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Summary 

Perivascular adipose tissue (PVAT) envelops the majority of 

systemic vessels, providing crucial mechanical support and vessel 

protection. In physiological conditions, PVAT releases various 

bioactive molecules, contributing to the anti-inflammatory 

environment around neighboring vessels. However, in conditions 

like obesity, PVAT can exacerbate cardiovascular issues such as 

atherosclerosis. Communication between PVAT and nearby vessels 

is bidirectional, with PVAT responding dynamically to signals from 

the vasculature. This responsiveness positions PVAT as a 

promising indicator of vascular inflammation. Recently, the role of 

PVAT in the CVD risk prediction is also greatly discussed. The 

objective of this review is to summarize the current state of 

knowledge about the PVAT function, its role in physiologic and 

pathophysiologic processes and its potential in CVD risk prediction. 
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Introduction 

 

In October 2023, the longitudinal Framingham 

Heart Study celebrated 75 years since the first participant 

examination in 1948. It was the Framingham study that, as 

the very first project of its kind, began to elucidate the 

epidemiology of atherosclerotic cardiovascular disease 

(CVD). Since then, the study has contributed to the 

understanding of many aspects of atherosclerotic 

cardiovascular disease including the significant role of 

adipose tissue (AT) [1]. 

Adipose tissue is a connective tissue that extends 

throughout the body and is located under the skin as 

subcutaneous AT (SAT), between internal organs as 

visceral AT (VAT) and around the blood vessels as 

perivascular AT (PVAT). Originally, AT was considered 

to serve an insulation function to protect the body against 

cold [2] and as an important energy reservoir [3]. 

However, the impressive body of clinical and experimental 

data obtained over the years has thoroughly changed the 

picture of AT functions to finally perceive AT as a full-

fledged paracrine and endocrine organ [4]. Since then, 

interest in AT has rapidly increased and the tissue and its 

signaling are being intensively studied [5]. 

PVAT surrounds most of the systemic vessels [6] 

except for the cerebral vasculature [7] and represents up to 

3 % of total body mass, whereas SAT makes up 82–97 % 

of total fat, and VAT 10–15 % [8]. PVAT is tightly 

adherent to the vascular wall without a clear barrier 

between PVAT and the adventitia, thus it is also referred 

to as the fourth layer of the vessel wall (tunica adiposa) [9]. 

Because of the absence of a strictly defined anatomical 

barrier between PVAT and adjacent vessel wall, and 
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PVAT and neighboring AT depot, and overall 

inconsistence in the definitions of PVAT, Antonopoulos et 

al. recently proposed a new definition based on their 

results [10,11]. The authors defined PVAT as an AT depot 

located within the radial distance from the outer vessel 

wall with its amount to be equal to the diameter of the 

adjacent vessel. In 2010, the Framingham Heart Offspring 

Study, as another first, published data documenting a 

strong correlation between the quantity of periaortic 

PVAT and cardio-metabolic risk factors such as 

hypertension, high triglycerides levels and lower high-

density lipoprotein (HDL) levels in serum. The study also 

identified a correlation between periaortic PVAT volume 

and body mass index (BMI), waist circumference (WC), 

and overall adiposity values. Moreover, the study authors 

found an association between PVAT size and calcification 

of the aorta and abdominal aorta [1]. Recent data have also 

indicated that the role of PVAT is substantially influenced 

by lifestyle, even in childhood [12]. 

Scientific interest in PVAT and its physiologic 

and pathologic roles has grown considerably in the past 

decade. In this review, we aim to overview the current 

knowledge and clinical prospects. 

 

 
 
Graphical abstract 1. The inside-out and outside-in 
communication between vessel and adjacent perivascular adipose 
tissue. Created with biorender.com. 

