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Summary 
Metabolomics and lipidomics have emerged as tools in 
understanding the connections of metabolic syndrome (MetS) 
with cardiovascular diseases (CVD), type 1 and type 2 diabetes 
(T1D, T2D), and metabolic dysfunction-associated steatotic liver 
disease (MASLD). This review highlights the applications of these 
omics approaches in large-scale cohort studies, emphasizing their 
role in biomarker discovery and disease prediction. Integrating 
metabolomics and lipidomics has significantly advanced our 
understanding of MetS pathology by identifying unique metabolic 
signatures associated with disease progression. However, 
challenges such as standardizing analytical workflows, data 
interpretation, and biomarker validation remain critical for 
translating research findings into clinical practice. Future research 
should focus on optimizing these methodologies to enhance their 
clinical utility and address the global burden of MetS-related 
diseases. 
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Introduction 
 

Metabolic syndrome (MetS), also known as 

insulin resistance syndrome, is defined as a cluster of risk 
factors for cardiovascular disease and diabetes. The main 
risk factors include raised blood pressure, visceral 
obesity, hyperglycemia, and dyslipidemia (reduced high-
density lipoprotein cholesterol or raised triacylglycerols) 
[1-3]. These features are often related to insulin 
resistance, which can lead to prediabetes or type 2 
diabetes [4]. Recent studies have shown that even non-
obese patients may suffer from insulin resistance, with 
visceral adiposity being considered the primary 
contributor to MetS pathology. Visceral adiposity is 
strongly associated with hepatic fatty infiltration, 
indicating that the amount of fatty acids in the liver is 
indirectly linked with MetS, both as a cause and 
a consequence of the syndrome [5]. Furthermore, in 
recent decades, MetS has become a significant health 
concern with a high prevalence worldwide [4,6-8]. To 
properly understand MetS metabolism and the 
relationships between the aforementioned risk factors 
[9,10], metabolomics and lipidomics can be applied. 

Metabolite profiling is conducted using either 
untargeted or targeted approaches, applied to biological 
samples through various analytical methods and 
platforms [11]. Large-scale metabolomics and lipidomics 
studies, which involve extensive populations or numerous 
samples (over 1000), have demonstrated their 
effectiveness in various scientific fields. These studies 
have defined individual phenotypes and shown the effects 
of genetic, environmental, intervention, or aging factors. 
They have also discovered biomarkers and validated 
metabolite patterns associated with specific biological 
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states [11]. Integrating newly identified metabolite 
biomarkers with clinical characteristics can potentially 
enhance the prediction of disease development [12]. 

In this review, we examine metabolomics and 
lipidomics human cohort studies and their application in 
MetS research. We introduce the analytical workflow and 
provide examples of recent MetS studies on 
cardiovascular diseases, type 1 and type 2 diabetes, and 
metabolic dysfunction-associated steatotic liver disease. 
 
Metabolomics and lipidomics in large cohort 
studies 
 

Large-scale metabolomics and lipidomics 
studies analyze hundreds to thousands of human samples 
containing thousands of metabolites. These samples are 

often processed in multiple batches over several weeks or 
months. No single analytical platform can cover all 
metabolites in a biological sample due to the complexity, 
diversity, and size of the human metabolome and 
lipidome. Therefore, multiple analytical platforms are 
employed to increase metabolite coverage [13]. Figure 1 
shows metabolomics and lipidomics workflow, consisting 
of sample handling, instrumental analysis, data 
processing, and bioinformatics. 
 
Sample handling 

The first step in metabolomics and lipidomics 
studies is creating a proper experimental design, 
including sample size, sample collection and storage, 
sample preparation, quality control, and analytical 
techniques [14]. 

 
 

 
 
Fig. 1. Metabolomics and lipidomics workflow. 
 
 

Determining the appropriate sample size, both 
overall and for each group, is essential. Insufficient sample 
size can lead to errors and lack of precision. Conversely, 
even small, insignificant differences might appear 
statistically significant with a larger sample size, while 
clinically important effects might seem statistically non-
significant with a small sample size [15]. A high sample 
size may also waste resources for minimal information 
gain [16]. The minimal sample size is calculated using 

power analysis, taking into account the significance level 
(e.g., α=0.05), statistical power (e.g., 0.8), and effect size 
(d=0.8, 0.5, 0.2 for large, medium, small effect size, 
respectively) [17]. To this end, freely available software 
such as G*Power can be used [18]. However, for 
untargeted metabolomics and lipidomics studies with 
a priori unknown number of measured metabolites [19], 
alternative strategies have become available, such as the 
Data-driven Sample size Determination (DSD) algorithm 
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for MATLAB and GNU Octave [20], MetSizeR [21], or 
the online tool SSizer (idrblab.org/ssizer) [22]. 

Generally, at least 20-30 samples per group are 
advised for human studies, although the number of 
samples can range from hundreds to even thousands to 
achieve reasonable statistical power. On the other hand, 
for cell and animal studies with tightly controlled 
conditions, 3-6 and 5-10 samples per group, respectively, 
are recommended [23-25]. 

