come from the same distribution during

and not during the crisis. I do not report �gures in this case since they do not provide any strong

visible hints about the behavior of this indicator.

Hypothesis II-A: Table 5.1 shows the result of the Wilcoxon statistics for this hypothesis.

The table contains the z-value of the test. The stars denote at what level of signi�cance we can

reject the null hypothesis, stating that means are the same over the entire period. In addition, the

excessively high z-value of the Wilcoxon statistics corresponds to a situation when the median of

means during the crisis is smaller than the median of means outside the crisis. The excessively low

z-values mean the opposite. For illustration, the case of Apple using T = 60, and the �nancial

crisis de�ned as a Permanent Break gives a z-value equal to −3.332, which means that we can reject

the null hypothesis at the 99% con�dence level. In addition, the negative z-value suggests that

the median of means after the emergence of Lehman Brothers' problems is higher compared to the
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Table 5.1: Result of the two-sample Wilcoxon test for the mean of pRV p/p′

T (t).

ID/Ticker Permanent break Temporary break
60 120 60 120

1 APPL -3.332*** -4.362*** 1.019 0.828
2 BAC 4.538*** 3.283*** -0.118 -1.506
3 C -3.110*** -0.828 0.195 0.775
4 CVX 6.021*** 5.666*** 1.754* 1.030
5 GE 2.543** 0.071 -1.310 -2.187**
6 GOOG -1.956* -1.427 0.511 0.205
7 HPQ 5.184*** 4.102*** 0.954 0.724
8 IBM 5.006*** 3.633*** 0.459 1.078
9 JNJ 5.442*** 5.243*** 0.457 0.110
10 KO 5.752*** 5.329*** -0.248 -0.931
11 MSFT 2.133** 1.209 2.128** 1.578
12 PFE 1.821* 1.482 0.214 -0.294
13 PG 5.101*** 4.967*** -0.055 -0.092
14 SPY 1.259 3.590*** 3.307*** 3.005***
15 T 4.265*** 3.408*** 1.129 0.503
16 WFC 4.133*** 0.787 -3.455*** -3.160***
17 XOM 4.904*** 2.913*** -0.034 -1.298

Note: The mean was calculated for every stock and every trading day. I have used the two de�nitions of the �nancial

crisis, Permanent Break and Temporary Break, and two time windows, T = 60 and T = 120 minutes. The table

captures the z-statistics for the test. The additional stars denote whether we can reject H0 that the two samples

come from the same distribution and the corresponding con�dence levels: 90% (*), 95% (**) and 99% (***). The

overall positive/negative value of the z-statistics suggests that the median of the means is lower/higher during the

�nancial crisis.

previous period. This means that Apple stocks were more jumpy during the crisis.

To summarize, the table shows that when the �nancial crisis is de�ned through the Permanent

Break, the distributions of the mean are more likely to be di�erent. This suggests that no matter

how turbulent the days were following the plunge of Lehman Brothers' shares, the crisis emerged

in the subsequent months. In addition, the z-values tend to be positive, which suggests that the

median of means for the p-ratio is lower during the crisis. This means that the rate of price jumps

decreased during the crisis, or alternatively, price jumps were overwhelmed by the overall increase

in the magnitude of returns.

Hypothesis II-B: Table 5.2 shows the results of the Wilcoxon test. The results are in agreement

with the previous test in several aspects. First, the case of a Temporary Break does not lead to a

situation where we can reject the null hypothesis about the agreement of the distributions of variance

81



Table 5.2: Result of the two-sample Wilcoxon test for the variance of pRV p/p′

T (t).

ID/Ticker Permanent Break Temporary Break
60 120 60 120

1 APPL -4.844*** -5.467*** 0.888 1.899*
2 BAC 5.742*** 4.933*** -0.218 -0.839
3 C 6.705*** 7.286*** 1.078 1.628
4 CVX 4.100*** 3.991*** 0.908 0.821
5 GE 1.579 -0.510 -0.148 -0.503
6 GOOG -1.533 -0.807 0.307 -0.113
7 HPQ 2.653*** 2.239** 1.303 0.930
8 IBM 2.098** 1.526 2.168** 1.879*
9 JNJ 3.466*** 3.443*** 1.140 0.485
10 KO 3.099*** 3.382*** -0.059 -0.428
11 MSFT 0.685 0.494 2.115** 1.637
12 PFE -0.840 -0.683 -0.526 -0.875
13 PG 4.761*** 4.808*** 1.060 0.701
14 SPY -1.219 2.933*** -0.661 0.916
15 T 1.999** 1.979** 0.714 0.436
16 WFC 1.723* -0.674 -0.614 -1.825*
17 XOM 0.483 -0.241 -1.423 -1.654*

Note: The variance was calculated for every stock and every trading day. I have used two de�nitions of the �nancial

crisis, Permanent Break and Temporary Break, and two time windows, T = 60 and T = 120 minutes. The table

captures the z-statistics for the test. The additional stars denote whether we can reject H0 of the two samples come

from the same distribution and the corresponding con�dence levels: 90% (*), 95% (**) and 99% (***). The overall

positive/negative value of the z-statistics suggests that the median of variances is lower/higher during the �nancial

crisis.

during and not during the crisis. Second, the stocks that had signi�cantly di�erent distributions of

the ratio pRV p/p′

T (t) also tend to have signi�cantly di�erent distributions of the estimated variances.

5.1.4 The Price Jump Index

I estimate the characteristic coe�cient α introduced in equation (2.5). I estimate the coe�cient

for every trading day in the sample. I use two time windows, namely T = 60 and T = 120 time

steps back. The estimation of the characteristic coe�cient was done for the log-linearized version of

equation (2.5). Then I employed OLS for the tail parts of the distribution to estimate α.43 The price

jump index captures the behavior of extreme price movements normalized by the current market

situation and thus assesses the jumpiness of the �nancial markets. This indicator gives one number

43The other methods to estimate α are discussed, for example, by Vaglica, Lillo, Moro, and Mantegna (2008), who
use MLE for estimation.
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per trading day, thus I shall test Hypothesis I-A and Hypothesis I-B.

Hypothesis I-A: The results of the Wilcoxon test are in Table 5.3. The results show that the

di�erence in the price jump behavior is more likely to occur when the �nancial crisis is de�ned using

the Permanent Break. In addition, the results suggest that the banking sector was hit hard by the

problems of Lehman Brothers. This observation follows from the fact that the three banks show a

di�erence in the characteristic coe�cient for both de�nitions of the �nancial crisis. In every case, the

z-ratio is positive for the banking industry, which means that the median of the distribution of the

characteristic coe�cient is lower during the crisis, and therefore, returns for the banking industry's

stocks were more jumpy. In addition, the results show that the price jump index captures di�erent

aspects of extreme price movements when compared to the previous indicator.
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Table 5.3: Result of the two-sample Wilcoxon test for the means of the price jump index.

ID/Ticker Permanent Break Temporary Break
60 120 60 120

1 APPL -1.543 -2.534** 1.433 2.704***
2 BAC 3.736*** 6.006*** 2.324** 2.018**
3 C 5.889*** 7.057*** 3.211*** 2.601***
4 CVX 3.211*** 3.428*** 0.080 0.209
5 GE 2.645*** 2.073** 0.999 1.206
6 GOOG -1.880* -1.740* 1.203 1.061
7 HPQ 0.967 0.987 1.563 0.391
8 IBM 0.494 0.773 3.442*** 2.655***
9 JNJ 2.174** 2.912*** 1.293 0.151
10 KO 1.976** 2.718*** 1.335 0.704
11 MSFT 1.610 0.257 2.228** 1.470
12 PFE 1.106 0.852 1.086 -0.100
13 PG 1.719* 2.058** 1.764* 1.163
14 SPY 0.263 0.423 0.533 1.562
15 T 0.710 1.489 -0.502 -0.383
16 WFC 5.561*** 4.610*** 4.173*** 2.805***
17 XOM 2.975** 2.538** 1.758* 1.488

Note: The characteristic coe�cient was calculated for every stock and every trading day. I have used two de�nitions

of the �nancial crisis, Permanent Break and Temporary Break, and two time windows, T = 60 and T = 120 minutes.

The table captures the z-statistics for the test. The additional stars denote at what con�dence level we can reject H0

of the two samples come from the same distribution. Notation for the con�dence levels is as follows: 90% (*), 95%

(**) and 99% (***). The overall positive/negative value of the z-statistics suggests that the median of characteristic

coe�cients is lower/higher during the �nancial crisis.

Hypothesis I-B: Table 5.4 shows the F -statistics de�ned above. The results clearly show that

the characteristic coe�cients for the price jump index tend to have di�erent variances during both

de�nitions of the �nancial crisis when the length of the moving window is rather short. Generally,

the value of an F -statistic higher/lower than one suggests that the variance during the crisis was

higher/lower relative to the variance outside the crisis, respectively.

The implication of this claim brings another interesting insight. There are stocks for which the

F -statistic is signi�cantly lower using one de�nition of the �nancial crisis and signi�cantly higher

for the other de�nition. This is the case, for example, for Bank of America stocks. In this case,

the variance for the Permanent Break is lower during the crisis, while it is signi�cantly higher for

the Temporary Break. The period immediately following the plunge of Lehman Brothers shares

was then dominated by huge movements in the characteristic coe�cient. This means that a short,
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Table 5.4: Result of the two-sided F -test for the variance of the characteristic coe�cients of the
price jump index.

ID/Ticker Permanent Break Temporary Break
60 120 60 120

1 APPL 1.887*** 1.112 1.160** 1.077
2 BAC 0.581*** 0.859 2.021*** 0.653
3 C 1.039 2.084*** 1.345 1.071
4 CVX 2.874*** 1.839*** 0.973 0.437***
5 GE 1.541*** 1.526*** 1.077 0.941
6 GOOG 0.661*** 0.858 0.928 0.685
7 HPQ 1.165 1.197 0.845 0.844
8 IBM 1.624*** 0.985 2.113*** 1.055
9 JNJ 1.296* 1.242 1.029 0.801
10 KO 1.169 1.657*** 2.586*** 1.949***
11 MSFT 1.057 0.720** 0.259*** 0.422***
12 PFE 0.466*** 0.501*** 0.595* 0.602*
13 PG 1.108 1.158 0.780 0.988
14 SPY 1.204 0.933 2.594*** 1.805**
15 T 1.499*** 1.116 0.479** 0.714
16 WFC 2.173*** 1.811*** 1.361 1.299
17 XOM 1.216 1.586*** 1.573* 1.488

Note: The null hypothesis says that the variances during and not during the crisis match. Stars denote at what

con�dence level we can reject the null hypothesis: 90% (*), 95% (**) or 99% (***). In addition, the value of F -

statistics higher/lower than one means that variance of the characteristic coe�cient during the crisis was higher/lower

when compared to the period not during the crisis. The two F -distributions are F225,172 for the Permanent Break

and F29,368 for the Temporary Break.

volatile period was followed by a long period with a rather stable characteristic coe�cient, which

causes a decrease of volatility.