 

Developmental origin of PVAT adipocytes 

 

PVAT surrounds most of the veins in the human 

body; however, four main subtypes have been the most 

extensively studied [13]: 1. Pericoronary PVAT (cPVAT), 

which is adjacent to heart vasculature; 2. Thoracic PVAT 

(tPVAT) present from the aortic arch at T4 to the T10–T11 

vertebrae above the diaphragm; 3. Abdominal periaortic 

aPVAT from below the diaphragm to the femoral 

bifurcation; and 4. mPVAT surrounding the mesenteric 

artery. Interestingly, PVAT subtypes differ not only in 

their localization but show significant differences also in 

adipocyte morphology, developmental origin of PVAT 

adipocytes, gene expression, and secretome profile [13]. 

Thus, they also differ in function and in their involvement 

in metabolic disorders or CVD. 

Despite progress in lineage tracing of classical 

AT depots, the developmental origin of PVAT remains 

largely unknown [14]. Numerous publications have 

presented a wealth of information, unfortunately 

inconsistent. This inconsistency may be due to the absence 

of a strict border between PVAT and neighboring fat 

depots, where one likely overlaps the other. Thus, not only 

is it nearly impossible to separate PVAT from nearby AT 

depots but, also, to subsequently identify whether the 

isolated adipocytes belong to PVAT; hence, it is often 

challenging to specify their developmental origin. 

However, a review article by Li et al. [13] briefly 

summarized that adipocytes of PVAT in various depots 

have different developmental origins. While the number of 

publications elucidating the cell origin of human PVAT is 

currently limited, animal-based studies have generated 

large amounts of data in this respect. 

Recently, a comprehensive study using a murine 

model elucidated the developmental origin of tPVAT 

adipocytes [15]. Its authors demonstrated a most important 

role of a fibroblast lineage, consisting of progenitor cells 

and preadipocytes, transcriptionally similar to analogous 

cell types in WAT. In addition, the study discovered, in the 

aortic adventitia of adult animals, a population of 

adipogenic smooth muscle cells (SMC), which contribute 

to PVAT adipocyte formation. Similarly the authors, 

relying on animal studies, identified presumptive 

fibroblastic and SMC-like adipocyte progenitor cells in 

human tPVAT [15]. Overall, data from murine models 

indicate three different tPVAT depots around the thoracic 

aorta [16] with slight differences in tPVAT depots 

adipocyte progenitors. These findings, while indicating 

differences in cell lineages, also suggest different 

physiological and pathological functions of these depots. 

Similar to tPVAT, recent data indicate that SMC 

progenitors play a crucial role in the development of 

adipocytes in aPVAT and mPVAT as well [17]. Research 

using rodent models has shown that aPVAT and mPVAT 

adipocytes express markers typical of mesenchymal 

precursor cells playing an important role in the 

development of vascular SMCs [17], suggesting an effect 

of vasculature progenitor cells in PVAT development. 

To our best knowledge, there is currently no study 

focusing on the developmental origin of adipocytes in 
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cPVAT in human or animal models. This might be due to 

the lack of pericoronary and epicardial AT in rodents [18] 

and difficult purchase of this AT depot from humans. 

 

PVAT cellular composition 

 

To comprehensively understand the complexity 

and heterogeneous functions of PVAT depots, it is 

essential to delineate AT cellular composition. The 

majority of studies generally refer to PVAT as a mixture 

of white and brown adipocytes; however, PVAT 

composition differs significantly between various 

locations within the body [19], and adipocytes exhibit the 

characteristics of WAT, BAT or beige AT with variations 

observed between distinct PVAT depots [13]. While WAT 

adipocytes are typically characterized by large unilocular 

lipid droplets, fewer mitochondria and small cytoplasmic 

volumes, BAT adipocytes are often multilocular with a 

high density of mitochondria [13]. Apart from adipocytes, 

PVAT harbors a diverse array of cell types, which are 

collectively called cells of the stromal vascular fraction 

(SVF) comprising preadipocytes, immunocytes, 

fibroblasts and nerves. In the text below, we briefly 

summarize the cell types in the four main subtypes of 

PVAT.  

 

Adipocytes 

 

One of the very first studies considered human 

cPVAT a subtype of white AT (WAT) with unilocular 

adipocytes and gene expression more related to WAT [20]. 

