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Abstract

Individuals must often choose among discrete alternatives with imperfect informa-

tion about their values. Before choosing, they may have an opportunity to study the

options, but doing so is costly. This costly information acquisition creates new choices

such as the number of and types of questions to ask. We model these situations using

the rational inattention approach to information frictions. We find that the decision

maker’s optimal strategy results in choosing probabilistically in line with a modified

multinomial logit model. The modification arises because the decision maker’s prior

knowledge and attention allocation strategy affect his evaluation of the alternatives.

When the options are a priori homogeneous, the standard logit model emerges.

Keywords: discrete choice, information, rational inattention, multinomial logit.

† We thank Christian Hellwig, Christopher Sims, Jorgen Weibull, Michael Woodford, Jakub Steiner,
Satyajit Chatterjee, Stepan Jurajda, Faruk Gul, Tony Marley, Levent Celik, Andreas Ortmann and Leonidas
Spiliopoulos for helpful discussions as well as seminar participants at BU, CERGE, Harvard Institute for
Quantitative Social Science, Princeton University and SED 2011.
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1 Introduction

Individuals are frequently confronted with a discrete choice situation in which they do not

know the values of the available options, but have an opportunity to investigate the alter-

natives before making a choice. For example, an employer is able to interview candidates

for a job before selecting one to hire. In this context, the decision maker (DM) faces choices

of how much to study the options and what to investigate when doing so. For example,

the employer might choose how long to spend interviewing the candidates and also choose

what questions to ask them during the interview. In most cases, however, it is too costly to

investigate the options to the point where their values are known with certainty and, as a

result, some uncertainty about the values remains when the choice is made. Because of this

uncertainty, the option that is ultimately chosen may not be the one that provides the high-

est utility to the DM. Moreover, noise in the decision process may lead identical individuals

to make different choices. For these reasons, imperfect information naturally leads choices

to contain errors and be probabilistic as opposed to deterministic.

In this paper, we explore the behavior of an agent facing a discrete choice when informa-

tion about the options is costly to acquire and process. In our setting, the DM enters the

choice situation with some prior beliefs about the values of the available options. He then

processes information about the options in the manner that is optimal given the costs, which

we model using the rational inattention framework introduced by Sims (2003, 2006). The

major appeal of the rational inattention approach is that it does not impose any particular

assumptions on what agents learn or how they go about learning it. Instead, the rational

inattention approach derives the information structure from utility-maximizing behavior.

After processing information, the DM selects the option that has the highest expected value

according to his posterior knowledge.

Our main finding is that the DM chooses probabilistically with choice probabilities that

follow a generalized multinomial logit model. If the DM views the options symmetrically

a priori, then he chooses exactly according to the standard multinomial logit. If the DM’s

prior knowledge leads him to prefer some options over others, then this prior information is
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incorporated into the choice probabilities. In a choice among N options with values vi for

i ∈ {1, · · · , N}, the logit model implies that the probability of choosing option i is

evi/λ∑N
j=1 e

vj/λ
,

where λ is a scale parameter. In our model, λ scales the cost of information. Our modified

logit formula takes the form
e(vi+αi)/λ∑N
j=1 e

(vj+αj)/λ
,

where the αi terms are determined by the DM’s prior knowledge of the options and informa-

tion processing strategy. The DM’s information processing strategy is relevant because the

DM can focus his attention on those options that he a priori believes to be good candidates.

The DM’s choice of information processing strategy is based on his prior knowledge of the

options and, as a result, the αi terms only reflect the DM’s a priori beliefs and are not

related to the actual values of the options. These adjustments to the logit model can lead

the DM to have a systematic positive bias towards an option even when its true value is low.

As the cost of information rises, the DM’s choice becomes less sensitive to the actual values

of the options and more sensitive to his prior beliefs.

The adjustments for the DM’s prior knowledge reflect something deeper than just the

impact of the prior in standard Bayesian updating. In particular, these adjustments reflect

the DM’s decisions about how to process information and these decisions affect the choice

probabilities in complex ways. We find that this effect breaks the independence of irrele-

vant alternatives property for which the standard multinomial logit has been criticized.1 In

addition, we find that adding an option to the choice set can increase the probability that

an existing option is selected. We also find that changes in the correlation structure of the

values of the different options can lead the DM to choose to ignore an option completely

even when it may be his best option. These implications are fairly intuitive and are direct

consequences of the DM’s rational choice of how to allocate his attention.