Another crucial aspect to consider is sample 
collection and storage. These steps must be decided 
during preanalytical processing to ensure reliable results 
[26]. Collection procedures differ based on the type of 
samples and planned analysis. For human cohort studies, 
samples typically consist of plasma or serum. The 
selection of a specific anticoagulant for plasma  
(e.g., EDTA, citrate, heparin) should be decided in 
advance and maintained consistently throughout the 
study. Inaccurate sample collection or improper storage 
may cause metabolite degradation, increased variability, 
or interference with instrumentation [27]. 

It is important to quench the metabolism of 
samples as soon as possible prior to their storage. 
Quenching should stop all enzymatic and chemical 
activities and maintain the current metabolite levels 
during harvesting [28]. The recommended method for 
quenching is to rapidly freeze the samples using liquid 
nitrogen, dry ice, or freeze clamping. After that, samples 
should be stored at -80 °C [29]. 

The next step is sample extraction to capture as 
many metabolites as possible in the sample. Various 
sample preparation techniques are available [30]. 
Minimal sample preparation methods, such as dilution, 
are sufficient for some matrices like urine. Water is 
a suitable diluent for reversed-phase liquid 
chromatography platforms, which start with a high 
percentage of water in the mobile phase. On the other 
hand, acetonitrile as a diluent is preferred for hydrophilic 
interaction chromatography, which begins with a high 
percentage of organic solvent (acetonitrile). Additionally, 
normalization to creatinine or osmolality values is 
a common strategy for urine due to its high variability in 
concentration, which correlates with metabolite 
composition [31]. On the other hand, plasma and serum, 
often used in large human cohort studies, contain many 
interfering proteins and require an extraction step to 
remove these before instrumental analysis. Common 
preparation methods like buffering, dilution, evaporation, 
and centrifugation may lead to metabolite losses and 

issues such as high salt concentration and instrument 
disruption, which can be reduced by adding an extraction 
step [32]. 

Extraction techniques in metabolomics and 
lipidomics commonly include organic solvent-based 
protein precipitation, liquid–liquid extraction (LLE), or 
solid-phase extraction (SPE). Isolation can also be 
performed in single or multiple fractions [33]. Single-
phase extraction uses methanol, acetonitrile, isopropanol, 
a mixture of isopropanol/acetonitrile/water, acetonitrile/ 
methanol, butanol/methanol [27,34,35]. This method 
enables simultaneous extraction of lipids and polar 
metabolites, but such extracts are very complex and can 
be challenging during instrumental analysis. 

The most utilized method for reducing extract 
complexity is two-phase liquid extraction, where the 
separate phases are created by combining immiscible 
solvents: methyl tert-butyl ether (MTBE)/methanol/water 
[36], chloroform/methanol/water [37], and dichloro-
methane/methanol/water [38]. After centrifugation, the 
organic phase primarily contains nonpolar metabolites, 
such as lipids, while the polar (water) phase mainly 
consists of polar metabolites (Fig. 2A). In 2019, Vale et 
al. [39] introduced three-phase extraction using hexane, 
methyl acetate, acetonitrile, and water. After 
centrifugation, the upper organic phase is enriched with 
neutral lipids such as triacylglycerols and cholesteryl 
esters; the middle organic phase contains the 
glycerophospholipids, and the bottom aqueous phase 
contains polar metabolites. 

While organic solvent-based protein 
precipitation and LLE methods are typically used for 
untargeted methods, SPE is the first choice for targeted 
methods, usually covering trace concentrations of 
metabolites [40]. 

The success of any research study also depends 
on an effective quality control (QC) process. Using 
internal standards in the extraction and resuspension 
solvents helps control the method’s performance. These 
standards verify that aliquots are collected correctly from 
all extracts, the autosampler injects the correct volume, 
chromatographic and mass accuracy drifts are monitored, 
signal intensity fluctuations are tracked, and the quality of 
generated data is assessed during data processing [29]. 
They can also be used for quantification using a single-
point calibration approach if added during the extraction 
step. Internal standards are essential because they 
represent true positives in the sample. 
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Fig. 2. (A) Example of sample extraction using MTBE, methanol, and water [41], leading to two phases for subsequent metabolomics 
and lipidomics platforms. (B) Example of a typical LC-MS sequence during metabolomics and lipidomic analysis, consisting of solvent 
injection for general platform equilibration, followed by a system suitability test (SST), platform equilibration using pooled QC samples, 
analysis of method blanks (BL), a diluted series of QC samples (SD), randomized study samples with regular QC sample injections after 
every 10 study samples. (C) Example of different LC-MS platforms [41,42] for metabolomic and lipidomic analysis in relation to the 
XlogP (predicted octanol/water partition coefficient) range of subgroups of polar metabolites and complex lipids. 
 
 

QC samples are crucial for obtaining high-
quality data in high-throughput analytical chemistry 
laboratories [43]. They help assess the precision and 
stability of the analysis. QC samples are used to 
equilibrate the analytical platform, monitor signals for 
precision (within and between days), correct signals 
(normalization), and standardize methods. QC data can 
also help indicate random errors or fluctuations during 
the analytical run [44]. 