The opposite is true, for example, for Chevron Mobil stocks, where the short period following

the plunge of Lehman Brothers shares was dominated by a rather stable characteristic coe�cient,

which turns out to be more volatile in the long term.
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5.1.5 Wavelets

I employ the Daubechies LA wavelet �lter with length L = 8. The length of the �lter is su�cient

to compensate for the possible non-stationarity in the price time series (see Gencay, Selcuk, and

Whitcher, 2002). The non-stationarity in the data is usually treated by taking �rst di�erences, while

for the MODWT analysis, price levels are employed directly. I perform the MODWT decomposi-

tion using the �rst two levels as described above. As a measure of jumpiness, I perform an energy

decomposition for trading days. Then, I calculate the ratio of the total energy for a given day cor-

responding to each of the two levels of MODWT decomposition:
∥∥∥W̃1

∥∥∥2
/ ‖X‖2 and

∥∥∥W̃2

∥∥∥2
/ ‖X‖2.

The higher the �rst ratio, the more high-frequency processes the time series contains. Therefore, a

high ratio suggests an increased period of price jumps; however, this indicator can also reach high

values even for non-jumpy periods. The increased ratio thus suggests an increased level of volatility

caused by a high-frequency process, which does not necessarily coincide with the intuitive de�nition

of price jumps.

Figure 5.5 contains two sub-�gures: on the LHS they are depicted as
∥∥∥W̃1

∥∥∥2
/ ‖X‖2 , while on the

RHS they are depicted as
∥∥∥W̃2

∥∥∥2
/ ‖X‖2. The �gures show an increase in the energy corresponding

to the high-frequency processes after the emergence of the �nancial crisis. Since the high-frequency

processes do not correspond solely to price jumps, the increased ratio of the energy corresponding to

high-frequency processes can also be caused by the increased rate of noise. This ratio thus presents

a necessary condition for the presence of price jumps. In addition, the ratio serves as an indicator

for an increase in high-frequency volatility rather than solely for the identi�cation of price jumps.
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Table 5.5: The two-sided Wilcoxon statistics for the mean of RS/BPt .

ID/Ticker Permanent Break Temporary Break
60 120 60 120

1 APPL -1.818* -0.166 1.435 0.999
2 BAC -3.087*** -5.482*** -1.167 -1.155
3 C -1.698* -3.147*** -0.179 -0.347
4 CVX 1.495 1.322 0.370 0.691
5 GE -4.460*** -6.036*** -0.694 -0.865
6 GOOG 1.814* 2.127** -0.004 -0.237
7 HPQ 1.026 0.984 0.324 0.355
8 IBM 0.093 0.162 1.353 1.501
9 JNJ 1.349 0.989 -0.757 -0.854
10 KO 1.900* 1.604 0.069 0.120
11 MSFT 2.010** 1.206 0.752 0.408
12 PFE -2.337** -2.167** -0.837 -1.028
13 PG 2.743*** 2.234** 0.404 0.237
14 SPY 2.195** 3.175*** -1.397 -1.233
15 T 1.070 1.165 1.323 1.422
16 WFC -6.037*** -7.405*** -1.977** -1.850*
17 XOM -1.820* -2.085** -1.939* -1.998**

Note: The mean was calculated for every stock and every trading day. I have used two de�nitions of the �nancial

crisis, Permanent Break and Temporary Break, and two time windows, T = 60 and T = 120 minutes. The table

captures the z-statistics for the test. The additional stars denote at what con�dence level we can reject H0 of the

two samples come from the same distribution. Notation for the con�dence levels is as follows: 90% (*), 95% (**) and

99% (***). The overall positive/negative value of the z-statistics suggests that the median of means is lower/higher

during the �nancial crisis.

5.2 Model-dependent Indicators

In this part, I present the results for model-dependent indicators as they were introduced in the

previous sections.

5.2.1 The Di�erence between Bi-power Variance and the Standard Deviation: A Dif-

ferential Approach

First, I calculate the ratio RS/BPt = σ̂2
t /

ˆ̂σ2
t . The two variances in the ratio require certain time

windows. I chose T = 60 and T = 120. The ratio is de�ned for every time step t, where the

history at the beginning of the trading day is calculated from the pre-opening period. Since σ̂t is

the variance, which also takes into account the price jumps, a high level of the ratio means the

88



Table 5.6: The two-sided Wilcoxon statistics for the variance of RS/BPt .

ID/Ticker Permanent Break Temporary Break
60 120 60 120

1 APPL -2.677*** -0.141 1.560 1.032
2 BAC 1.254 -3.471*** -0.632 -0.963
3 C 0.424 -1.840* 0.411 -0.228
4 CVX 2.323** 2.083** 0.826 0.841
5 GE 0.100 -3.635*** 1.191 0.467
6 GOOG 0.345 0.960 -0.465 -0.602
7 HPQ 1.822* 1.604 0.571 0.658
8 IBM 1.851 1.347 1.330 1.183
9 JNJ 2.732*** 2.230** -0.107 -0.503
10 KO 2.266** 2.216** -0.123 -0.363
11 MSFT 2.845 1.788* 2.131** 1.570
12 PFE -1.205 -1.558 0.788 -0.019
13 PG 3.874*** 3.718*** 1.070 0.767
14 SPY 1.482 2.050** -1.781* -1.870*
15 T 1.103 1.318 1.473 1.707*
16 WFC -0.040 -3.940 0.044 -0.505
17 XOM 0.783 -0.266 -1.680* -1.988**

Note: The variance was calculated for every stock and every trading day. I have used two de�nitions of the �nancial

crisis, Permanent Break and Temporary Break, and two time windows, T = 60 and T = 120 minutes. The table

captures the z-statistics for the test. The additional stars denote at what con�dence level we can reject H0 of the two

samples come from the same distribution. Notation for the con�dence levels is as follows: 90% (*), 95% (**) and 99%

(***). The overall positive/negative value of the z-statistics suggests that the median of variances is lower/higher

during the �nancial crisis.

presence of price jumps. In addition, the ratio remains at increased levels as long as the price jump

is contained in the history of up to T time steps back.

Since the ratio is by its nature very similar to the ratio constructed using p-dependent realized

volatility, I shall test Hypothesis II-A and Hypothesis II-B.

Hypothesis II-A: The results of the test are summarized in Table 5.5. The test shows that

in the case of the Temporary Break, we cannot reject the null hypothesis stating that the means

of RS/BPt come from the same distribution. In the case of the Permanent Break, three titles show

more signi�cant di�erences: Bank of America, General Electric and Wells Fargo. In addition, in all

three cases the ratio is negative, which means that median of means during the crisis is higher. This

also means that these three assets had the most signi�cant increase in price jumps during the crisis.

Since there is no immediate increase in the ratio during the initial days of the crisis, the increase in
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Table 5.7: The two-sided Wilcoxon statistics for the ratio RRV/BPVDay .

ID/Ticker Permanent Break Temporary Break
1 APPL 0.355 0.395
2 BAC 0.037 1.177
3 C 1.472 0.215
4 CVX 0.729 1.116
5 GE -0.948 -1.845*
6 GOOG -0.812 0.994
7 HPQ 0.858 -0.075
8 IBM 1.348 1.873*
9 JNJ 1.134 0.029
10 KO 2.048** -0.266
11 MSFT 1.031 -1.292
12 PFE 2.087** 0.345
13 PG 1.249 0.525
14 SPY 2.101** 2.461**
15 T 2.900*** 1.558
16 WFC -0.142 -0.418
17 XOM -1.301 1.392

Note: The ratio RRV/BPV
Day was calculated for every stock and every trading day. I have used two de�nitions of

the �nancial crisis, Permanent Break and Temporary Break, and two time window, T = 60 and T = 120 minutes.

The table captures the z-statistics for the test. The additional stars denote whether we can reject H0 of the two

samples come from the same distribution and the corresponding con�dence levels: 90% (*), 95% (**) and 99% (***).

The overall positive/negative value of the z-statistics suggests that the median of ratios is lower/higher during the

�nancial crisis.

price jumps appear on the long term horizon. In addition, the ETF shows the opposite behavior,

i.e., a decrease in the jumpiness after the emergence of the �nancial crisis.

Hypothesis II-B: Table 5.6 shows the result of the test. In the case of the Temporary Break,

the variance is rather stable. On the other hand, for the Permanent Break, there are a few cases

where the variance varies during the �nancial crisis. The most striking di�erence is in Procter

and Gamble shares, where the variance decreased during the �nancial crisis, and thus, the trading

activity was on average more uniform over the trading day.

5.2.2 The Di�erence between Bi-power Variance and the Standard Deviation: An

Integral Approach

For the next step, I employ the ratio RRV/BPVDay = RVDay/BPVDay. I calculate the ratio for every

trading day and every stock. Then, I test Hypothesis I-A and Hypothesis I-B.
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Table 5.8: Results of the two-sided F -test for the variance of the ratio RRV/BPVDay .

ID/Ticker Permanent Break Temporary Break
1 APPL 0.834 0.974
2 BAC 5.518*** 0.195***
3 C 1.090 0.829
4 CVX 0.605*** 0.697
5 GE 1.467*** 1.177
6 GOOG 1.247 2.368***
7 HPQ 0.952 4.330**
8 IBM 1.018 0.636
9 JNJ 0.450*** 1.662**
10 KO 0.374*** 1.035
11 MSFT 1.184 0.738
12 PFE 1.041 1.767**
13 PG 1.009 4.952***
14 SPY 1.000 1.089
15 T 0.912 0.597*
16 WFC 1.116 1.116
17 XOM 0.915 1.094

Note: The null hypothesis says that the variances of the ratio RRV/BPV
Day during and not during the crisis match.

Stars denote at what con�dence level we can reject the null hypothesis: 90% (*), 95% (**) or 99% (***). In

addition, the value of F -statistics higher/lower than one means that variance of the ratio RRV/BPV
Day during the crisis

was higher/lower when compared to the period not during the crisis. The two F -distributions are F225,172 for the

Permanent Break and F29,368 for the Temporary Break.

Hypothesis I-A: The result of the two-sample Wilcoxon test is summarized in Table 5.7. The

results show that the only asset that has signi�cantly non-zero z-values for both de�nitions of the

�nancial crisis is the one of the ETF. On the other hand, the assets for the banking industry show

no signi�cant deviation and therefore suggest no change in the price jump behavior.

Hypothesis I-B: The results of the F -test are summarized in Table 5.8. The table suggests

that the most signi�cant di�erence in the variance is for the stocks of Bank of America. In this, the

Permanent Break de�nition of the �nancial crisis gives a signi�cantly higher variance during the

crisis. On the other hand, in the Temporary Break case, the variance during the �nancial crisis is

signi�cantly lower. This favors the claim that after the emergence of Lehman Brothers' problems,

the trading days were rather uniform with the same rate of market panic. On the other hand, in

the long term, the trading days became more heterogeneous.
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Table 5.9: The two-sided Wilcoxon statistics for the counting indicator.