However, Sacks et al., using analysis of gene expression, 

suggested cPVAT to exhibit beige features [21]. cPVAT 

adipocytes express appreciable levels of the beige AT 

marker, cluster differentiation (CD) 137 and markers 

typical of adipocyte browning and classical brown AT 

(BAT) development. According to these and other authors, 

cPVAT adipocytes display high gene expression of 

uncoupling protein-1 (UCP-1), the typical brown BAT 

marker [21-23]. Altogether, although – morphologically – 

cPVAT tends to exhibit WAT characteristics, the gene 

expression of adipocytes clearly shows it is more related 

to BAT or beige AT. 

Data derived recently from murine models 

indicate that tPVAT displays rather BAT-like features, as 

tPVAT adipocytes express transcription factors typical of 

brown adipocytes in amounts comparable to interscapular 

BAT [15]. Likewise, genes associated with mitochondrial 

biogenesis were highly expressed in tPVAT preadipocytes 

[15] when compared to WAT adipocytes. This is 

consistent with the abundant presence of mitochondria 

within multilocular brown adipocytes when compared to 

WAT-like aPVAT in rodents [24]. Interestingly, using a 

murine model, it has been recently demonstrated that there 

are three different tPVAT depots around the thoracic aorta 

[16], a finding clearly documenting the diversity of PVAT. 

Contrarily, based on animal study data, both 

aPVAT and mPVAT tend to share WAT characteristics, as 

reviewed in Li, Ma et al. [13]. Adipocytes are 

characterized primarily as white, mostly unilocular [24-

26] with few brown or beige adipocytes [25,26]. 

 

Immunocytes 

 

Recent comprehensive analyses by Kumar et al. 

defined the roles of a wide range of immune cells present 

in rodent PVAT, including monocytes/macrophages, 

granulocytes, nature killer (NK) cells  

and lymphocytes, which exhibit a variety of phenotypes as 

well as activation and polarization states [27]. Also present 

in PVAT are dendritic cells (DC) [28] and innate lymphoid 

cells (ILC) [29]. 

Macrophages, the most abundant immune cells in 

AT [30] have also been extensively studied in PVAT [31-

34]. PVAT harbors distinct macrophage subpopulations 

reflecting the local microenvironment and secreting 

numerous cytokines [32,35] that affect the local 

inflammatory state of PVAT and adjacent vessel wall. 

Other types of cells also found in PVAT include 

granulocytes, eosinophils and neutrophils [36]. While 

eosinophils rather exert an anti-inflammatory effect on the 

PVAT phenotype and its physiological functions [37], 

neutrophil counts increase in obesity and likely contribute 

to PVAT dysfunctionality, at least in rodent models 

[38,39]. Eosinophils typically cooperate with anti-

inflammatory cells such as type 2 helper T cells (Th2) or, 

alternatively activated, generally considered as anti-

inflammatory, type 2 macrophages (M2), contributing to 

the overall anti-inflammatory state of PVAT [40,41]. 

DC are very potent antigen-presenting cells also 

found in PVAT, where their role has been described in the 

context of hypertension promotion [42] and over-

production of pro-inflammatory cytokines [43] depending 

on the metabolic and disease status of individuals. 

As with DC, the NK cell counts and activity in 

PVAT have been shown to be associated with hypertension 

in rat models [44]. Nevertheless, their role is much less 

clearly defined than in VAT, where NK link obesity-
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induced adipose stress to inflammation and insulin 

resistance in part through interferon gamma (IFN-γ) 

release [45]. 

ILC have garnered considerable attention and 

research focus over the past decade. They are  lymphocytes 

without the classical diversified antigen receptors, typical 

for T and B cells [46]. Their functions bear similarities to 

the conventional immune cells such as T cells or 

macrophages, albeit in a simplified manner. Despite their 

importance, ILCs have not been extensively studied in the 

context of PVAT. However, investigations have revealed 

that a specific subtype of ILCs called CD25+ type 2 ILC 

(ILC2) plays a role in reducing atherosclerosis in murine 

models [29]. Additionally, these cells regulate PVAT 

homeostasis by maintaining an anti-inflammatory 

environment through the induction of M2 macrophages 

and eosinophils [47]. 