QC samples can be created by pooling aliquots 
of each study sample, reflecting the composition of all 
samples during analysis. Another option is to employ 
external QC using a matrix that matches the study 
samples, which can be useful in large-scale studies where 
pooling is challenging. In such studies, pooling 
QC samples can be simplified by using pooled aliquots 
from only a portion of the samples. Additionally, 
commercially accessible QC samples (e.g., human plasma 
NIST SRM 1950 standard reference material [45]) can be 
applied, though there is a risk of missing some 

metabolites compared to pooled QC samples [46]. These 
approaches can be combined; however, they should be 
planned in advance and not modified during the study. 

As Figure 2B shows, a typical metabolomics and 
lipidomics sequence consists of pre-injection steps 
(injection of solvents, QC sample) to equilibrate 
a particular platform, followed by a system suitability test 
(e.g., a mixture of selected metabolites or biological 
samples with known composition), analysis of method 
blanks, a diluted series of QC samples, randomized 
samples, and regular injection of QC samples [42]. All 
these steps are essential to generate reliable metabolomics 
and lipidomics data. 
 
Instrumental analysis 

A multiplatform approach using various 
analytical techniques and platforms is necessary due to 
the diversity and complexity of the metabolome and 
lipidome. This approach can improve the overall 
coverage and reliability of detected metabolites [47]. 
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Liquid chromatography-mass spectrometry (LC-MS) 
dominates metabolomics and lipidomics. Other 
commonly applied platforms are gas chromatography-
mass spectrometry (GC-MS), capillary electrophoresis-
mass spectrometry (CE-MS), and nuclear magnetic 
resonance (NMR). However, NMR does not offer as 
broad metabolite coverage as MS-based approaches [29]. 

LC-MS separates metabolites with a wide range 
of polarities due to its versatility in stationary phases, 
column dimensions, mobile phase modifiers, and solvents 
[48]. Commonly used LC-MS separation platforms are 
reversed-phase LC (RPLC) and hydrophilic interaction 
chromatography (HILIC). RPLC separates polar to semi-
polar metabolites using C18, C8, or C30 columns, 
whereas HILIC separates highly polar metabolites using 
silica, alkyl amide, aminopropylsilane, or sulfobetaine 
groups as the stationary phase [48]. Efficient 
chromatographic separation enhances the sensitivity of 
MS detection, while background noise reduction 
improves the quality of MS data [49]. For the analysis of 
polar metabolites (Fig. 2C), RPLC and HILIC are 
preferred, with mobile phases containing water, 
acetonitrile, and methanol. On the other hand, for RPLC-
based lipidomics, stronger mobile phases are needed, 
typically containing a high percentage of isopropanol 
[41,42]. The column formats vary around 50-150 mm in 
length, with an internal diameter of 2.1 mm, packed with 
sub-2 µm particles. The separation process takes between 
10 and 30 min [50]. However, fast, high-throughput  
LC-MS methods (<5 min), combined with 96-well plate 
sample preparation, are preferred for large cohort studies 
since they allow for hundreds of injections to be 
performed daily [29,42]. 

Once separated, analytes are ionized in an ion 
source to create charged particles. In LC-MS, 
electrospray ionization (ESI) is typically used, allowing 
ion formation for small molecules (<2,000 Da) and large 
molecules, such as peptides and proteins. Due to the 
chemical diversity of the metabolome and lipidome, ESI 
is usually applied in both positive and negative modes for 
more efficient coverage. ESI is a soft ionization 
technique, minimizing the fragmentation of molecular 
ions compared to electron ionization (EI) in GC-MS. 
However, ESI is sensitive to non-volatile salts, leading to 
limited use of only volatile mobile phase modifiers  
(e.g., formic acid, acetic acid, ammonium formate, 
ammonium acetate) in the chromatography part of the 
method. Due to the possible occurrence of ion 
suppression, metabolites with lower affinity for electrons 

or protons can be masked or undetected when competing 
for ionization [51]. 

MS techniques used for analyte detection can be 
either in a simple MS system with a single mass analyzer 
or in a tandem MS/MS system with multiple analyzers. 
These systems fall into low-resolution (LRMS) and high-
resolution (HRMS) techniques. The main difference 
between LRMS and HRMS is their mass accuracy, i.e., the 
precision in determining the mass. HRMS can reach the 
accurate mass and increase confidence during metabolite 
annotation, whereas LRMS can only differentiate 
compounds based on nominal mass, which can cause false 
positives for compounds that share mass but are 
structurally unrelated [52]. Therefore, untargeted 
metabolomics and lipidomics rely on HRMS and  
HR-MS/MS using time-of-flight or orbital ion trap 
analyzers and operating in data-dependent acquisition 
(DDA) or data-independent acquisition (DIA) modes. In 
DDA mode, precursor ions above a pre-set threshold are 
selected using a narrow isolation window, making 
connecting product and precursor ions easier. However, 
low-abundance ions can be missed, and the settings are 
more complex than in DIA, which may lead to errors 
[53,54]. Conversely, in DIA mode, all precursor ions 
within the wide isolation window are fragmented, covering 
more low-abundance ions; however, this results in more 
complex spectra that are harder to interpret [55]. Tools like 
MS-DIAL [56], DecoMetDIA [57], and DecoID [58] help 
to deconvolute these complex MS/MS spectra. For the 
targeted LC-MS method, LRMS triple-quadrupole (QqQ) 
and quadrupole/linear ion trap (QLIT) are used, usually 
operating in a multiple reaction monitoring (MRM) mode to 
improve sensitivity and selectivity of monitored ions [50]. 