ID/Ticker Permanent Break Temporary Break
60 120 60 120

1 APPL -0.666 -0.141 0.099 -0.156
2 BAC 6.286*** 5.416*** 0.526 0.298
3 C 1.732* 3.312*** -1.334 -1.446
4 CVX 2.251** 0.004 0.433 -0.045
5 GE 7.561*** 6.082*** 1.722* 0.567
6 GOOG -2.411** -2.644*** 1.623 2.016**
7 HPQ 1.607 2.143** -1.706* -1.991**
8 IBM 0.659 1.656* -1.333 -1.418
9 JNJ -0.824 -1.337 0.675 -0.566
10 KO -1.142 -1.869* 1.578 1.948*
11 MSFT 0.163 -0.405 0.624 -0.702
12 PFE 1.427 1.668* -0.028 0.280
13 PG -2.989*** -2.674*** -3.673*** -2.289**
14 SPY -0.198 -0.128 -1.598 -0.781
15 T 0.754 0.2400 -1.861* -2.186**
16 WFC 5.144*** 4.786*** 0.120 0.032
17 XOM 2.293** 2.308** -1.022 -0.848

Note: The mean of the counting indicator was calculated for every stock and every trading day. I have used two

de�nitions of the �nancial crisis, Permanent Break and Temporary Break, and two time windows, T = 60 and T = 120

minutes. The table captures the z-statistics for the test. The additional stars denote at what con�dence level we

can reject H0 of the two samples come from the same distribution. Notation for the con�dence levels is as follows:

90% (*), 95% (**) and 99% (***). The overall positive/negative value of the z-statistics suggests that the median of

means of the counting indicator is lower/higher during the �nancial crisis.

However, the opposite observation is true for the returns of Johnson and Johnson stocks. In

this case, the days following the Lehman Brothers' problems were, on average, very di�erent from

each other. The di�erence subsequently smoothed out in the long term. In addition, the sectors do

not share the same characteristics. For example, companies from the sensitive banking sector show

very di�erent behavior, as can be illustrated by Bank of America and Citigroup.

5.2.3 Bi-power Test Statistics

Finally, I employ the test statistics developed by Lee and Mykland (2008) and introduced above.

The test statistics require choosing a moving window, as can be seen in equation (2.12). Lee and

Mykland (2008) suggest using T = 270 time steps back for a 5-minute frequency. However, such

a moving window cannot be satis�ed in my framework since I do not allow for overlap between
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trading days.

Table 5.10: Results of the two-sided F -test for the variance of the counting indicator.

ID/Ticker Permanent Break Temporary Break
60 120 60 120

1 APPL 1.217 1.281* 1.315 1.855**
2 BAC 0.956 0.997 1.582* 2.245***
3 C 0.823 0.890 1.229 1.619**
4 CVX 0.704** 0.765* 0.948 0.698
5 GE 1.277* 1.054 1.253 1.213
6 GOOG 0.902 0.933 1.637** 0.901
7 HPQ 0.873 1.083 0.971 1.557*
8 IBM 0.936 1.048 1.189 1.510*
9 JNJ 0.982 1.028 1.291 1.049
10 KO 0.951 0.975 1.217 1.506*
11 MSFT 0.998 0.832 1.562* 1.091
12 PFE 1.004 0.905 1.019 1.231
13 PG 1.033 1.036 1.477 1.103
14 SPY 0.976 0.946 1.235 1.514*
15 T 0.900 0.759* 1.188 1.107
16 WFC 1.224 1.034 0.875 1.169
17 XOM 1.248 1.112 1.043 0.735

Note: The null hypothesis says that the variances of the mean of the counting indicator during and not during the

crisis match. Stars denote at what con�dence level we can reject the null hypothesis: 90% (*), 95% (**) or 99% (***).

In addition, the value of F -statistics higher/lower than one means that variance of the mean of the counting indicator

during the crisis was higher/lower when compared to the period not during the crisis. The two F -distributions are

F225,172 for the Permanent Break and F29,368 for the Temporary Break.

I chose instead two moving windows, T = 60 and T = 120, which are the lengths used in the

previous cases. The possible bias stemming from this choice of moving windows is again compensated

for by considering the relative di�erences of the number of jumps. For the purpose of test statistics,

I consider the 95% con�dence level. The test statistics enable me to identify price jumps exactly and

thus construct a counting indicator for the number of price jumps. I shall explicitly test Hypothesis

I-A and Hypothesis I-B.

Hypothesis I-A: The results of the test are summarized in Table 5.9. In the case of the

Permanent Break, there are several cases where the number of price jumps di�ers during the crisis.

All the banks, General Electric and Exxon Mobil are characterized by positive z-values and thus

by a lower number of price jumps during the crisis. On the other hand, Google and Procter and

Gamble show a higher number of price jumps. In addition, Procter and Gamble is the only one
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that shows the same change of price jumps also for the Temporary Break. This suggests that the

short period immediately after Lehman Brothers' problems was dominated by a huge increase in

price jumps. In the case of the remaining stocks, there are no agreements between the di�erent

number of price jumps using the Permanent Break and the di�erent number of price jumps using

the Temporary Break. This means that the main change in the number of price jumps occurred in

the long-time horizon.

Hypothesis I-B: The results of the F -test are in Table 5.10. In the case of the Permanent

Break, the variance in the number of price jumps is not present. On the other hand in the case of

the Temporary Break, the di�erence in the variance is present, namely for Bank of America where

the F -statistics are higher than one. This suggests that the variance was higher during the crisis,

i.e., the days were very di�erent during the crisis than they were not during the crisis.

6 Conclusion

I performe an extensive technical analysis of price jumps using high-frequency market data (1-minute

frequency) covering 16 major traded stocks and one ETF traded on the main North American stock

exchanges. The data spans the period from January 2009 until the end of July 2009. The main

question of this paper is whether the behavior of price jumps, understood as extreme and irregular

price movements di�erent in their nature from regular Gaussian noise, changed during the recent

�nancial crisis.

The paper provides a broad range of model-dependent as well as model-independent price jump

indicators. Using these indicators. I measure the number of price jumps, or the jumpiness, of every

trading day for every stock. Then, I compare the days of the �nancial crisis with those not during

the crisis. I de�ne a �nancial crisis as a structural break. First, I de�ne it as a permanent break

starting the day when Lehman Brothers' shares plunged. Second, I de�ne the �nancial crisis as

a temporary break starting the same day but lasting only 30 trading days. Having in hand such

tools, I test the hypothesis that the days during the �nancial crisis are the same with respect to

price jump properties as those not during the crisis.

First of all, the results support the claim that volatility increased during the �nancial crisis.

The volatility soars after the Lehman Brothers problems were announced and the peak lasts until
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mid-October. Then the volatility decreases but keeps above its pre-crisis level. In the �rst two

months of 2009, the volatility increases again, mainly for the banking industry. The increased levels

of volatility are in agreement with the general knowledge since they re�ect the increase in overall

market impatience. The results, however, do not show an increase in price jumps. An overall

increase in price jumps would mean a higher rate of market panic and more irrational behavior.

A rather stable rate of price jumps, on the other hand, suggests that the proportion of market

panic with respect to general impatience remained the same. However, there are some individual

cases where the rate of price jumps increased and decreased during the crisis. In addition, it is not

possible to draw any industry-dependent conclusions, which is surprising for the banking industry.

Finally, this paper also proves that di�erent price jump indicators measure price jumps very

di�erently. The di�erence in sensitivity between the indicators, however, is not so easy to describe;

this would require a detailed numerical analysis. Such an analysis would be worth performing since

the exact quantitative connection between the various price jump indicators would enable us to

perform a meta-analysis of the results from various papers that use di�erent indicators. The synergy

obtained from such a study would draw a more complex picture about the market mechanisms

governing the spread of information. Such mechanisms play a key role when market panic is forming.

In addition, this would enable us to better quantitatively describe the irrational behavior of �nancial

markets and thus, hopefully, understand them more deeply.
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Appendix A

A.1 Wilcoxon test

The Wilcoxon test is a non-parametric test comparing whether the two observed samples come from

the same distribution (Mann and Whitney, 1947; Wilcoxon, 1945). The observations in each of the

two samples are ranked and then compared. Finally, the z-statistics is de�ned based on the results

of comparison between the two samples. This z-statistics follows for large samples44 a standard

normal distribution. The null hypothesis of the test states that both observed samples come from

the same distribution. When the calculated z-statistics exceeds the critical value, we reject the null

hypothesis. In addition, the sign of the z-statistics can suggest something about the position of

medians of the two compared samples.

A.2 Composition of the Dow Jones Industrial Average index

Table 6.1 shows the composition of the Dow Jones Industrial Average index including weights. The

stocks included in this work are in bold.

44Usually above 20; Mann and Whitney (1947) and Wilcoxon (1945).
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Part III

The Identi�cation of Price Jumps45

Abstract

We performed an extensive simulation study to compare the relative performance of many

price-jump indicators with respect to false positive and false negative probabilities. We simulated

twenty di�erent time series speci�cations with di�erent intraday noise volatility patterns and

price-jump speci�cations. The double McNemar (1947) non-parametric test has been applied

on constructed arti�cial time series to compare fourteen di�erent price-jump indicators that

are widely used in the literature. The results suggest large di�erences in terms of performance

among the indicators, but we were able to identify the best-performing indicators. In the case

of false positive probability, the best-performing price-jump indicator is based on thresholding

with respect to centiles. In the case of false negative probability, the best indicator is based on

bipower variation.

45This part was published as Hanousek, J., Kocenda, E., and Novotny, J., 2011. "The Identi�cation of Price
Jumps", CERGE-EI Working Paper Series, 2011, No. 434, 48 pages. A modi�ed version has been accepted in the
forthcoming issue of the journal Monte Carlo Methods and Applications. This study is supported by a GA�R grant
(402/08/1376) and by grant No. 271111 of the Grant Agency of Charles University. All errors remaining in this text
are the responsibility of the author.
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1 Motivation and relevant literature

Discontinuities in price evolution have been recognized as an essential part of the price time series

generated on �nancial markets. Many studies, from the seminal work of Merton (1976) to Andersen

et al. (2002), demonstrate that continuous-time models have to incorporate the discontinuous com-

ponent known in the literature as price jumps. The presence of price jumps has serious consequences

for �nancial risk management and pricing. Nyberg and Wilhelmsson (2009) discuss the inevitable

importance to include event risk as is recommended by Basel II accord, which suggests employing

the Var model with continuous component and price jumps representing event risks. Andersen et

al. (2007) conclude that most of the standard approaches in the �nancial literature on pricing assets

assume a continuous price path. Since this assumption is clearly violated in most cases the results

tend to be heavily biased.46 Before a price jump can be accounted for in an estimation stage, it �rst

has to be identi�ed. Surprisingly, the literature up to now does not o�er a consensus on how to iden-

tify price jumps properly. Jumps are identi�ed with various techniques that yield di�erent results.