Yet another cell type found in PVAT are 

immunocytes of the adaptive immune system. Piacentini 

et al. identified a diverse clonal repertoire of T 

lymphocytes in PVAT depots in rodents [48], with some 

found also in humans [49]. The authors hypothesized that 

the repertoire of T cells in PVAT differs between 

pathological conditions thus suggesting the involvement of 

specific antigen-specific immune responses. Besides, 

several phenotypes of B cells, type 1 B cells (B-1) and type 

2 B cells (B-2 cells) have been detected in human PVAT. 

They are located in fat-associated lymphoid clusters 

[33,50-52] and display anti-atherogenic (B1-cells) or pro-

atherogenic (B-2 cells) properties. 

 

Other cells 

 

In addition to the above cell types, the SVF of 

PVAT contains fibroblasts, pericytes and nerves. Like 

preadipocytes, fibroblasts have been shown to have 

adipogenic potential in rodent models [36]. However, their 

adipogenic capacity appears exclusive to adventitial 

fibroblasts [53], leaving the role of fibroblasts in PVAT 

somewhat ambiguous. 

A recently identified cellular component of 

PVAT are pericytes [34], supporting the blood vessel 

formation and contraction, with function predominantly in 

association with the central nervous system [34,54]. And, 

yet another important cell type present in PVAT is the 

neuron (nerve cell) playing a vital role in maintaining 

vascular tone by secreting vasoconstrictive compounds 

[55,56]. Notably, an increase in the number of nerve fibers 

has been identified in the cPVAT of patients developing 

acute myocardial infarction (AMI), and found to correlate 

with decreased cPVAT thickness in these patients, 

suggesting potential involvement of nerves in PVAT 

dysfunctionality [56]. 

 

PVAT and vascular modulation 

 

PVAT mechanically supports and protects the 

adjacent vasculature [57,58]. Vein grafts surrounded by 

PVAT exhibit significantly better patency and function 

compared to those without adjacent PVAT [59,60]. 

Besides, PVAT acts as a mechanical buffer shielding the 

graft against arterial hemodynamics [61], while also 

secreting adipokines that support the anti-inflammatory 

state of the vasculature. Finally, PVAT adipocytes 

influence the contractility of adjacent vasculature by 

secreting vasodilating molecules [38]. 

 

Metabolic activity of PVAT 

 

As discussed earlier, various PVAT depots 

exhibit different AT characteristics; for instance, PVAT 

depots with brown or beige adipocytes possess 

thermogenic properties [62]. Brown adipocytes express 

UCP1, dissipating energy as heat through uncoupling 

oxidative phosphorylation from ATP production. PVAT 

thermogenesis contributes to energy expenditure and 

metabolic regulation, potentially influencing systemic 

energy balance and body weight [62]. Unlike WAT, BAT 

adipocytes have anti-inflammatory properties [17,63-65]. 

Browning of adipocytes can shift macrophage polarization 

toward the anti-inflammatory phenotype in the mouse 

[65], while whitening of brown adipocytes is associated 

with AT inflammation [63]. Similarly, beige adipocytes 

may also display anti-inflammatory attributes, as 

demonstrated by the attenuation of inflammation and 

pathological vascular remodeling in murine models [66]. 

Single-cell RNA sequencing revealed the critical 

regulation of alternatively activated, anti-inflammatory 

M2 macrophages by beige adipocytes in rodent PVAT. 

Interestingly, adipocyte beiging was also observed in the 

tPVAT of patients in acute aortic dissection models, 

implying that beiging occurs in human aortic PVAT during 

acute dissection and may regulate the local inflammatory 

response toward the anti-inflammatory phenotype [66] . 