In general, untargeted methods provide semi-
quantitative data, meaning that the results are reported as 
peak areas or heights in arbitrary units within the linear 
dynamic range of the detector. In contrast, targeted 
methods report quantitative data in molar concentrations 
[29]. Although quantification is often requested, it is not 
necessary for many studies since both semi-quantitative 
and quantitative data can be used for statistical analysis. 
However, the advantage of quantitative data is that it 
allows for the immediate distinction between major and 
minor metabolites and enables direct comparisons of 
results between laboratories and studies. 
 
Data processing 

Properly handling complex datasets produced by 
metabolomics and lipidomics experiments is crucial, as 
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this process significantly impacts metabolite annotation 
and quantification, consequently affecting the biological 
interpretation of results [59]. A standard untargeted 
metabolomics and lipidomics study can generate 
hundreds of annotated metabolites and numerous 
unknown features characterized by retention time and 
mass-to-charge ratio (m/z). Data handling can be divided 
into data processing and data analysis. Data processing 
uses signal processing methods to refine the raw data and 
combine them between measurements, converting data 
into a format that is easier for further analysis. This 

includes feature detection, chromatogram building, 
deisotoping, peak alignment, and gap-filling. Data 
analysis involves examining and interpreting processed 
data from previous steps, using methods like clustering 
metabolic profiles or finding key differences between 
sample groups [59]. Over the last decade, numerous 
processing tools have been introduced, such as 
MarkerLynx, MarkerView, MassHunter Profiling, 
Compound Discoverer, MS-DIAL (Fig. 3A), MZmine, 
XCMS, MetAlign, GeneDATA, Matlab and R scripts [29]. 

 
 

 
 
Fig. 3. (A) Example of MS-DIAL software [56] used for processing lipidomics data acquired using the RPLC-ESI(–)-MS [41], with 
annotated PC 16:0_18:2 in human serum. Using ammonium acetate and acetic acid as mobile phase modifiers led to the detection  
PC 34:2 as an acetate adduct ([M+CH3COO]-) (m/z 816.576). The MS/MS spectrum of PC 34:2 provided a fragment ion [M–CH3]-  
(m/z 742.539) and a series of fragments for elucidating fatty acyl chains (e.g., m/z 255.233 for 16:0 and m/z 279.233 for 18:2). The 
use of the underscore “_” indicates certainty in the composition of the fatty acyl constituents but not their specific placement on the 
glycerol backbone. (B) Example of MS-FINDER software [60] used for the structure elucidation of an unknown compound  
(m/z 189.1597, retention time 4.57 min) in human serum acquired using the HILIC-ESI(+)-MS platform [41], with tentative annotation 
as N6,N6,N6-trimethyl-L-lysine. 
 
 

Due to the structural variability and diversity of 
metabolites, detecting and annotating metabolites can be 
challenging. On average, successful annotation occurs for 
only approximately 10 % of the molecules, underscoring 
the importance of accurately identifying most molecular 

structures [61]. It should also be noted that in LC-MS, 
each metabolite can be detected in multiple ion forms, 
which can be annotated if present in spectral libraries or 
based on accurate mass differences. For instance, 
phosphatidylcholines (PC) can be detected during 
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lipidomics profiling in positive ESI as [M+H]+ (major 
peak) and [M+Na]+ (minor peak), while negative ESI 
provides [M+CH3COO]- (major peak in the presence of 
ammonium acetate in the mobile phase [41]) and [M+Cl]- 
(minor peak). Depending on the data processing 
workflow, various options are possible for reporting these 
ion forms, such as providing all annotated species 
separately, species from one ionization mode only  
(e.g., the one with a lower relative standard deviation in 
QC samples), or combining adducts (summing peak 
intensities) for each ionization mode. 

The Metabolomics Standardization Initiative 
(MSI) describes community-based guidelines for 
reporting and performing metabolomics workflows, 
proposing four confidence levels [62]: Level 1 – 
matching based on retention time, MS1, and MS/MS 
spectrum; Level 2 – matching based on MS1 and MS/MS 
spectrum; Level 3 – annotation based on matching MS1 
accurate mass only; Level 4 – unknown compound 
characterized by retention time and m/z. However, 
multiple researchers have suggested revisions and 
modifications [63-65]. The Lipidomics Standards 
Initiative (LSI) has recently been introduced to create 
standardized lipid species annotations and unify 
community efforts [66]. 