1For example, Debreu’s (1960) critique, which is now known as the red-bus-blue-bus problem.
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The multinomial logit model is perhaps the most commonly used model of discrete

choice.2 It is so widely used because it is particularly tractable both analytically and com-

putationally and because it has a connection to consumer theory through a random utility

model (McFadden, 2001). According to the random utility derivation of the logit, the DM

evaluates the options with some noise. If the noise in the evaluation is additively separable

and independently distributed according to the extreme value distribution, then the multi-

nomial logit model emerges.3 Typically, the randomness in choices is thought to stand for

unobserved heterogeneity in tastes across individuals, but sometimes it is attributed to errors

of perception.4 We provide an explicit foundation for the errors of perception interpretation

of the multinomial logit without any distributional assumptions. We find the standard logit

model is applicable in some cases, but in other cases the choice probabilities reflect the DM’s

a priori beliefs and attention allocation choices as well as the true values of the options. We

show that shifts in the allocation of attention can lead to choice behavior that is inconsistent

with any random utility model.

Our work has implications for the interpretation of data on choices. Under the random

utility interpretation of the logit model, when one estimates the model, one is estimating

the relationship between the typical value, or systematic utility, of an option and covariates

that describe different choice situations that arise due to variation in the available options

or variation in the characteristics of the individual making the choice. Under our interpre-

tation of the model, an empirical estimate reflects both the values of the available options

and the adjustments for prior knowledge and information processing strategies. These ad-

justments can confound the relationship between values and choice probabilities even when

all individuals enter the choice situation with the same prior knowledge of the options.

In addition to empirical applications, the multinomial logit model is often used in applied

2Useful surveys of discrete choice theory and the multinomial logit model are presented by Anderson et al.
(1992), McFadden (2001), Train (2009).

3Luce and Suppes (1965, p. 338) attribute this result to Holman and Marley (unpublished). See McFadden
(1974) and Yellott (1977) for the proof that a random utility model generates the logit model only if the
noise terms are extreme value distributed.

4See, for example, McFadden (1980, p. S15).
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theory.5 Future work can build upon our results to study the role of information frictions in

these contexts while still exploiting the tractability of the multinomial logit.

The paper is organized as follows: In the remainder of this section we review related

work. Section 2 presents the choice setting and discusses the assumptions underlying the

rational inattention approach to information frictions. Section 3 characterizes the DM’s

optimal strategy. Section 4 demonstrates how the DM’s prior knowledge influences his choice

behavior and establishes that the standard multinomial logit model arises in a situation where

the options are symmetric a priori. Finally, Section 5 concludes.

Related Literature Our work relates to the literature on rational inattention. Most

existing work with rational inattention has focussed on situations where the DM chooses

from a continuous choice set.6 A few papers, however, consider binary choice problems.

Woodford (2009) studies a binary choice of whether to adjust prices, while Yang (2011)

investigates a global game setting with the choice of whether to invest or not. Moreover,

Matějka and Sims (2010) and Matějka (2010a) provide a connection between the continuous

and discrete problems by showing that rationally inattentive agents can voluntarily constrain

themselves to a discrete choice set even when the initial set of available options is continuous.

These authors do not make the connection to the multinomial logit model. In an independent

paper that is as of yet unfinished, Woodford (2008) notices the connection in the context of

a binary choice problem, but does not explore it in further detail.

Our work also relates to studies of discrete choice under imperfect information. Weibull

et al. (2007) consider a DM who receives signals about the options before making the choice

5The multinomial logit model is commonly used in the industrial organization and international trade
literatures as a model of consumer demand, in political economy models of voting, and in experimental
economics to capture an element of bounded rationality in subject behavior. See Anderson et al. (1992) for
a survey of its use in industrial organization. The logit demand structure was introduced to international
trade by Goldberg (1995) and Verboven (1996). The logit model was incorporated into probabilistic voting
models by Lindbeck and Weibull (1987). Work following McKelvey and Palfrey (1995) uses logit response
functions to capture randomness in the responses of experimental subjects playing a game.