However, a review by Li et al. suggested human beige 

cPVAT is strictly pro-inflammatory [13], relying on 

results from inflamed human coronary artery [67]. 

However, to truly elucidate the physiological functions of 
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PVAT depots, further studies with healthy, ideally young 

individuals without the inflammatory and metabolic 

burden are warranted. 

PVAT adipocytes are potent producers of 

adiponectin, with gene expression the highest compared to 

subcutaneous or epicardial AT depots [58]. Adiponectin is 

the most studied adipokine of PVAT with numerous 

metabolic properties, as comprehensively reviewed by 

Sowka and Dobrzyn in 2021 [68]. Some studies suggest 

PVAT to have an important role in insulin sensitivity and 

potentially subsequent hyperglycemia and type 2 diabetes 

development [38]. Despite PVAT’s copious adiponectin 

secretion, its volume may be too small to significantly 

influence these metabolic processes compared to other AT 

depots. However, given the large amounts of adiponectin 

secreted by PVAT adipocytes, it has been speculated that 

the adiponectin derived from PVAT surrounding the 

muscle microvasculature could substantially regulate the 

insulin-induced vasodilation [69], at least in experimental 

models. Likewise, adiponectin exerts a major anti-

contractile effect of PVAT on the vessel wall [38] and is 

crucial for physiological blood flow [38,70]. 

 

Inflammatory and pro-atherogenic processes 

in PVAT 

 

Lastly and in a way, PVAT is involved in 

inflammatory processes through adiponectin’s anti-

inflammatory activity. Adiponectin contributes to 

reducing the expression of pro-inflammatory cytokines 

such as interleukin (IL)-6 and tumor necrosis factor alfa 

(TNFα), probably via inhibiting the nuclear factor kappa B 

(NF-κB pathway) [71-73]. Conversely, adiponectin 

stimulates the production of anti-inflammatory cytokines 

such as IL-10 and IL-1RA [74,75]. Adiponectin inhibits 

the classical pro-inflammatory activity of M1 

macrophages and enhances the anti-inflammatory activity 

of M2 macrophages [76]. Given PVAT’s high gene 

expression of adiponectin [58], it likely has a crucial effect 

on the anti-inflammatory functions of PVAT and adjacent 

vasculature. 

Using murine models, it has been demonstrated 

that chronic PVAT inflammation leads to thickening of the 

intima-media of the adjacent aorta via TNFα signaling 

[77]. Thickening of the intima-media of the vessel wall is 

a hallmark of vascular pathologies including 

atherosclerosis [77]. TNFα expression is significantly 

increased in patients with peripheral arterial disease (PAD) 

[35]. In humans, TNFα stimulates the proliferation of 

vascular smooth muscle cells [78], likely via NF-κB 

pathway signaling [79]. Thus, TNFα overexpression in 

PVAT [35] might also be involved in vessel wall 

thickening in humans. Moreover, as demonstrated in VAT, 

TNFα plays an important role in monocyte adhesion to the 

endothelium [80] as one of the very first steps in 

atherosclerosis development. These data, together with 

earlier results of Čejková et al. [35], highlight the 

significant effect of PVAT on adjacent vasculature and 

initiation of atherosclerosis. 

Cardio-metabolic diseases are usually associated 

with obesity, which has multiple effects on cardiovascular 

structure, function, and circulation [81] and has also been 

shown to correlate with the risk of CVD development [82]. 

In obesity, immunocyte infiltration to AT is increased [83] 

and infiltrated immunocytes phenotypically switch 

towards the pro-inflammatory state [84]. Moreover, 

obesity contributes to AT remodeling, as reflected in 

adipocyte hypertrophy and hyperplasia [85,86], leading to 

an increase in AT volume. 