The most reliable approach for metabolite 
annotation represents the use of spectral libraries 
containing retention time, m/z (MS1 accurate mass), and 
MS/MS fragmentation spectra (MSI – Level 1). However, 
it is virtually impossible to obtain all three pieces of 
information for every possible metabolite. Thus, 
commercial or open-access MS/MS libraries (with 
MS1 precursor ions and MS/MS spectra) are crucial in 
confident compound annotation in metabolomics and 
lipidomics (MSI – Level 2). In recent years, spectral 
libraries and databases have grown in both coverage and 
diversity [67]. METLIN Gen2 is the most extensive 
spectral library (metlin.scripps.edu), containing over 
900,000 molecular standards and MS/MS data, 
comprising over 4 million tandem spectra [68]. Other 
extensive MS/MS libraries include the National Institute 
of Standards and Technology (NIST) MS/MS library 
(chemdata.nist.gov) and MassBank of North  
America (MoNA, massbank.us). Additional  
resources include MassBank (massbank.jp), ReSpect 
(spectra.psc.riken.jp), RIKEN PlaSMA (plasma.riken.jp), 
mzCloud (mzcloud.org), GNPS (gnps.ucsd.edu), 
MSforID (msforid.com), and HMBD (hmdb.ca). 

Furthermore, numerous software and tools have 

been developed to help annotate unknown compounds, 
such as MS-FINDER (Fig. 3B), CFM-ID, MetFrag, 
ChemDistiller, and CSI:FingerID. These tools convert 
mass data into molecular fragments using combinatorial 
structure generation techniques and search against 
existing structures in various databases. Potential 
candidates can be filtered using additional orthogonal 
filters based on retention time prediction [69] or 
hydrogen/deuterium exchange mass spectrometry (HDX-
MS) [70,71]. Nevertheless, confirmation should always 
follow by analyzing an analytical standard under identical 
instrumental conditions [72]. 
 
Bioinformatics 

Statistical analysis is essential to properly extract 
relevant information from the obtained data. Statistical 
analyses can be categorized as univariate and multivariate 
methods. Univariate statistical methods include t-test, 
ANOVA, and fold-change analysis to compare different 
sets of samples. These methods are used for sets of tens 
to hundreds of metabolites, which increases the chances 
of false positives [73]. Therefore, correction methods 
such as Bonferroni correction [74] or the Benjamini-
Hochberg [75] false discovery rate should be applied. 
These corrections have been addressed in multiple studies 
[74-76]. Commonly used multivariate methods include 
principal component analysis (PCA), partial least squares 
discriminant analysis (PLS-DA), and hierarchical cluster 
analysis (HCA) [77]. A routinely employed web-based 
platform for comprehensive metabolomics and lipidomics 
data analysis and interpretation is MetaboAnalyst 
(metaboanalyst.ca) [78]. 

Next, the biological relevance of the measured 
metabolites is interpreted using pathway and enrichment 
analysis. Enrichment analysis identifies functionally 
relevant metabolites and links their changes to biological 
contexts, suggesting key pathways or disease conditions 
for further study. Pathway analysis, on the other hand, 
finds pathways that significantly affect specific biological 
processes [79]. Both analyses are performed using 
various software tools such as MetaMapR, MetabNet, 
GNPS, MS2LDA, MetaboAnalyst, or MetFlow to map 
the metabolic pathways. New tools, such as an ontology 
database and enrichment analysis (LION, 
lipidontology.com) and lipid over-representation analysis 
(LORA, lora.metabolomics.fgu.cas.cz), are also available 
to interpret complex lipids [80]. 

An important part of every experiment is data 
sharing. Data should be shared following the Findable, 
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Accessible, Interoperable, and Reusable (FAIR) Guiding 
Principles for scientific data management and  
stewardship [81]. Public repositories such as  
Metabolomics Workbench (metabolomicsworkbench.org), 
MetaboLights (ebi.ac.uk/metabolights), and  
MassIVE (massive.ucsd.edu/ProteoSAFe/static/ 
massive.jsp) enable data sharing. A newly intro- 
duced dynamic checklist (lipidomicstandards.org/ 
reporting_checklist) summarizing key details of  
lipidomic analyses can be stored or shared in the 
supporting materials of papers or at a general-purpose open 
repository Zenodo (zenodo.org). 

Recently introduced metabolomics and 
lipidomics atlases should also serve as open-access 
resources [29]. These atlases monitor the quantities and 
relationships of metabolites in different biological 
matrices, highlighting the importance of reusing and 
sharing data [82]. 
 
Metabolomics and lipidomics for studying 
metabolic syndrome 
 

In recent years, MetS has become a major health 
risk with its increasing prevalence, reaching pandemic 
proportions [83]. The disease affects around 25 % of the 
global population, making prevention and management 
essential [84]. Understanding its pathophysiology is 
crucial in this effort. Metabolomics and lipidomics have 
been employed to investigate various diseases by 
identifying diagnostic biomarkers. Recently, research 
efforts have focused on cardiovascular diseases (CVD), 
type 2 diabetes (T2D), and metabolic dysfunction-
associated steatotic liver disease (MASLD), all of which 
are associated with MetS. Wishart’s comprehensive 
review in 2019 further underscored the significance of 
metabolomics studies in understanding physiological and 
pathophysiological processes [19]. Supplementary Tables 
S1-S3 overview metabolomics and lipidomics large-
cohort studies focusing on CVD, T1D/T2D, and 
MASLD. Next, we briefly highlight some of these studies 
to elucidate key findings and advancements, emphasizing 
how metabolomic and lipidomic profiles have provided 
deeper insights into disease mechanisms and potential 
therapeutic targets. 
 