The value-added of this paper is that we perform an extensive and detailed non-parametric study

that employs a wide variety of price-jump indicators to identify the superior techniques. Speci�cally,

we have employed the double McNemar (1947) test and compared the fourteen di�erent price-jump

indicators most frequently used in the literature employing simulated time series.

Researchers agree on the presence of price jumps, but they disagree about the source. One

branch of the literature considers new information as a primary source of price jumps (see e.g.

Merton, 1976; Lee and Mykland, 2008; and Lahaye et al., 2010). Joulin et al. (2008) and Bouchaud

et al. (2004) conclude that price jumps are usually caused by a local lack of liquidity on the market.

They also claim that news announcements have a negligible e�ect on the origin of price jumps.

The behavioral �nance literature provides other explanations for price jumps. Shiller (2005) claims

that price jumps are caused by market participants who themselves create an environment that

tends to cause extreme reactions and thus price jumps. Finally, price jumps can be viewed as a

46For illustration, Jarrow and Rosenfeld (1984), Nietert (2001) and Pan (2002) study pricing in the presence of
jumps and all of them con�rm the presence of the jump risk premium. Pricing with jumps using continuous-time
di�usion equations has been studied by Broadie and Jain (2008), where the authors consider the pricing of volatility
and variance swaps. They conclude that the pricing of swaps signi�cantly di�ers when jumps are taken into account,
thus one cannot appropriately price the risk connected with jumps while ignoring the jumps. Carr and Wu (2010) use a
jump-di�usion model to simultaneously price the stock options and credit default swaps and �nd a signi�cant presence
of an interplay between credit and market risks. A similar con�rmation of the change in the pricing mechanism was
also shown by Du�e et al. (2000), Liu et al. (2003) and Johannes (2004).
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manifestation of Black Swans, as discussed by Taleb (2007), where the jumps are rather caused by

complex systemic interactions that cannot be easily tracked down. In this view, the best way to

understand jumps is to be well aware of them and be ready to react to them properly, instead of

trying to forecast them.

The key role price jumps play in �nancial engineering has triggered interest in the �nancial

econometrics literature, especially how to identify price jumps. Several di�erent approaches have

evolved over the recent years. Generally, we can identify in the literature four groups of econometric

price-jump indicators.

The �rst group is represented by the work of Ait-Sahalia (2004), Ait-Sahalia et al. (2009), Ait-

Sahalia and Jacod (2009a), and Ait-Sahalia and Jacod (2009b) using proper statistical methods to

derive and analyze the jump statistics based on di�erent analytic models. The indicators have well-

de�ned analytic properties; however, they do not identify price jumps one by one but rather measure

the jumpiness of the given period. These methods are more suitable to assess the jumpiness of ultra-

high-frequency data, even though they were also employed in previous studies for high-frequency

time series.

The second group of price-jump indicators comprises indicators based on bipower variation and

is promoted in a series of papers: Barndor�-Nielsen and Shephard (2004), Barndor�-Nielsen and

Shephard (2006), Barndor�-Nielsen et al. (2004), and Barndor�-Nielsen et al. (2006). The method

is based on two distinct measures of overall volatility, where the �rst one takes into account the

entire price time movement while the second one ignores the contribution of the model-dependent

price-jump component. The papers above also illustrate a broad range of application. This method

has been further improved by Lee and Mykland (2008), who developed a statistics for the exact

identi�cation of moments when particular price jumps occur and employ it for high-frequency stock

returns. However, the main disadvantage of bipower variation-based methods lie in the sensitivity

of the intraday volatility patterns, which leads to a high rate of jump mis-identi�cation.

The third group is represented by a test developed by Jiang and Oomen (2008). This test relies

on the di�erence between the swap variance and the realized variance. The authors claim that

their test is better than the one based on bipower variation since it ampli�es the discontinuities

to a larger extent, as they show with a comparative analysis using Monte Carlo simulation. The

ampli�cation of discontinuities tends, according to the authors, to suppress the e�ects of intraday
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volatility patterns.

Finally, the fourth group of price jump-indicator techniques has its roots in Econophysics. Such

techniques are based on the scaling properties of time series known in physics; see e.g. Stanley

and Mantegna (2000), Gopikrishnan et al. (1999), Eryigit et al. (2009), Jiang et al. (2009), and

Joulin et al. (2008), who take normalized price time series the normalization di�ers across these

papers and de�ne the scaling properties of the tails of the distributions. Then, the scaling index

enables them to de�ne the jumpiness of the market purely based on how much of the weight lies in

the tails and how this weight is distributed.

As mentioned above, there is still no clear consensus in the literature on how to identify price

jumps properly. Bajgrowicz and Scaillet (2010) treat the problem of the spurious identi�cation

of price jumps by adaptive thresholds in the testing statistics. The problem with most of the

price-jump indicators lies in what model they are built upon. This study illustrates the need for

robustness when dealing with price jumps.

The question of the intraday patterns of overall volatility mentioned above is deeply studied in

the literature. The work of Wood et al. (1985) documents a U-shaped pattern in the intraday equity

volatility. Bollerslev et al. (2008) con�rm this e�ect more robustly. In addition, Novotny (2010)

employed many price-jump indicators and studied the di�erence in price-jump properties during

the recent �nancial crisis using stocks from the NYSE.

Still, to our best knowledge, the literature lacks a deep non-parametric study based on a wide

variety of price jump indicators. The literature suggests that identi�cation techniques vary a lot,

therefore direct comparison of di�erent papers is not easy. We have focused on this gap in the re-

search and perform a detailed Monte Carlo simulation study to compare price-jump indicators. We

have compared price-jump indicators with respect to the false positive and false negative probabili-

ties. We have simulated twenty di�erent kinds of time series with various intraday noise volatilities

and di�erent price-jump speci�cations. Using these simulated time series, we have employed the

double McNemar test and compared fourteen di�erent price-jump indicators most frequently used

in the literature.

our analysis revealed signi�cant di�erences among the indicators. It was very often the case that

one type of indicator clearly dominated the others with respect to the given criterion. Namely, the

comparison with respect to the false positive probability was signi�cantly dominated by the indicator

106



based on thresholding with respect to centiles. On the other hand, the comparison with respect

to the false negative probability yielded results in which the bipower variation-based indicator

dominated. The di�erences in indicators is very often signi�cant at the highest signi�cance level,

which further supports the initial suspicion that the results obtained using di�erent price-jump

indicators are not comparable.

2 Price Jump Indicators

We employ a set of price-jump indicators divided into four groups as outlined in the introduction.

These indicators are widely used in the empirical literature but the results of two or more indicators

are rarely compared with respect to a single string of data. Hence, the results derived in di�erent

papers are hard to compare. In our study we perform a non-parametric comparison of the set of

price-jump indicators whose details are outlined in the following section. In this section we �rst

introduce the four groups of price-jump indicators. The technical details of the indicators are further

elaborated in Appendix A.

2.1 Group 1: Ait-Sahalia

The �rst class of indicators follows the same set of assumptions as Ait-Sahalia (2004), Ait-Sahalia

and Jacod (2009a) and Ait-Sahalia and Jacod (2009b). The price process is assumed to be de-

composed into the Gaussian component�corresponding to normal (white) noise�and the non-

homogenous Poisson component�corresponding to price jumps. Under certain assumptions it

holds that whenever a signi�cant price jump appears, the price increment is dominated by the

non-homogenous Poisson component. On the other hand, when the price movements are governed

solely by Gaussian noise, the average and/or maximum magnitudes of such increments can be esti-

mated (at a given con�dence level). Therefore, one can invert such an argument and set a threshold

value that will e�ectively distinguish the two components.

In practical cases, however, the proper threshold values require a knowledge of what should

be estimated. Thus we employ an empirical approach and set the threshold by calculating certain

threshold levels, or certain percentiles, of the distribution of returns observed over the entire sample.

In addition, the �nancial time series often have intraday volatility patterns, i.e., the average absolute
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returns systematically di�er over the trading day. To re�ect this phenomenon, we further divide

every trading day into several blocks and calculate percentiles over these blocks separately.

2.2 Group 2: Bipower Variation

The second group is based on bipower variation, as in Barndor�-Nielsen and Shephard (2004)

and Barndor�-Nielsen and Shephard (2006). Speci�cally, it is based on the di�erence between the

two measures of variation: realized variation and bipower variation. Assuming the price generating

process can be decomposed into two components�regular white noise and price jumps�the realized

variation measures the variation in the prices coming from both the white noise and the price jumps,

while the bipower variation measures the variation coming from the white noise only. This measure

can be applied in two di�erent ways.

The �rst approach, proposed by the above mentioned authors and further elaborated by Huang

and Tauchen (2005), involves the construction of a statistics whose purpose is to determine the

presence of price jumps over a given time window, i.e., to test the hypothesis that a given time

window contains price jumps at all. This statistics, known as the Max-Adjusted statistics, can be

thus employed to identify the exact moment when a price jump occurs. Namely, we �x the length

of the testing window, and for every time step we test a given window ending at that time step for

the presence of price jumps. Then, we say that a price jump occurs at that moment if the window

ending at that moment contains a price jump while the window ending at the preceding time step

does not.

A problem occurs for consecutive price jumps. If two price jumps are separated by an interval

shorter than the given window, the second price jump cannot be identi�ed. Hence, we modify the

technique in such a way that after we identify a price jump, we replace it with an average calculated

over a moving window of the same length. Since these observations by de�nition do not contain a

price jump, their average also excludes price jumps.

The second approach, constructed by Lee and Mykland (2008), also employs bipower variation.

However, it is by de�nition constructed as a statistics to identify price jumps and the moments when

they occurred. The statistics compares the current price movement with the bipower variation

calculated over a moving window with a given number of preceding observations, excluding the

current one.
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2.3 Group 3: Jiang-Oomen Statistics

Jiang and Oomen (2008) proposed another statistics to test for the presence of price jumps over a

certain time window based on Swap Variance. It is claimed that this test ampli�es the contribution

of price jumps to a larger extent than bipower variation indicators and thus are less sensitive to

intraday volatility patterns. Since the Jiang and Oomen statistics is constructed as a test statistics

for a certain time window, the price-jump indicator is analogous to the one following the Berndor�-

Nielsen and Shephard method: For every time step, we de�ne a moving time window of a given

length ending at the time step and test for the presence of price jumps over the window. Then, we

identify a certain moment as the one when the price jump occurred if the window ending at the

current time step contains a price jump and the one ending at the previous time step does not. In

addition, we de�ne an analogous improved indicator, which involves replacing the identi�ed price

jumps with moving averages and thus allows for identi�cation of consecutive price jumps.