Framingham study researchers identified a 

noteworthy correlation between the volume of cPVAT on 

the one hand and those of VAT and SAT as well as 

anthropometric measures of obesity (BMI and WC) on the 

other (Schlett, Massaro et al. 2009). Likewise, unhealthy 

lifestyle habits have been proven to negatively influence 

children’s cPVAT [12] increasing as it does tissue 

thickness. PVAT thickness in overweight or obese 

children has been shown to correlate with high blood 

pressure and increased levels of triglycerides in serum [87] 

and inversely correlate with HDL cholesterol levels in 

serum [87]. These results are consistent with data of our 

team demonstrating a correlation between the adipocyte 

size in PVAT and body composition, as reflected in BMI 

and WC (Bartušková et al., submitted) of healthy subjects. 

We also identified a correlation between adipocyte size 

and the proportion of metabolically activated, pro-

inflammatory macrophages (Bartušková et al., submitted) 

in healthy individuals, a finding consistent with their 

higher infiltration in PVAT [32]. 

 

PVAT as a biosensor of vascular 

inflammation 

 

In the text above, we have summarized the main 

effects of PVAT on the adjacent vessel wall. The great 

majority of pro-inflammatory effects are related to the 

release of bioactive molecules that exert endocrine and 

paracrine atherosclerotic effects on the vascular wall. 
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More recently, an opposite effect was described whereas 

the vessel wall might influence PVAT [88], suggesting the 

bidirectional nature of their relationship. This inside-out 

and outside-in communication was reliably documented in 

an experimental model [66], where signals from injured 

vasculature induced beiging of adjacent tPVAT. The 

phenotypic switch of PVAT supported the anti-

inflammatory processes, contributing to resolution of 

vascular inflammation and remodeling [66]. 

 

Perivascular Fat Attenuation Index (FAI) 

 

Over the past decade, the concept of PVAT as a 

biosensor of vascular inflammation has gained traction. 

Cells within the inflamed vessel wall secrete pro-

inflammatory molecules such as IL-6, tumor TNFα, and 

interferon-gamma (IFNγ), which diffuse into neighboring 

PVAT [10,11]. Prolonged exposure to these paracrine 

inflammatory signals can negatively affect the 

differentiation of preadipocytes into mature adipocytes, 

impair the intracellular accumulation of lipid droplets [10] 

and trigger lipolysis [11,89]. Collectively, pro-

inflammatory signals from the inflamed vasculature 

induce morphological changes in PVAT characterized by 

a low lipid content and an increase in the aqueous:lipid 

phase balance of the tissue. This phenomenon is known as 

adipose tissue attenuation. It is captured by computed 

tomography (CT) and reaches values ranging from –190 to 

–30 Hounsfield units (HU) at water attenuation defined as 

zero HU [10,90]. Antonopoulos et al. have demonstrated 

that AT with larger adipocyte shifts the attenuation values 

toward –190 HU, whereas that with smaller adipocytes 

reaches attenuation levels closer to aquatic values of 

around –30 HU [10], with the implication being that fat 

attenuation values could be possibly employed to detect 

vascular inflammation. This is a basic principle of the 

perivascular fat attenuation index (FAI), a CT-derived, 

non-invasive tool to assess the balance between the lipid 

and water phases within PVAT [10]. Simply said, FAI 

visualises and quantifies impaired lipid accumulation and 

adipocyte differentiation in coronary artery PVAT 

resulting from coronary inflammation. The perivascular 

FAI indirectly detects vascular inflammation by mapping 

spatial changes within PVAT [10,11], thus reflecting the 

inflammatory burden of adjacent vessel wall. 

 

Perivascular FAI in risk stratification 

 

Pericoronary FAI serves as a measure of PVAT 

attenuation [91] and mirrors the ability of PVAT to 

function as a molecular sensor of vascular inflammation 

[11] regardless of the typical obesity markers such as BMI 

and WC. 

Perivascular FAI values correlate with the burden 

of atherosclerotic plaques [10], with higher values 

indicating the presence of unstable culprit lesions [92]. 

However, unlike conventional CT, perivascular FAI is 

able to quantify vascular wall inflammation and stratify 

cardiovascular (CV) risk even in individuals without 

obstructive coronary atherosclerosis [93] and, hence, with 

no visible atherosclerotic plaques [94,95]. 