Cardiovascular diseases 

CVDs are the leading cause of death globally. In 
2022, CVDs caused approximately 19.8 million deaths, 
accounting for about one-third of all global mortality that 

year. Major contributors to this toll were ischemic heart 
disease (9.2 million deaths) and ischemic stroke 
(3.5 million deaths) [85]. More than three-quarters of 
CVD deaths occur in low- and middle-income countries, 
compared to high-income countries, where the 
CVD death rate has declined [86,87]. 

CVDs are disorders of the heart and blood 
vessels, including coronary heart disease, cerebrovascular 
disease, peripheral arterial disease, rheumatic heart 
disease, congenital heart disease, deep vein thrombosis, 
and pulmonary embolism. Heart attacks and strokes are 
usually considered acute events, primarily resulting from 
a blockage that obstructs blood flow to the heart or brain 
[86]. The risk factors for cardiovascular diseases often 
include an unhealthy diet, physical inactivity, tobacco 
use, and harmful use of alcohol. These factors can be 
controlled, reducing the risk of CVD occurrence [86]. 

One area in CVD research involves exploring 
the role of different metabolites in disease promotion and 
progression. For instance, amino acids (alanine, 
glutamine, glycine, histidine, isoleucine, leucine, lysine, 
valine, phenylalanine, and tyrosine) have been identified 
as predictors of incident CVD risks [88-92]. Other 
discovered biomarkers of CVD are choline, 
trimethylamine N-oxide (TMAO), and betaine [93-96]. 
Similarly, compounds such as trimethyllysine [97], 
phenylacetyl glutamine [98], and niacin metabolites  
(N1-methyl-2-pyridone-5-carboxamide and N1-methyl-4-
pyridone-3-carboxamide) [99] have been linked to CVD 
risks. Moreover, in recent studies, the endogenous sugar 
alcohols erythritol and xylitol were both clinically and 
mechanistically linked to CVD [100,101]. 

The association of diet-linked metabolites with 
CVD has also been explored. Fu et al. [102] investigated 
metabolites connected with a healthy lifestyle and their 
effect on CVD incidence. They identified and validated 
111 metabolites associated with overall lifestyle, 65 of 
which were related to CVD risk. Healthy lifestyle-linked 
metabolites were also studied by Lu et al. [90]. Diabetes 
patients free of CVD were divided into groups based on 
the healthy level of five lifestyle factors and observed. 
Adherence to healthy lifestyle factors was associated with 
44 plasma metabolites (e.g., 3-hydroxybutyrate, alanine, 
glutamine, glycine, branched-chain amino acids), and 
approximately half of them mediated between at least one 
lifestyle factor and CVD risk. Both studies suggest that 
a healthy diet positively affects the incidence of CVD. 

Additionally, the effects of legume [103] and 
walnut [104] consumption on CVD risk were researched. 
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Walnut consumption was found to lower the risk of 
incident CVD and T2D, while legume consumption was 
associated with a lower risk of T2D but not CVD. 
Furthermore, gut microbiome-derived metabolites such as 
p-cresol sulfate and indoxyl sulfate have garnered 
attention [105]. This study shows that these abundant 
microbiome-derived metabolites have a greater impact on 
CVD than previously thought. It also suggests targeting 
the gut microbial pathways that produce p-cresol and 
indole as a potential strategy for treating CVD. 

Lipidomics profiling also reveals characteristic 
lipid signatures associated with increased CVD risk. 
Harm et al. [106] focused on the platelet lipidome of 
coronary artery disease patients and found alterations in 
the lipid composition of patients with adverse 
cardiovascular events. The results showed that the 
platelet lipidome of CVD patients with increased 
cardiovascular risk is changed, and specific platelet lipids 
may indicate adverse events. These findings may help 
discriminate the individual risk of patients with coronary 
artery disease. Eichelmann et al. [88] investigated 
associations of plasma lipid alterations with incident 
cardiometabolic diseases and studied the effect of dietary 
fat modulation on discovered risk-associated lipids. The 
results suggest that dietary fat intervention can alter 
lipids, which may serve as a potential tool for primary 
disease prevention. Furthermore, Seah et al. [107] 
suggested that certain classes of sphingolipids may also 
affect CVD risk. 
 
Type 1 & 2 diabetes 

As of 2021, the global prevalence of diabetes 
was estimated at 10.5 % (537 million people), projected 
to rise to 12.2 % (783 million people) by 2045. Diabetes 
was responsible for approximately 6.7 million deaths 
worldwide in 2021, with global healthcare expenditures 
amounting to approximately USD 966 billion [108]. 
However, the majority of these cases are attributed to 
T2D, while T1D affected approximately 8.4 million 
individuals globally in 2021 [109]. In the future, access to 
and affordability of insulin may become challenging, 
particularly in underdeveloped and developing countries, 
due to the increasing prevalence and incidence of T1D 
[110]. 