2.4 Group 4: Statistical Finance

The last group of identi�cation techniques comes from the �eld of statistical �nance as it is called

by Bouchaud (2002), although it is also known as Econophysics. This group of indicators relies on

the scaling properties of price movements. We employ the price-jump index de�ned by Joulin et

al. (2008). The price index is de�ned as the absolute returns normalized with respect to the L1

variance, i.e., the variance de�ned as an average of absolute returns over a certain moving window.

The price-jump index has, as the literature con�rms (Joulin et al., 2008), certain scaling properties

of the tail part of its distribution. Thus, we de�ne price jumps as those returns for which the

price-jump index exceeds a certain empirically determined threshold.

3 Test to compare the performance of the di�erent price-jump in-

dicators

Here we introduce the procedure to compare the performance of the di�erent price-jump indicators.

The procedure itself is based on the double McNemar (1947) test, which is a non-parametric method

used on nominal data. The intuition behind employing this method lies in the fact that, based
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on extensive simulations, we want to compare the price-jump indicators with each other rather

than study their �nite sample properties. Hence, the comparison will be based on the prediction

accuracy of the indicators. This means that price-jump indicator A dominates indicator B if A has a

signi�cantly better accuracy of jump prediction. This strategy leads to a test procedure to compare

the proportions of correctly and incorrectly predicted jumps. The main idea for this approach is

natural: if the price-jump indicators are not di�erent in terms of the accuracy of the prediction, it

is hard to judge whether one indicator dominates the other in other ways (for binary models see

Hanousek, 2000).

Since the jump process {Yt} could be understood as a binary process (0-1), 1 being associated

with a jump, studying the prediction accuracy would lead to the following binary outcomes with

the following probabilities:

p11 = Pr (1|1) = Pr
(
Ŷ = 1|Y = 1

)
, i.e., the probability of correct prediction when Y = 1;

p22 = Pr (0|0) = Pr
(
Ŷ = 0|Y = 0

)
, i.e., the probability of correct prediction when Y = 0;

p12 = Pr (1|0) = Pr
(
Ŷ = 1|Y = 0

)
, i.e., the probability of wrong prediction when Y = 0;

p21 = Pr (0|1) = Pr
(
Ŷ = 0|Y = 1

)
, i.e., the probability of wrong prediction when Y = 1.

(3.1)

In diagnostics terminology the above probabilities are usually called sensitivity (p11), selectivity

(p22), false positive (p12) and false negative (p21) probabilities. It is clear that in di�erent situations

one might prefer di�erent treatments of misclassi�cation by giving to Pr (1|0) and Pr (0|1) di�erent

subjective weights. For the sake of simplicity let us consider the case when both misclassi�cations

have equal weights, i.e., we concentrate on the standard case in which the probability of correct

prediction is maximized and where

Pr(correct prediction) = Pr (0|0) + Pr (1|1) = p11 + p22. (3.2)

Using a complementary approach, one can minimize the probability of incorrect prediction:

Pr(incorrect prediction) = Pr (0|1) + Pr (1|0) = p21 + p12. (3.3)
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Table 3.1: Pair-wise comparison of the prediction accuracy of two jump indicators.
I1 jump prediction

Σ (total)
correct incorrect

I2 jump prediction
correct n11 n12 n1•
incorrect n21 n22 n2•

Σ (total) n•1 n•2 n

The above approach could be used to search for and study the �best� price-jump indicator in

terms of the accuracy of prediction. However, the optimization procedures conducted on simulated

data (potentially) might not capture the relationship as well as the di�erence (in prediction) between

the relationships between the studied indicators, and therefore it is better to use this approach for

a pair-wise comparison of jump indicators.

In terms of any pair-wise comparison/test we can assume the following. We have the available

outcomes of price-jump prediction given by two jump indicators denoted as I1 and I2. The combi-

nation of their outcomes in terms of the accuracy of price-jump prediction can be summarized by

Table 3.1.

In this table, n is the total number of simulated returns, n11 denotes the number of cases when

both indicators correctly identify a price jump, n12 is the number of cases when the I2 correctly

identi�es a price jump and I1 does not, n21 is the number of cases when the I1 correctly identi�es a

price jump and I2 does not. Finally, n22 denotes the number of cases when both indicators do not

correctly identify a price jump. In other words, Table 3.1 is a contingency table summarizing the

outcomes of the two binary variables I1 and I2 using the accuracy of prediction as the additional

classi�cation dimension. Therefore we adopt standard notation for contingency tables, and a dot

used in a subscript indicates the corresponding marginal distribution; for example, n1• stands for

the number of price jumps correctly identi�ed by I1.

The statistical inference of whether jump indicator I1 dominates I2 in prediction accuracy can

be assessed by testing the null hypothesis H0: n1• = n•1 , or equivalently H0: n12 = n21. This

approach directly leads to the well-known McNemar (1947) test, whose underlying test statistics is

χ2
1 = (n12−n21)2

n12+n21
and is distributed asymptotically as (n12 +n21 ≥ 8). For smaller values of n12 +n21

one can construct an exact test using probabilities in multinomial distribution.47

47It is also recommended to conduct an exact test if 20% of n · n•i · nj• is less than 5, or if any of n · n•i · nj• is
smaller than one (see for example Gibbons, 1997).

111



In Table 3.1 we can set various criteria for prediction accuracy, for example the classi�cation used

in the table. The example above used the approach where misclassi�cations Pr (1|0) and Pr (0|1)

have the same weight in selecting price-jump indicators. We compare the correct identi�cation of the

price jump only with the incorrect identi�cation in which we combine both types of misclassi�cation.

Since in reality those misclassi�cations have di�erent impacts, we test and compare the price-jump

indicators using only false negative and false positive classi�cations. This means that we can treat

misclassi�cation only when an indicator predicts a jump but there was no jump (false positive) or

when the indicator does not predict a jump, but we observe a jump (false negative). If we minimize

the false positive criterion, the winning indicator would identify fewer returns as false price jumps

and would potentially miss some true price jumps. A similar logic is valid for the false negative

criterion.

The testing procedure in the simulation framework is applied as follows:

Step 1: In the �rst step, we simulate 100 trading days and compare the indicators pair-wise.48

As the prediction criteria, we use

a. the number of correctly identi�ed price jumps and

b. the number falsely identi�ed price jumps.

We conduct the McNemar-type test described above, and we count number of cases when indi-

cator I1 dominates I2 (90%, 95% and 99% signi�cance levels).

Step 2: In the second step, we repeat each simulation 100 times.49 The results from the test

procedure (the �rst step) are used as the input for the second step. The second test is again the

McNemar-type test, where we compare the number of cases when one indicator dominates the other

at a given con�dence level. For both tests, we use three con�dence levels�90%, 95% and 99%.

To summarize, �rst we use the test for a given (simulated) window of trading days to analyze

if one jump indicator dominates the other in terms of the accuracy of the prediction of the price

jump. The second step analyzes the results of repeated simulations using the same time window.

48We actually simulate 105 trading days and then cut o� the �rst �ve trading days.
49The number of repetitions should be theoretically in�nite. However, in practical calculations, we have to restrict

ourselves to some �nite number of repetitions. This �nite number has to produce stable results�mean of the measured
variables over simulated sample should be stable�and the simulation itself has to run in a meaningful time. In this,
case, we have performed stability checks and chosen 100 repetition as a optimal number with respect to both above
mentioned criteria.
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4 Data Generation of Arti�cial Time Series

The goal of this part is to compare the price-jump indicators to �nd the one that performs best.

For that purpose, we perform an extensive simulation study with simulated data. We simulate the

price of a virtual asset during a trading day: every trading day lasts seven trading hours or 420

trading minutes. The price time series is simulated at a 1-minute frequency as a discrete process

generally de�ned using the Euler scheme:

pt − pt−1 = Ft , (4.1)

where Ft is the time-dependent price generator. Generally, the drift is insigni�cant for high-

frequency data.

4.1 Normal price movements

The most intuitive price generation process uses an iid normal distribution:

pt − pt−1 = σZt , (4.2)

where Zt = Z ∼ N (0, 1) and σ is a constant. This is the �rst intraday volatility pattern we employ.

4.2 Intraday Volatility Patterns

The �at intraday volatility pattern is, however, not close to observed data. Therefore, we mimic

the well-known U -shaped volatility pattern, which says that the price time series show a signi�cant

increase in volatility at the beginning and end of the trading day. We implement three di�erent

intraday volatility patterns. The purpose is to test the behavior of the indicators under these

intraday volatility patterns as well as to compare them over the broadest possible range of situations.

The four di�erent speci�cations for intraday volatility patterns further serve as a testing ground for

a proper understanding of price-jump indicators.
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4.2.1 Step function I

The second intraday volatility pattern is based on the assumption that volatility undergoes a two-

regime switching process, where one regime is at the beginning and end of the trading day, while

the other regime is at the middle of the trading day. Namely, we assume a price-generating process

given as

pt − pt−1 = σtZt , (4.3)

where the volatility σt governs the two-regime process and is de�ned as

σt =


σhigh t ∈ [0, α ·Day)

σlow t ∈ [α ·Day, β ·Day)

σhigh t ∈ [β ·Day,Day]

, (4.4)

where σlow < σhigh and α and β are parameters governing the periods with the di�erent volatility

regime. Compared to the previous case, there is an arti�cial �jump� in volatility at the moment

where volatility changes from σlow to σhigh.

4.2.2 Step function II

The third intraday volatility pattern is an extension of the previous one. We employ a four-level

volatility regime to mimic the U -shaped volatility smile in a more subtle way. Such a de�nition also

partially gets rid of the arti�cial jumps at the corners where the volatility regimes change. Namely,

we assume the price generating process is given as

pt − pt−1 = σtZt , (4.5)

with
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σt =



3σhigh t ∈ [0, α ·Day)

2σhigh t ∈ [α ·Day, β ·Day)

1σhigh t ∈ [β ·Day, γ ·Day)

σlow t ∈ [γ ·Day, δ ·Day)

1σhigh t ∈ [δ ·Day, ε ·Day)

2σhigh t ∈ [ε ·Day, φ ·Day)

3σhigh t ∈ [φ ·Day,Day]

, (4.6)

where σlow < σhigh and parameters α, β, γ, δ, ε and φ de�ne the periods with di�erent volatility

regimes. In this case, the volatility pattern is smoother and mimics the empirical patterns better.

4.2.3 Linear-like smooth smile

The fourth volatility pattern mimics the U -shaped volatility smile more closely. We use three linear

functions which ensure a smooth transition in volatility between di�erent parts of the trading day.

Namely, we assume the price-generating process is given as

pt − pt−1 = σtZt , (4.7)

with

σt =


3σhigh −

(3σhigh−σlow)
α·Day (t) t ∈ [0, α ·Day)

σlow t ∈ [α ·Day, β ·Day)

σlow +
(3σhigh−σlow)

(1−β)·Day (t− β ·Day) t ∈ [β ·Day,Day]

, (4.8)

and σlow < σhigh. The parameters de�ne the periods with di�erent volatility; 3 · σhigh was chosen

to be able to compare this pattern with the previous one.
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4.3 Volatility Speci�cations

We employ the four di�erent intraday volatility patterns de�ned above with the parameters as

follows.