6Rational inattention has mostly been applied in macroeconomic contexts. The major applications have
been consumption-savings problems (Sims, 2006; Luo, 2008; Tutino, 2009; Luo and Young, 2009; Maćkowiak
and Wiederholt, 2010), price setting (Mackowiak and Wiederholt, 2009; Matějka, 2010a,b), monetary policy
(Paciello and Wiederholt, 2011) and portfolio choices (Van Nieuwerburgh and Veldkamp, 2010; Mondria,
2010).
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and allow the DM to select the precision of the signals at a cost. If one assumes that the

signals are the true values plus an extreme-value distributed noise term, this becomes a

logit model in which the DM can select the scaling factor. Natenzon (2010) has proposed a

model in which the DM has Gaussian priors on the utilities of the options and then receives

Gaussian signals about the utilities. As information accumulates over time, the DM updates

his beliefs about which option is best. A key difference between these models and ours is that

Weibull et al. and Natenzon assume particular properties of the noise in agents’ observations,

which then generate the corresponding properties of the choice probabilities. We derive the

properties of the DM’s posterior uncertainty endogenously from first principles and show

how they can vary depending on the choice set. We find that the generalized logit formula

holds for all forms of prior knowledge.

In addition, our work relates to alternative derivations of the multinomial logit. Recently,

Gul et al. (2010) have proposed a new axiomatic foundation for the multinomial logit that

weakens the Choice Axiom from which Luce (1959) originally derived the logit. While, the

Choice Axiom states that the ratio of selection probabilities should remain unchanged as the

choice set varies, Gul et al. only require that the ordering of selection probabilities remains

unchanged.

The rational inattention approach to information frictions uses information theoretic con-

cepts to measure the amount of information processed by the DM and there is a mathematical

connection between the entropy function, which is at the heart of information theory, and

the multinomial logit. This connection has appeared in the context of statistical estima-

tion (Anas, 1983) and in the context of an agent stabilizing a trembling hand (Stahl, 1990;

Mattsson and Weibull, 2002). Here we are considering the decision problem of an agent who

must acquire information about the values of the alternatives. In this context, the entropy

function arises naturally.7

7In mathematical terms, our work is close to that of Shannon (1959) who derives the multinomial logit
formula in an engineering application that is the dual to our problem in the symmetric case. Shannon’s
question is how quickly a message can be communicated through a limited-capacity channel, such as a
telegraph wire, without distorting the message beyond a certain degree on average. We thank Michael
Woodford for pointing us to this connection to Shannon’s work.
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2 The model

In this section, we first describe the agent’s decision problem, then we discuss the modeling

choices of how the agent processes information.

The DM is presented with a group of N options, from which he must choose one. The

values of these options potentially differ and the agent wishes to select the option with the

highest value. Let vi denote the value of option i ∈ {1, · · · , N}.

The DM is rationally inattentive in the style of Sims (2003, 2006). He possesses some

prior knowledge of the available options; this prior knowledge is described by a joint distri-

bution G(v), where v = (v1, · · · , vN) is the vector of values of the N options. To refine his

knowledge, he processes information about the options. This information processing is done

through a limited-capacity information channel. One interpretation is that he asks questions

about the values and each question comes at a cost.8 Finally, the DM chooses the option

with the highest expected value.

The DM maximizes the expected value of the selected option minus the cost of informa-

tion processing. We assume that all information about the N options is available to the DM,

but processing the information is costly. If the DM could process information costlessly, he

would select the option with the highest value with probability one. With costly information

acquisition, the DM must choose the following:

(i) how much information to process, i.e. how much attention to pay,

(ii) what pieces of information to process, i.e. what to pay attention to,

(iii) what option to select conditional on the acquired posterior belief.

Let us first describe how the choice of (i)-(ii) is modeled. In general, what knowledge

outcomes can be generated by a specific mechanism of processing information is fully de-

scribed by a joint distribution of fundamentals and posterior beliefs about them. Blackwell

(1953) calls this joint distribution an experiment to emphasize it can be some series of tests

8For a textbook treatment of information theory and limited-capacity channels see Cover and Thomas
(2006).
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that the agent performs in order to gauge the fundamental of interest. The joint distribution

describes what the agent can learn from performing the tests.

The novelty of rational inattention is that the DM is allowed to choose the optimal mech-

anism of processing information considering the cost of acquiring information, (i)-(ii) above.

He chooses how to allocate his attention. In Blackwell’s terminology, the DM chooses how

to design the experiment. The rationally inattentive DM chooses what pieces of information

to process by deciding what questions to ask, what indicators to look at, what media to pay

attention to, etc.