Diabetes is a complex chronic metabolic disease 
characterized by high prevalence and mortality, 
encompassing T1D, T2D, and gestational diabetes 
occurring during pregnancy. T1D results from 
insufficient insulin production by the pancreas, 

necessitating daily insulin administration. T2D arises 
from inadequate insulin secretion and the body’s 
ineffective use of insulin, leading to elevated blood sugar 
levels. T2D impacts the metabolism of glucose, lipids, 
and amino acids [111,112]. 

Metabolomics and lipidomics studies of T1D aim 
to identify biomarkers for predicting T1D risk and aiding 
in early disease detection. Orešič et al. [113] analyzed the 
lipidome profile of cord serum samples to investigate 
associations between lipid profile changes and β-cell 
autoimmunity development or clinical T1D. Their study 
found that progression to T1D correlated with decreased 
concentrations of major choline-containing phospholipids 
(sphingomyelins and phosphatidylcholines) in cord blood. 
The study also indicated that phospholipid reduction is 
associated explicitly with T1D progression rather than 
general β-cell autoimmunity. 

La Torre [89] and Tapia [90] also studied cord 
blood samples. La Torre et al. [114] discovered that 
decreased levels of phospholipids at birth, especially 
phosphatidylcholines and phosphatidylethanolamines, 
may contribute to early induction of islet autoimmunity 
and increased T1D risk. Conversely, Tapia et al. [115] 
focused more on changes in the metabolome profile than 
lipidome alterations. However, the research showed no 
strong associations of selected polar metabolites with 
T1D. Nevertheless, Webb-Robertson et al. [116] 
identified multiple metabolites associated with 
T1D progression by age 6, primarily comprising sugar 
metabolism compounds such as fructose, levoglucosan, 
glycerol-α-phosphate, and xylulose. 

Recent studies have explored metabolomics’ 
potential in predicting T2D risk based on dietary patterns 
and corresponding biomarkers. One study involving 
nearly 6,000 participants identified 29 plasma metabolites 
associated with inflammatory and insulinemic dietary 
patterns [117]. The top five biomarkers included PE 36:4, 
CAR 5:0, PC 34:4, 1-methylguanosine, and N4-acetyl-
cytidine. Additionally, investigations into the lipid profile 
of lean and obese individuals with T2D revealed 
significant lipidome changes (lyso-, diacyl- and ether-
phospholipids, and 1-deoxyceramides), aiding in T2D 
diagnosis [118]. 

Lipid profiles containing 69 odd-chain saturated 
fatty acids (OCFA) among 15 lipid subclasses were also 
examined for their potential as T2D biomarkers [119], 
revealing variations dependent on lipid class and sex, 
correlating with food consumption. Sun et al. [120] 
investigated plasma acylcarnitines’ role in early 
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T2D prediction, identifying long-chain acylcarnitines as 
significantly linked to future T2D risk. 

Moreover, interventions targeting weight loss 
have shown promise in altering metabolite signatures 
associated with T2D. Studies have noted positive 
associations between changes in branched-chain amino 
acids (valine, leucine, isoleucine) and branched-chain 
ketoacids (α-ketoisovalerate, α-ketoisocaproate, α-keto-β-
methylvalerate) with glycated hemoglobin (HbA1c) 
levels following weight loss [121]. Branched-chain amino 
acids are frequently studied due to their association with 
increased T2D risk [122-127]. 3-Hydroxybutyrate is 
another frequently studied metabolite, often alongside 
branched-chain amino acids [122-126,128]. Similar to its 
association with CVD, TMAO has also been investigated 
in relation to T2D [129]. Lemaitre et al. [129] explored 
the connections of TMAO, carnitine, crotonobetaine, and 
γ-butyrobetaine with insulin resistance, and betaine and 
choline with enhanced insulin sensitivity. However, they 
did not establish a definitive association. 
 
Metabolic dysfunction-associated steatotic liver disease 

MASLD is the latest term used to describe 
steatotic liver disease associated with MetS, 
encompassing various metabolic risk factors and often 
coexisting with other chronic liver conditions [130]. 
Historically, the term nonalcoholic fatty liver disease 
(NAFLD) was used. In 2020, Eslam et al. [131] proposed 
the term metabolic dysfunction-associated fatty liver 
disease (MAFLD), which was further modified to 
MASLD in 2023 [132]. Both MAFLD and MASLD 
identify patients with hepatic steatosis and metabolic 
dysfunction [133]. There are slight differences in the 
definitions of MASLD and MAFLD, which have been 
discussed in several articles [130,132-134]. Notably, 
MAFLD encompasses patients with fatty liver regardless 
of alcohol consumption pattern or amount [132], whereas 
MASLD introduces the term MetALD for patients who 
meet alcohol-related fatty liver disease criteria [134]. 
MASLD diagnosis requires meeting one of five 
cardiometabolic risk factors [132], while MAFLD 
requires meeting two out of seven metabolic dysfunction 
parameters [131]. De et al. [135] suggest that MASLD 
and SLD (steatotic liver disease) criteria may better suit 
lean patients with NAFLD than MAFLD criteria. 
Consequently, both MASLD and MAFLD terms are used 
in literature to classify liver diseases associated with 
metabolic dysfunction, although NAFLD remains 
prevalent in many studies since the new nomenclature’s 