Volatility Pattern A:

The �rst type of intraday volatility pattern consists of a basic homogenous iid normal process,

namely

pt − pt−1 = σZt , (4.9)

where we use σ = 0.0004, which corresponds to the values observed in the real data (used in the

literature and based on the annual realized volatility).

Volatility Pattern B:

The second intraday volatility pattern is given as

pt − pt−1 = σtZt , (4.10)

with

σt =


σhigh t ∈ [0, Day/4)

σlow t ∈ [Day/4, 3Day/4)

σhigh t ∈ [3Day/4, Day]

, (4.11)

usingσlow = 0.0001 and σhigh = 0.0004.

Volatility Pattern C:

The third intraday volatility pattern is de�ned as

pt − pt−1 = σtZt , (4.12)
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with volatility de�ned as

σt =



3σhigh t ∈ [0, 45min)

2σhigh t ∈ [45min, 90min)

1σhigh t ∈ [90min, 135min)

σlow t ∈ [135min, 285min)

1σhigh t ∈ [285min, 330min)

2σhigh t ∈ [330min, 375min)

3σhigh t ∈ [375min, 420min]

. (4.13)

The 45-minute step corresponds approximately to Day/9, thus the trading day has three periods

of approximately the same duration: the �rst at the beginning of the day with decreasing volatility,

the second at the middle of the day with increasing volatility and the third at the end of the day

with increasing volatility. We use σlow = 0.0001 and σhigh = 0.0002.

Volatility Pattern D:

This pattern prevents a possible criticism that could emerge in the previous cases: whenever we

change the volatility regime we introduce an arti�cial jump of average size σhigh. This can have a

negative e�ect on the performance of some indicators; therefore we make the transition smoother.

Thus, volatility is de�ned as

σt =


3σhigh −

(3σhigh−σlow)
135min (t) t ∈ [0, 135min)

σlow t ∈ [135min, 285min)

σlow +
(3σhigh−σlow)

135min (t− 285) t ∈ [285min, 420min]

, (4.14)

where σlow < σhigh. We use σlow = 0.0001 and σhigh = 0.0002.

4.4 Price-Jump Speci�cation

This study focuses on price jumps, so we extend the price movements de�ned above with non-normal

price jumps. The Euler scheme for price evolution with price jumps is de�ned as
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pt − pt−1 = Ft = σtZt + J · jt , (4.15)

where σtZt is the term de�ned above and J · jt is the term generating price jumps. We conveniently

de�ne jt as a Poisson process with a rate of price jumps arrival λj :

jt =


0 pj

1 1− pj
, (4.16)

where pj = e−λj and parameter J governs the size of the jumps. For single-size price jumps

J = ±Jparam, where both signs have the same probability of occurring. In the most sophisticated

cases, parameter J can have a value from any statistical distribution.

Due to the independence of increments, the probability to observe n jumps at a time step is

given as

P (No. of jumps=n) =
e−λ (λ)n

n!
. (4.17)

By de�nition, we assume that only one price jump per time step can occur and thus we de�ne

�rst the probability that no price jump will occur as P (No. of jumps=0) = e−λ and the probability

that one price jump will occur as a complement value P (No. of jumps=1) = 1− e−λ.

We employ �ve di�erent speci�cations of price jumps. These �ve speci�cations are combined

with the four di�erent groups of indicators. Thus we will have twenty di�erent price time series

(excluding four di�erent time series without price jumps).50

Price Jumps 1�3:

The �rst three price-jump speci�cations have the same rate of arrival and a constant size of jump

J = ±const. Both signs occur with the same probability.

50An alternative approach to estimate price jumps is to assume that the error term follows a given stochastic
distribution and combine it with a non-homogenous Poisson term describing a jump. Then, Score Method of Moments
or Simulated Method of Moments could be employed to estimate the parameters of the model. See, for example,
Jiang and Oomen (2007) who estimate an a�ne jump di�usion model for a series of returns from the S&P 500 index.
However, this approach relies on the proper speci�cation of the underlying model, including the intraday volatility
pattern as well as the distribution. Thus, this approach is not appropriate for our analysis.
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Price Jump 1: We employ combinations of J = 5svjump and l = 5/NDay.

Price Jump 2: We employ combinations of J = 7svjump and l = 5/NDay.

Price Jump 3: We employ combinations of J = 9 · svjump and l = 5/NDay.

The parameter svjump = 0.0004 and Nday means the number of minutes per trading day.

Price Jumps 4�5:

The next two price-jump speci�cations use a uniform distribution to select the size of price jumps.

We select price jumps from a given distribution, with 0 < a < b, and both signs occur with the

same probability. We use the following speci�cations.

Price Jump 4: J ∼ ±U (5σjump, 9σjump) and λj = 5/NDay.

Price Jump 5: J ∼ U (5σjump, 9σjump) and λj = 15/NDay.

The parameter for volatility is chosen as svjump = 0.0004 and Nday is de�ned above.

5 Comparison Strategy

The goal of the simulation procedure is to compare price-jump indicators with each other, under-

stand their properties and select the most appropriate indicator for real data.

5.1 Price Jump Indicators

We employ the following extensive list of price-jump indicators that are de�ned in Appendix A.

1. Centiles as de�ned in A1.1: The price jump is identi�ed as those returns below the 0.5th

centile or above the 99.5th centile. Centiles are calculated for the entire sample.

2. Block-centiles as de�ned in A1.2: The price jump is identi�ed as those returns below the 0.5th

centile or above the 99.5th centile. Every trading day is divided into 15-minute blocks and

centiles are calculated separately for every block for the entire sample.
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3. ZRJ,TP as de�ned in A2.1 with a 99% con�dence interval (CI) and length of moving window

n = 60.

4. ZRJ,TP as de�ned in A2.1 with a 99% CI and n = 120.

5. Improved ZRJ,TP as de�ned in A2.2 with a 99% CI and n = 60.

6. Improved ZRJ,TP as de�ned in A2.2 with a 99% CI and n = 120.

7. ξ-statistics as de�ned in A2.3 with a 99% CI and n = 60.

8. ξ-statistics as de�ned in A2.3 with a 99% CI and n = 120.

9. JORatio as de�ned in A3.1 with a 99% CI and n = 60.

10. JORatio as de�ned in A3.1 with a 99% CI and n = 120.

11. Improved JORatio as de�ned in A3.2 with a 99% CI and n = 60.

12. Improved JORatio as de�ned in A3.2 with a 99% CI and n = 120.

13. Price-jump index as de�ned in A4.1: The price jump is identi�ed as those returns with pji > 4

and n = 120.

14. Price-jump index as de�ned in A4.1: The price jump is identi�ed as those returns with pji > 4

and n = 420.

5.2 Arti�cial Time Series

We employ a Monte Carlo simulation technique to simulate an arti�cial time series with price

jumps.51 We simulate all the combinations of four di�erent intraday volatility patterns (speci�ed

above) and �ve di�erent price-jump speci�cations (speci�ed above), thus there are 20 di�erent time

series in total. Every trading day is sampled at a one-minute frequency, starting at 9:01 and ending

at 16:00; seven hours in total, which gives 420 trading minutes per trading day. We further match

51We have used Stata, which contains subroutines for Monte Carlo simulation analysis. These subroutines assures
that random generators are called appropriately without unwanted repetitions of random number sequences. In
addition, the length of the simulation didn't require employment of more complex random number generators nor
treatment for to treat for simulations on parallel platforms.
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Table 6.1: Summary of the analysis based on false positive and false negative probabilities.
Indicator No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

False positive No. of dominances 13 3 0 0 0 0 1 2 0 0 0 0 0 0
False negative No. of dominances 2 0 0 0 0 0 10 15 0 0 0 0 0 0

the end of the trading day with the beginning of the next trading day and thus produce a continuous

time series.

We simulate 105 trading days and de�ne price-jump indicators. Then, we cut o� the �rst �ve

days, which serve to settle down the simulation as well as produce the necessary observations for the

moving windows. In addition, the Jiang-Oomen statistics-based indicators require absolute levels.

For that purpose, we set an initial value p0 = 100 and produce price levels instead of returns.

5.3 Relative Comparison of Price Jump Indicators

In the last step we perform an extensive comparison of the performance of the di�erent price-jump

indicators. We follow the methodology outlined in the previous sections based on the McNemar

(1947) test.

6 Results

We compared 14 di�erent price-jump indicators with respect to false positive and false negative

probabilities. We present all the details of the comparison in Appendix B. In Table 6.1, we present

a summary of our results: the number of cases when a given price-jump indicator dominates the

other indicators with respect to both false positive and false negative probabilities. Several times

there were two indicators that were dominating the other indicators. In such a case, we counted

both indicators as dominating the given simulated speci�cation.

In the case of the false positive probability�the false identi�cation of non-jump cases�the best

indicator seems to be indicator No. 1 based on centiles. This indicator dominates others the most

often. In addition, there are other indicators which perform in some speci�cations well, namely No.

2�the one based on block-centiles�and Nos. 7 and 8 based on the x-statistics with 99% CI and

n = 60 or n = 120, respectively.

The other case, false negative probability�jumps that occur are not identi�ed�shows that the
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best performing statistics is indicator No. 8, the ξ-statistics with 99% CI and n = 120. In addition,

the analysis shows that even the version with time window n = 60 performs well since these two

statistics are in many cases statistically indistinguishable.

The analysis further reveals that the performance of price-jump indicators is not homogeneously

distributed among all the indicators but rather their performance is dominated by a few best indica-

tors. This can be further seen in the results, where most of the time when one indicator dominates

another, it dominates it at the highest signi�cance level.

7 Conclusion

We performed an extensive simulation study to compare the relative performance of a broad class

of price-jump indicators with respect to false positive and false negative probabilities. We simulated

twenty di�erent time-series speci�cations with di�erent intraday noise volatility patterns and price-

jump speci�cations and using these arti�cial time series. We employed the double McNemar test

and compared fourteen di�erent price-jump indicators that are widely used in the literature. We

compared them with respect to false positive and false negative probabilities. The results suggest

large di�erences among the indicators in terms of their performance. In the case of false positive

probability, the best-performing price-jump indicator is the one based on thresholding with respect

to centiles. In the case of false negative probability, the best indicator is the one based on bipower

variation. Signi�cant di�erences among the indicators further con�rms the fact that any meta-

analysis based on di�erent price-jump indicators is not possible since the indicators tend to perform

in very di�erent ways.
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Appendix A: Price-Jump Indicators � The Details

In this section, we provide technical details for all of the price-jump indicators we tested.

A1 Group 1: Ait-Sahalia

This class of indicator assumes that the underlying price increment process is given as ∆S =

σ∆X + ∆J , where the price increment means ∆S = St − St−∆t, where we assume that we observe

the realization of prices in equidistant time steps ∆t, i.e., ∆S denotes a price change over the time

interval ∆t. In this de�nition, X corresponds to the Brownian motion and J is a β-stable process.