The outcome of the DM’s overall strategy, (i)-(iii) above, is a joint distribution of values

v and choices of i. This is because outcomes of (i)-(ii) are described by a joint distribution

of v and posterior beliefs, and because each posterior belief determines a particular choice

i from among the options, (iii). It is this joint distribution between v and i that is the

DM’s strategy under the rational inattention approach. It is not necessary to model signals.

Nevertheless, the DM’s strategy describes both the choice of how to process information as

well as the choice among the options conditional on the posteriors.9

Since G(v) is the DM’s prior on the values of all options, which is given, we can describe

the DM’s strategy using the conditional probability P(i|v) ∈ [0, 1] for all i and v. This is

the probability of option i being selected when the realized values are v. Let us denote this

probability as Pi(v).

The DM’s strategy is thus a solution to the following problem:

max
{Pi(v)}Ni=1

(
N∑
i=1

∫
v

viPi(v)G(dv)− cost of information processing

)
, (1)

9Signals do not show up in the final formulation of the problem since each posterior belief is associated
with a single i that is selected given that belief. It would not be optimal to select an information structure
that would generate two different forms of posterior knowledge leading to the same i, i.e. it would not be
optimal to acquire information that is not ultimately used in the choice. This approach is used in Sims
(2006) and also in Matějka (2010a), where it is discussed at more length
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subject to

N∑
i=1

Pi(v) = 1 a.s. (2)

The first term in (1) is the expected value of the selected option. Finally, we specify the cost

of information. Rationally inattentive agents are assumed to process information through

channels with a limited information capacity. The cost of information is λκ, where λ is the

unit cost of information and κ the amount of information that the DM processes, which

is measured by the expected reduction in the entropy, H, of the distribution representing

knowledge of v. The amount of information processed, κ, is a function of the DM’s strategy

of how to process information, while λ is a given parameter. This particular form of the

cost of information is now common in the literature on rational inattention. In section 2.2,

we explain how information theory connects limited-capacity channels to the reduction in

entropy.

Entropy is a measure of the uncertainty associated with a random variable. In our case,

the random variable is the vector v and acquiring better knowledge about the values, i.e.

narrowing down the belief, is associated with a decrease in the entropy. Sharpening the

belief requires processing information. Mathematically, the entropy of a random variable X

with a pdf p(x) with respect to a probability measure σ is defined as:

H(X) = −
∫
p(x) log p(x)σ(dx). (3)

The expected reduction in the entropy of v is the difference between the prior entropy of

v and the expectation of the posterior entropy of v conditional on the chosen option, i.

This quantity is also called the mutual information between v and i. For our purposes, it is

convenient to use the symmetry of mutual information and express the amount of information
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processed as the expected reduction in the entropy of i conditional on v: 10

κ(P , G) = H(v)− Ei [H(v|i)] = H(i)− Ev [H(i|v)]

= −
N∑
i=1

P0
i logP0

i +

∫
v

(
N∑
i=1

Pi(v) logPi(v)

)
G(dv), (4)

where P = {Pi(v)}Ni=1 is the collection of conditional probabilities, and P0
i is the uncondi-

tional probability of choosing option i,

P0
i =

∫
v

Pi(v)G(dv).

We can now state the DM’s optimization problem.

Definition 1. Let G(v) be the DM’s prior on the values of a finite number of options and

let λ ≥ 0 be the unit cost of information. The discrete choice strategy of the rationally

inattentive DM is the collection of conditional probabilities P = {Pi(v)}Ni=1 that solves the

following optimization problem.

max
P={Pi(v)}Ni=1

N∑
i=1

∫
v

viPi(v)G(dv)− λκ(P , G), (5)

subject to (2), and where κ(P , G) denotes the right hand side of (4).

In the next two subsections, we discuss two of the main modeling assumptions that are

at the heart of the literature on rational inattention.

2.1 Endogenous information structure

The DM’s optimization problem is formulated as a choice over joint distributions of fun-

damentals and actions. The only constraint that restricts the DM’s choice of distribution

is that the conditional probabilities must sum to one for all v. This means that all the

10The mutual information between random variables X and Y is H(X)−EY [H(X|Y )], which also equals
H[Y ]− EX [H[Y |X]], see Cover and Thomas (2006).
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information about the N options is available to the DM, so the DM’s actions are only truly

constrained by the cost of processing the information.