introduction. 
The global prevalence of NAFLD was estimated 

to be approximately 30 % between 1990 and 2019, with 
a continuing upward trend [136]. This increasing 
prevalence of NAFLD is likely associated with rising 
rates of diabetes and obesity. However, the global 
mortality rate declined from 2.39 per 100,000 population 
in 1990 to 2.09 per 100,000 population in 2019 [137]. 

MASLD includes a range of steatotic liver 
conditions, from isolated hepatic steatosis to metabolic 
dysfunction-associated steatohepatitis (MASH), with 
varying levels of liver fibrosis that can potentially lead to 
cirrhosis. MASLD is associated with a higher risk of liver 
complications (e.g., cirrhosis), end-stage liver disease, 
and hepatocellular carcinoma, as well as an increased risk 
of developing extrahepatic issues such as cardiovascular 
disease (CVD), chronic kidney disease, and certain 
extrahepatic cancers [138]. 

Recent large-scale cohort studies aim to identify 
risk factors and biomarkers for MASLD, aiding in its 
challenging diagnosis. Commonly identified biomarkers 
include amino acids, particularly aromatic amino acids 
(tyrosine, tryptophan) and branched-chain amino acids 
(isoleucine, leucine, valine) [139-143]. Studies by Hirata 
[142] and Martínez-Arranz [144] examined the 
association of NAFLD with cardiovascular risk, 
identifying metabolomic signatures aligning with known 
CVD risk factors. Hirata et al. [142] found that NAFLD 
was positively associated with the cardio-ankle vascular 
index (CAVI), an indicator of subclinical atherosclerosis, 
and identified ten metabolites involved in both NAFLD 
and CAVI: branched-chain amino acids (valine, leucine, 
and isoleucine), aromatic amino acids (tyrosine and 
tryptophan), alanine, proline, glutamic acid, 
glycerophosphorylcholine, and 4-methyl-2-oxopenta-
noate. Martínez-Arranz et al. [144] investigated lipidomic 
profile changes, particularly in triacylglycerols, 
phosphatidylcholines, and sphingomyelins, providing 
evidence of distinct metabolic mechanisms associated 
with NAFLD progression that vary between subtypes. 

McGlinchey et al. [145] observed lipidomic and 
metabolomic profile changes across different stages of 
NAFLD progression, highlighting unique metabolites and 
27 common metabolites across all stages, including 
significant alterations in cholesteryl esters, ceramides, 
lysophosphatidylcholines, phosphatidylcholines, phospha-
tidylethanolamine, sphingomyelins, and triacylglycerols. Hu 
et al. [146] discovered correlations between NAFLD and 
uric acid, as well as oleic acid-hydroxy oleic acid 
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(OAHOA), identifying OAHOA as a novel biomarker for 
NAFLD prevalence in a cohort of 1,479 patients (aged  
18-80 years). Other studies have explored potential 
biomarkers, such as anandamide [147] or taurochloric acid 
[148]. 
 
Conclusions 
 

Metabolomics and lipidomics represent effective 
tools for studying MetS and related disorders. The 
comprehensive multiplatform-based profiling of polar 
metabolites and complex lipids in large cohorts has 
enabled the identification of novel biomarkers and 
enhanced our understanding of disease mechanisms. Key 
advancements include the discovery of metabolic 
signatures associated with CVD, T1D, T2D, and MASLD. 

Regarding polar metabolites, branched-chain 
amino acids (valine, leucine, isoleucine), TMAO, betaine, 
choline, and 3-hydroxybutyrate have been identified in 
multiple studies as promising biomarkers. For complex 
lipids, a panel or combination of affected lipids is 
expected to be useful as biomarkers, including 
acylcarnitines, phospholipids, sphingomyelins, and 
triacylglycerols as key lipid subclasses. 

Further research is needed to validate these 
reported biomarkers in diverse populations and clinical 
settings, ensuring their robustness and clinical utility. 
Standardization of experimental protocols and data 
analysis methods will be critical to facilitate data 
comparability and reproducibility across studies. Based 
on a review of multiple studies, we also advocate for the 
inclusion of authoritative identifiers such as InChI keys 
or identifiers from bioinformatics resources such as the 

Human Metabolome Database (hmdb.ca) and LIPID 
MAPS (lipidmaps.org). This will expedite the 
comparison of potential biomarkers within studies, 
making the process faster and more effective. 

In addition, further advances in analytical 
technologies and computational tools will continue to 
drive innovation in metabolomics and lipidomics, 
offering new opportunities for early disease detection and 
personalized therapeutic interventions. 
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