The increments of the two components can be expressed as ∆X = (∆t)1/2X1 and ∆J = (∆t)1/β J1,

where the equalities are equalities in distribution. In this speci�cation, X corresponds to the

Brownian motion and J is a β-stable process.

The di�erent magnitudes in the two components can be used to discriminate between the noise

components and the big price jumps coming solely from the J-process.52 The big price jumps cause

∆S = ∆J (in distribution), while in the presence of no big price jumps, which is most of the time,

∆S = σ (∆t)1/2X1. Therefore, we can, for a given ∆t, choose a threshold value equal to α (∆t)γ ,

with α > 0 and γ ∈ (0, 1/2), such that if ∆S > α (∆t)1/2 then ∆S is at a given moment dominated

by J with a certain probability.

This argument can be inverted. Assuming that we know the rate of the arrival of big jumps,

we can easily construct a threshold based on the centile value. Therefore we will use centiles as a

threshold to discriminate price jumps from the noise. Using centiles, however, can produce biased

results due to the intraday volatility patterns. The intraday volatility pattern means that σ = σ (t).

In addition, the J-process can also be di�erent either across di�erent phases of the trading day or

across di�erent trading days. To account for the former, we divide every trading day into several

trading blocks and assume that inside every trading block the price process is constant no matter

the trading day. In this case, we can apply the same logic block by block. Namely, we calculate the

centiles for the same block over di�erent trading days and threshold price jumps for every trading

block separately.

52The J-process contributes to a large amount of small price jumps; however, we want to focus on big price
jumps only. The goal is not to completely determine the properties of the J-process but rather to determine how to
distinguish extreme price movements.

127



A1.1 Global Centiles

We de�ne price jumps as those returns that are higher/lower than a given upper/lower centile.

Centiles are calculated based on the observation of the entire sample, where we use the 99.5th

centile as the upper threshold and the 0.5th centile as the lower threshold.

A1.2 Centiles over Block-Windows

To compensate for intraday volatility, we divide every trading day into several 15 minute-long blocks.

Then, we apply the procedure de�ned above for every trading block separately, i.e., we calculate

the upper/lower threshold for every trading block independently and then de�ne the price jumps

as those price movements that are higher/lower than the corresponding threshold values.

A2 Group 2: Bipower Variation

The two di�erent measures for variation, as de�ned by Barndor�-Nielsen and Shephard (2004)

and Barndor�-Nielsen and Shephard (2006), are Realized Variation de�ned as RVt =
∑n

i=2 r
2
i and

Bipower Variation de�ned as BVt = µ−2
1

(
n−1
n−2

)∑n
i=3 |ri| |ri−1|, with µα = E (|Z|α) for Z ∼ N (0, 1),

or generally µα = 2α/2Γ
(
α+1

2

)
/
√
π.

A2.1 The Max-adjusted Statistics

The di�erence between the two variations is the key ingredients; however, one also needs to estimate

the conditional standard deviation
´
σ4. There are at least two possible ways to estimate this

Andersen et al. (2007) introduced tripower quarticity

TP = nµ−3
4/3

n− 1

n− 3

n∑
i=4

|ri|4/3 |ri−1|4/3 |ri−2|4/3 →
ˆ
σ4 , (7.1)

to measure the conditional standard deviation, while Barndor�-Nielsen and Shephard (2004) and

Barndor�-Nielsen and Shephard (2006) used Quadpower Quarticity

QP = nµ−4
1

n− 1

n− 4

n∑
i=5

|ri| |ri−1| |ri−2| |ri−3| →
ˆ
σ4 . (7.2)
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The same authors then proposed several di�erent asymptotically equal statistics to estimate the

presence of price jumps.

According to Huang and Tauchen (2005), the best statistics is ZRJ,TP , de�ned as

ZRJ,TP =
RJ√((

π
2

)2
+ π − 5

) (
1
n

)
max

(
1, TP

BV 2

) , (7.3)

with RJ = (RV −BV ) /RV . The null hypothesis states that there is no jump in a given period. If

the statistics exceeds the critical value Φ−1 (α), then we reject the null hypothesis of no price jump

at con�dence level α.

Realized Variation and Bipower Variation are forward-looking; however, we need a backward-

looking speci�cation re-de�ned as

RVj =

j∑
i=j−n+2

r2
i , (7.4)

BVj = µ−2
1

(
n− 1

n− 2

) j∑
i=j−n+3

|ri| |ri−1| . (7.5)

The statistics thus refer to a window of length n ending at time step j. Thus, observing a

signi�cant jump at time step j means that somewhere in the window of length n ending at time

step j was at least one signi�cant jump. Thus, the change between periods with no price jump and

periods with a price jump can serve as an indicator for the moments when jumps happened the

�rst time. This also assumes that the average time between two jumps will be much larger than

the window used in this statistics. On the other hand, a very short time window skews the results

with a small-sample bias. Since we assume more than one price jump per day, we employ n = 60

and n = 120.

The indicator for a price jump is de�ned as follows: price jumps are those prices for which

Zt−1 ≤ Φ−1 (α) and Zt > Φ−1 (α). By de�nition, the indicator cannot distinguish two consecutive

steps, otherwise we would have to work with the absolute levels of the statistics.
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A2.2 Max-adjusted Statistics: Improved Identi�cation Method

The improvement works as described in the main section, namely returns identi�ed as price jumps

are replaced by the average value calculated over the same length as was used for identi�cation.

The replaced value is clearly not a price jump; otherwise, the price jump would not be identi�ed

as a price jump. Therefore, we de�ne a pair of improved indicators based on the above-de�ned

Max-adjusted statistics with n = 60 and n = 120.

A2.3 Lee-Mykland

The statistics of Lee and Mykland (2008) is based on bipower variation and is given as

L (i) =
ri
σ̂ (i)

, (7.6)

with σ̂2 (i) = 1
n−2

∑i−1
j=i−n+2 |ri| |ri−1|. Then

maxi |L (i)| − Cn
Sn

→ ξ , (7.7)

where ξ has a cumulative distribution function P (ξ ≤ x) = exp (−e−x), and the two constants are

given as Cn = (2 logn)1/2

c − log π+log(logn)

2c(2 logn)1/2
, Sn = 1

c(2 logn)1/2
and c =

√
2/
√
π. Whenever the ξ-statistics

exceeds the critical value ξCV , we reject the null hypothesis of no price jump at time ti.

Lee and Mykland recommend n15−min = 156 and n5−min = 270. In our analysis, we are using

n = 60 and n = 120.

A3 Group 3: Jiang-Oomen Statistics

The Jiang and Oomen (2008) statistics is based on Swap Variance de�ned as

SwV = 2

n∑
i=2

(Ri − ri) , (7.8)

with Ri = Pi−Pi−1

Pi
, where Pi = exp (pi) and ri = pi− pi−1. The authors claim that employing swap

variance further ampli�es the contribution coming from price jumps and thus makes the estimator

less sensitive to intraday variation.
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A3.1 Jiang-Oomen Statistics-based Price-Jump Indicator

The Jiang-Oomen statistics is de�ned as

JORatio =
nBV√
ΩSwV

(
1− RV

SwV

)
, (7.9)

where the Realized Variation RV and the Bipower Variation BV are de�ned as above. The statistics

is asymptotically equal to z ∼ N(0, 1) and tests the null hypothesis that a given window does not

contain any price jump. The indicator for a price jump is de�ned as those price movements for

which JOt−1 ≤ Φ−1(α) and JOt>Φ−1(α). The same comments as for the Max-adjusted statistics

apply. We use two price-jump indicators with n = 60 and n = 120.

A3.2 Jiang-Oomen Statistics: Improved Identi�cation Method

We use the same improvement technique as in section A2.1 and de�ne two improved indicators

based on the Jiang-Oomen statistics with n = 60 and n = 120.

A4 Group 4: Statistical Finance

The scaling properties of returns can be studied using di�erent techniques (see Stanley and Man-

tegna, 2000, and references therein), where we employ the price-jump index as de�ned by Joulin et

al. (2008) for this study.

A4.1 Price-Jump Index

The price-jump index is de�ned as

pjii =
|ri|

1
n

∑i
j=i−n+1 |ri|

, (7.10)

where n governs the length of the moving window over which we normalize the absolute returns

at a given time moment. The empirical observations suggest (Joulin et al., 2008) that the scaling

properties behave as P (pji > s) ∼ s−α; therefore, we de�ne a price jump as those price returns

which the price-jump index exceeds a given threshold ŝ. In our analysis, we choose ŝ = 4 and

n = 120 and n = 420.
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Appendix B: Simulation Results

This appendix summarizes all the results from the simulations. First, we compare the price-jump

indicators with respect to the false positive probability and then with respect to the false negative

probability. We simulate 20 di�erent combinations of intraday volatility patterns and price jumps,

as they are de�ned in the preceding sections. Table 7.1 contains the notation for the combinations

used in the tables below.

Table 7.1: Notation for combinations of di�erent intraday volatility patterns and price jumps
Vol. Pattern A Vol. Pattern B Vol. Pattern C Vol. Pattern D

Price Jumps 1 A1 B1 C1 D1
Price Jumps 2 A2 B2 C2 D2
Price Jumps 3 A3 B3 C3 D3
Price Jumps 4 A4 B4 C4 D4
Price Jumps 5 A5 B5 C5 D5

Note: In the tables below, the di�erent price-jump indicators are denoted by the numbers introduced in the

Comparison Strategy Section.