High FAI values appear to be linked to an 

increased risk of cardiac and all-cause death [11]. More 

recently, in the CaRi-Heart® study, a standardized FAI 

was combined with clinical risk factors and plaque metrics 

[96] with the ambition to easily and reliably predict the 

absolute risk for fatal cardiac events in individuals [96]. 

Additionally, Graby et al. suggested that FAI provides 

incremental value in identifying the risk of CV events, 

including in asymptomatic individuals without evidence of 

overt coronary artery disease, regardless of conventional 

coronary artery calcium scoring [97]. 

While available evidence shows that pericoronary 

FAI is a useful biomarker for detecting patients with high 

levels of vascular inflammation and for identifying 

vulnerable individuals at risk of CVD development, the 

number of studies is limited, and the relevance of FAI has 

been documented by only a few scientific teams to date. 

Contrariwise, Da et al. do not consider FAI a suitable 

prognostic tool for CVD risk stratification [98] as it was 

unable to demonstrate a correlation between high-risk 

plaque features and serum high-sensitivity C-reactive 

protein (hs-CRP) levels [98], generally viewed as an 

important marker of vascular inflammation. Moreover, 

even in studies showing FAI as a reliable measure of CVD 

risk, FAI had to be determined around strictly defined 

areas of coronary arteries; the proximal right coronary 

artery and left anterior descending artery [11] to 

demonstrate predictive values, with notable differences in 

FAI values between distinct areas [99]. Interestingly, in 

contrast to the right coronary artery and left anterior 

descending artery, FAI values are not representative for the 

left circumflex artery [11]. 

Validation of all findings is necessary to 

standardize FAI measurements and potentially utilize them 

in the assessment of vascular inflammation and risk 

prediction; however, classical risk markers appear to be 

more robust and reliable than FAI alone. Interestingly, 
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Antoniades, Patel et al. concluded that an artificial 

intelligence (AI)-assisted FAI score could eventually 

replace current prognostic models based solely on clinical 

risk factors [100], as it extracts information from medical 

images more sensitively than human operators. Could our 

near future unite classical approaches in CVD risk 

assessment with AI assistance? 

 

Conclusion 

 

In conclusion, according to the World Health 

Organization (WHO), cardiovascular disease remains one 

of the most common causes of death worldwide. It is no 

wonder then that early stratification of CVD risk remains 

a priority. 

The nascent field of PVAT research has 

highlighted its pivotal role as a sensor of vascular 

inflammation and cardiovascular pathology. It also offers 

novel insights into CVD pathogenesis and PVAT’s 

potential utility in CVD risk stratification. Through 

complex bidirectional communication with adjacent 

vasculature, PVAT dynamically responds to pro-

inflammatory as well as anti-inflammatory signals, 

causing a wide spectrum of phenotypical changes that 

influence vascular health and disease. The heterogeneity 

of PVAT depots, characterized by distinct adipocyte 

phenotypes and cellular compositions, underscores the 

complexity of its physiological functions and pathological 

roles. 

Imaging techniques such as perivascular FAI 

might usher in a new era in non-invasive CVD risk 

assessment. It could provide clinicians with a powerful 

tool to assess the inflammatory burden of the vascular 

wall, especially when combined with AI and conventional 

CVD risk factors. However, it is crucial to confirm its 

efficacy through comprehensive studies conducted by 

independent teams before its implementation in clinical 

practice. 

In summary, although PVAT represents a 

dynamic and complex AT depot with far-reaching 

implications for cardiovascular health and disease, 

significant gaps remain in our understanding of PVAT 

biology. Future research should focus on identifying the 

molecular mechanisms underlying the interplay between 

PVAT and adjacent vasculature on and unraveling the 

mechanisms of PVAT dysfunction in CVD. It is an 

opportune time to translate preclinical findings into 

clinical practice, bridging various disciplines and 

incorporating novel technological techniques to fully 

utilize the potential of PVAT in improving CVD risk 

stratification. 
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