In this formulation, we are not imposing an information structure on the DM. A common

approach to modeling information frictions is to posit that there are signals that are drawn

from a particular distribution. In some cases, the DM has no choice over the signals. In

others, the DM can choose the number or precision of these signals. The rational inattention

framework, by contrast, allows the DM to choose all aspects of his posterior uncertainty. In

terms of signals, it is as if the DM can choose all features of the distribution that the signals

are drawn from.

2.2 Entropy and the cost of information processing

Our results depend crucially on the choice to model the cost of information as λ times

the reduction in entropy. Fortunately, entropy provides the exact measure of the cost for

rationally inattentive agents who acquire information through a limited-capacity channel.

This is a fundamental finding of information theory (Shannon, 1948; Cover and Thomas,

2006).

Using a limited-capacity channel means the DM receives a sequence of symbols (e.g. a list

of ones and zeros). The symbols can mean virtually anything: they can represent answers

to questions the agent asks, pieces of text or digits he reads, etc. The more information the

DM processes, i.e. the more symbols he receives, the tighter his posterior beliefs can be. The

capabilities of limited-capacity channels to transmit information are studied in information

theory, which is a sub-field of engineering.

Entropy has a foundation in information theory as the exact measure of what information

can be passed through channels. The coding theorem of information theory states that any

joint distribution of source variables, i.e. fundamentals, and posterior beliefs is achievable by

an information channel if and only if the expected decrease in the entropy of the knowledge

is less than the amount of information processed, which is proportional to the number of

symbols received. Choosing how to process information is then equivalent to choosing how
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many questions to ask and what to ask about.11

The assumption that the cost of information processing is λκ can be interpreted as saying

the cost is proportional to the expected number of questions asked. One could think of the

coefficient λ as a shadow cost of allocating attention to this decision problem out of a larger

budget of attention that the agent is allocating to many issues. By modeling the cost of

information in terms of the number of questions that the DM asks or the number of symbols

that he receives, we are modeling a world in which receiving answers to each question with

the same number of possible answers is equally costly.12

2.3 Existence and uniqueness

Appendix A establishes that a solution to the DM’s maximization problem exists. However,

the solution may not be unique. For example, if two options always take the same value as

one another, then the DM’s expected pay-off will not change as probability is shifted between

these two options and, as a result, there can be multiple optimal strategies. Appendix A

also lays out conditions under which the solution is unique and these conditions require a

sufficient independent variation in the values of the options to rule out situations like the

one in the example.

11The amount of information per symbol depends on the physical properties of the channel. For instance, if
the DM processes information by asking questions with yes or no answers, then the information per question
is one bit.

12Besides the foundation in information theory, entropy can be derived axiomatically as a natural measure
of information. Consider a setting in which there are N possible states of the world each with a certain
probability of being the true state. Shannon (1948) asked, how do we measure the amount of information
that is communicated when the true state is revealed? He showed that the following axioms imply entropy
is the measure of information: i) the measure is increasing in the number of equally likely states, ii) it is
continuous in the probabilities of the states, and iii) it is irrelevant if one first learns that the true state lies
within some subset and then learns which member of that subset (Shannon, 1948, Theorem 2). The third
of these axioms is closely related to the Luce’s Choice Axiom (Luce, 1959) which implies the logit model for
choice probabilities.
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3 Solving the model

In this section, we first derive a general analytical expression for the probability that the DM

chooses a particular option conditional on the values of all the options. This expression is not

fully explicit as it depends on the unconditional probabilities of choosing each option given

by P0
i , for which we still need to solve. We then discuss the solution for the unconditional

probabilities.

If information is costless, λ = 0, then the DM is perfectly attentive and simply selects

the option with the highest value with probability one. When λ > 0, then the Lagrangian

of the DM’s problem formulated in Definition 1 is:

L(P) =
N∑
i=1

∫
v

viPi(v)G(dv)− λ

(
−

N∑
i=1

P0
i logP0

i +
N∑
i=1

∫
v

Pi(v) logPi(v)G(dv)

)

−
∫
v

µ(v)

(
N∑
i=1

Pi(v)− 1

)
G(dv),

where µ(v) are Lagrange multipliers. If P0
i > 0, then the first order condition with respect

to Pi(v) is:

vi − µ(v) + λ
(

logP0
i + 1− logPi(v)− 1

)
= 0.

This can be rearranged to

Pi(v) = P0
i e

(vi−µ(v))/λ. (6)

Plugging (6) into (2), we find:

eµ(v)/λ =
∑
i

P 0
i e

vi/λ,

which we again use in (6) to arrive at the following theorem, which holds even for P0
i = 0.