Table 7.1 presents the results of every type of false probability and every combination of intraday

volatility pattern and price-jump speci�cation. To eliminate the necessity of having the same note

describe the contents of each table, we describe how the tables should be interpreted here. Each

table presents a pair-wise comparison of price jumps as denoted above. The price-jump indicator

corresponding to a row is denoted by A, the price-jump indicator corresponding to a column is

denoted as B. Therefore, whenever the entry in the table contains A, the row indicator dominates

in performance the one in the column, and vice versa for B. We use the conventional * for 90%, **

for 95% and *** for 99% con�dence levels. The equals symbol (=) means that we cannot reject the

null hypothesis that both indicators are equal with respect to a given false probability.
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B1 False positive probability: Indicator predicts a jump that does not exist

Table 7.2: Combination A1
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ A∗∗∗

5 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

6 B∗∗∗ B∗∗∗ = B∗∗∗ =

7 B∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 A∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

9 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗

11 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

12 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗

13 B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗

Table 7.3: Combination B1
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ A∗∗∗

5 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

6 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ =

7 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 B∗∗∗ B∗∗∗ A∗∗∗ = A∗∗∗ A∗∗∗ B∗∗∗

9 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ = A∗∗∗

10 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

11 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗ B∗∗∗ B∗∗∗

12 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗

13 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

14 B∗∗∗ B∗∗∗ A∗∗∗ = A∗∗∗ A∗∗∗ B∗∗∗ = B∗∗∗ B∗∗∗ A∗∗ B∗∗∗ A∗∗∗
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Table 7.5: Combination D1
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ =

5 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

6 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗

7 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

9 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ A∗∗ A∗∗∗

11 B∗∗∗ B∗∗∗ A∗∗∗ A∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

12 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗

13 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

14 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

Table 7.4: Combination C1
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ =

5 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

6 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ =

7 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

9 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗

10 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

11 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

12 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗ B∗∗∗ B∗∗∗ A∗∗∗

13 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

14 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗
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Table 7.6: Combination A2
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ A∗∗∗

5 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

6 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ =

7 B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 = A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗

9 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗

11 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

12 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗

13 B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗

Table 7.7: Combination B2
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ A∗∗∗

5 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

6 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ =

7 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗ A∗∗∗ A∗∗∗

8 B∗∗∗ B∗∗∗ A∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

9 B∗∗∗ B∗∗∗ A∗∗∗ A∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

10 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

11 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ = B∗∗∗ B∗∗∗

12 B∗∗∗ B∗∗∗ A∗∗∗ B∗ A∗∗∗ A∗∗∗ = A∗∗∗ B∗∗ B∗∗∗ A∗∗∗

13 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

14 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗
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Table 7.8: Combination C2
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ A∗∗∗

5 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

6 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ =

7 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

9 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗

10 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

11 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

12 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗

13 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

14 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

Table 7.9: Combination D2
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ A∗∗∗

5 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

6 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

7 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

9 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

11 B∗∗∗ B∗∗∗ B∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

12 B∗∗∗ B∗∗∗ A∗∗∗ = A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗

13 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

14 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗
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Table 7.10: Combination A3
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ A∗∗∗

5 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

6 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ =

7 B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 = A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗

9 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗

11 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

12 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ = B∗∗∗ A∗∗∗

13 B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗

Table 7.11: Combination B3
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ A∗∗∗

5 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

6 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

7 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

8 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

9 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗ A∗∗∗

10 B∗∗∗ B∗∗∗ A∗∗∗ = A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

11 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

12 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ = A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗

13 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

14 B∗∗∗ B∗∗∗ A∗∗ B∗∗∗ A∗∗∗ A∗∗∗ = A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗ A∗∗∗
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Table 7.12: Combination C3
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ A∗∗∗

5 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

6 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

7 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

9 B∗∗∗ B∗∗∗ A∗∗∗ B∗ A∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗

10 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

11 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

12 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗ B∗∗∗ B∗∗∗ A∗∗∗

13 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

14 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

Table 7.13: Combination D3
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ A∗∗∗

5 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

6 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

7 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 B∗∗∗ B∗∗∗ A∗∗∗ B∗ A∗∗∗ A∗∗∗ B∗∗∗

9 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗ A∗∗∗ A∗∗∗ B∗∗∗ A∗∗ A∗∗∗

11 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

12 B∗∗∗ B∗∗∗ = B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗

13 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

14 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗
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Table 7.14: Combination A4
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ A∗∗∗

5 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

6 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ =

7 B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 = A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

9 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗

11 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

12 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗

13 B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗

Table 7.15: Combination B4
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ A∗∗∗

5 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

6 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗

7 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

8 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

9 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

10 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

11 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ = B∗∗∗ B∗∗∗

12 B∗∗∗ B∗∗∗ A∗∗∗ = A∗∗∗ A∗∗∗ A∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗

13 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

14 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗
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Table 7.16: Combination C4
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ A∗∗∗

5 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

6 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗

7 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

9 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗

10 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

11 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

12 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ = B∗∗∗ B∗∗∗ A∗∗∗

13 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

14 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

Table 7.17: Combination D4
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ A∗∗∗

5 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

6 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

7 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

9 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗

10 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

11 B∗∗∗ B∗∗∗ = B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

12 B∗∗∗ B∗∗∗ A∗∗∗ = A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗

13 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

14 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗
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Table 7.18: Combination A5
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 =

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ A∗∗∗

5 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

6 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗

7 = = A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 = = A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ =

9 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗

11 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

12 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗

13 B∗∗ B∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ = B∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 = = A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ = = A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ =

Table 7.19: Combination B5
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 =

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ A∗∗∗

5 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

6 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗

7 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

8 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

9 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ = B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗

11 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

12 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ = B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗

13 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗
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Table 7.20: Combination C5
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 =

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ A∗∗∗

5 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

6 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗

7 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

9 B∗∗∗ B∗∗∗ A∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗

11 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

12 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗

13 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

Table 7.21: Combination D5
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 =

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ A∗∗∗

5 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

6 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗

7 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

9 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗

11 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

12 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗

13 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗
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Conclusion

Table 7.22 summarizes how many times a particular price jump indicator dominats other price jump

indicators. The indicator with the least number of false positive identi�cations is the �rst one, i.e.,

the one based on global centiles. This indicator, however, intuitively depends on the given level of

centile and thus taking threshold levels based on centiles that are too tolerant, this indicator can

easily lose its power.

Table 7.22: Summary of the false positive analysis.
Indicator 1 2 3 4 5 6 7 8 9 10 11 12 13 14

No. of dominances 13 3 0 0 0 0 1 2 0 0 0 0 0 0

It is also demonstrated that improved identi�cation techniques, namely price jump indicators

No. 5 and 6 and No. 11 and 12 are worse than the non-improved versions with respect to this kind

of error as was intuitively anticipated.
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B2 False negative probability: Indicator does not predict existing jump

Table 7.23: Combination A1
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ B∗∗∗

5 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

6 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

7 B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

9 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

11 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

12 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗

13 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

Table 7.24: Combination B1
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ B∗∗∗

5 B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

6 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

7 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

9 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

11 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

12 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗

13 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗
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Table 7.26: Combination D1
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ B∗∗∗

5 B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

6 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

7 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

9 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

11 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

12 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗

13 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

Table 7.25: Combination C1
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ B∗∗∗

5 B∗∗∗ B∗ A∗∗∗ A∗∗∗

6 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

7 B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

9 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

11 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

12 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗

13 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗
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Table 7.27: Combination A2
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ B∗∗∗

5 A∗ A∗∗∗ A∗∗∗ A∗∗∗

6 B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

7 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ =

9 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

11 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

12 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗ A∗∗∗ B∗∗∗

13 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ =

Table 7.28: Combination B2
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ B∗∗∗

5 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

6 B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

7 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ =

9 B∗∗∗ B∗∗∗ B∗∗∗ = B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

11 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

12 B∗∗∗ B∗∗∗ B∗∗∗ = B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ = A∗∗∗ B∗∗∗

13 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ =
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Table 7.29: Combination C2
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ B∗∗∗

5 B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

6 B∗∗∗ = A∗∗∗ A∗∗∗ B∗∗∗

7 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

9 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

11 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

12 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗

13 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ =

Table 7.30: Combination D2
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ B∗∗∗

5 A∗∗ A∗∗∗ A∗∗∗ A∗∗∗

6 B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

7 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

9 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

11 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

12 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ = A∗∗∗ B∗∗∗

13 B∗∗∗ B∗∗∗ = A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 B∗∗∗ B∗∗∗ = A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ =
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Table 7.31: Combination A3
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ B∗∗∗

5 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

6 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

7 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ =

9 B∗∗∗ B∗∗∗ B∗∗∗ A∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

11 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

12 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

13 B∗∗∗ B∗∗∗ = A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 B∗∗∗ B∗∗∗ = A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ =

Table 7.32: Combination B3
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ B∗∗∗

5 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

6 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

7 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ =

9 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

11 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

12 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

13 B∗∗∗ B∗∗∗ = A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 B∗∗∗ B∗∗∗ = A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ =
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Table 7.33: Combination C3
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ B∗∗∗

5 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

6 B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

7 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

9 B∗∗∗ B∗∗∗ B∗∗∗ = B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

11 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

12 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ = A∗∗∗ B∗∗∗

13 B∗∗∗ B∗∗∗ = A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 B∗∗∗ B∗∗∗ = A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ =

Table 7.34: Combination D3
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ B∗∗∗

5 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

6 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

7 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ =

9 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

11 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

12 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

13 B∗∗∗ B∗∗∗ = A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 B∗∗∗ B∗∗∗ = A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ =
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Table 7.35: Combination A4
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ B∗∗∗

5 B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

6 B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

7 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗

9 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

11 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

12 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗

13 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 B∗∗∗ B∗∗∗ B∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ =

Table 7.36: Combination B4
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ B∗∗∗

5 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

6 B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

7 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗

9 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

11 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

12 B∗∗∗ B∗∗∗ B∗∗∗ = B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ = A∗∗∗ B∗∗∗

13 B∗∗∗ B∗∗∗ = A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 B∗∗∗ B∗∗∗ = A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ =
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Table 7.37: Combination C4
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ B∗∗∗

5 B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

6 B∗∗∗ B∗∗ A∗∗∗ A∗∗∗ B∗∗∗

7 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ =

9 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

11 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

12 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗

13 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

Table 7.38: Combination D4
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ B∗∗∗

5 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

6 B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

7 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

9 B∗∗∗ B∗∗∗ B∗∗∗ = B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

11 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

12 B∗∗∗ B∗∗∗ B∗∗∗ = B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗

13 B∗∗∗ B∗∗∗ = A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 B∗∗∗ B∗∗∗ A∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗
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Table 7.39: Combination A5
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ B∗∗∗

5 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

6 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

7 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

9 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

11 B∗∗∗ B∗∗∗ B∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

12 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ = A∗∗∗ B∗∗∗

13 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

Table 7.40: Combination B5
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ B∗∗∗

5 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

6 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗

7 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

9 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

11 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

12 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ = A∗∗∗ B∗∗∗

13 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗
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Table 7.41: Combination C5
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ B∗∗∗

5 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

6 B∗∗∗ A∗∗ A∗∗∗ A∗∗∗ B∗∗∗

7 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ =

9 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

11 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

12 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗ A∗∗∗ B∗∗∗

13 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

Table 7.42: Combination D5
A\B 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1

2 B∗∗∗

3 B∗∗∗ B∗∗∗

4 B∗∗∗ B∗∗∗ B∗∗∗

5 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

6 B∗∗∗ = A∗∗∗ A∗∗∗ B∗∗∗

7 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

8 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

9 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

10 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗

11 B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗

12 B∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ B∗∗∗ = A∗∗∗ B∗∗∗

13 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗

14 A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ B∗∗∗ A∗∗∗ B∗∗∗ B∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗ A∗∗∗
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Conclusion

Table 7.43 summarizes how many times a particular price jump indicator dominates other price

jump indicators. The indicator with the least number of false negative identi�cations is the one

based on the ξ-statistics with 99% CL and N = 120, i.e., No. 8.

Table 7.43: Summary of the false negative analysis.
Indicator 1 2 3 4 5 6 7 8 9 10 11 12 13 14

No. of dominances 2 0 0 0 0 0 10 15 0 0 0 0 0 0
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