Theorem 1. If λ > 0, then the DM forms his strategy such that the conditional choice

probabilities satisfy:

Pi(v) =
P0
i e

vi/λ∑N
j=1P0

j e
vj/λ

. (7)

If λ = 0, then the DM selects the option(s) with the highest value with probability one.
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From (7) we can understand several properties of the DM’s behavior, although it does

not fully solve the DM’s problem because it includes {P0
i }Ni=1, which are functions of the

choice variables.

The unconditional probabilities are by definition independent of a specific realization of

the values v. They are the marginal probabilities of selecting each option before the agent

starts processing any information and they only depend on the prior knowledge G(v) and

the cost of information λ.

When the unconditional probabilities are uniform, P0
i = 1/N for all i, (7) becomes the

usual multinomial logit formula. As we discuss in Section 4.1, this happens when G is in-

variant to permutations of its arguments. In other cases, the conditional choice probabilities

are not driven just by {evi/λ}Ni=1, as in the logit case, but also by the unconditional prob-

abilities of selecting each option, {P0
i }Ni=1. The effect of the unconditional probabilities is

perhaps more obvious if we set αi = λ log (P0
i ). αi reflects the unconditional, i.e. a priori,

attractiveness of option i. Equation (7) can be rewritten as:

Pi(v) =
e(vi+αi)/λ∑N
j=1 e

(vj+αj)/λ
.

Written this way, the selection probabilities can be interpreted as a multinomial logit in

which the value of option i is shifted by the term αi. As the cost of information, λ, rises, the

weight on the prior rises, too; the exponents are vi/λ+log (P0
i ). The costlier the information

is, the less the DM finds out about the realization of v and the more he decides based on

prior knowledge of the options. When an option seems very attractive a priori, then it has

a relatively high probability of being selected even if its true value is low.

The parameter λ converts bits of information to utils. Therefore, if one scales the values

of all of the options by a constant c, while keeping the information cost, λ, fixed, the problem

is equivalent to the one with the original values and the information cost scaled by 1/c. By

scaling up the values, one is scaling up the differences between the values and therefore

raising the stakes for the DM. The DM chooses to process more information because more

is at stake and thus is more likely to select the option that provides the highest utility. The
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DM behaves just as he would if the cost of information had fallen.

3.1 Unconditional choice probabilities

Theorem 1 reduces the DM’s original problem of selecting {Pi(v)}Ni=1, which are N functions

on the support of G(v), to choosing {P0
i }Ni=1, which are N probabilities. We now turn our

attention to the solution for these unconditional probabilities. These probabilities must be

internally consistent in that P0
i =

∫
v
Pi(v)G(dv), where Pi(v) is given by equation (7). The

unconditional probabilities must also maximize the DM’s objective function. We can use

these conditions to solve for the unconditional probabilities and we demonstrate how to do

this in some important cases in the next section. Analytical solutions are possible in the

problems we study in this paper. In most other cases, the best approach is to numerically

maximize the DM’s objective with respect to the unconditional choice probabilities. Before

turning to these important cases, we establish some basic properties of the solution.

Proposition 1. 1. If λ = 0, then the DM always chooses the option(s) with the highest

value. The prior does not influence conditional choice probabilities.

2. If λ =∞, or any time the DM decides not to process information, then the DM always

chooses the option(s) with the highest expected value with respect to the prior knowledge

G only. Choice probabilities do not depend on realized values.

3. If an option j is dominated by another option k, i.e. vj < vk with probability one, then

the DM never chooses option j, i.e. P0
j = 0.

4. If the value of option k is increased by ω > 0 in all states of the world, the unconditional

probability P0
k does not decrease.

Proof: Appendix B.1.

The unconditional probabilities depend on the whole prior distribution G(v). Bayesian

updating has the effect that higher values of an option in some states of the world increase

the probability that the option is selected in other states. Moreover, changes in the prior
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distribution can lead the DM to allocate his attention differently, making him more or less

likely to select a given option. In the next section we study how the joint distribution of the

DM’s a priori knowledge of the options in the choice set affects the choice probabilities.

4 The influence of prior knowledge of the choice set

The difference between the behavior of the rationally inattentive agent and the standard

logit model comes from the presence of the unconditional choice probabilities in equation

(7). In this section, we show how these probabilities are determined in series of different

contexts.

We begin in Section 4.1 with a general result: when the prior is symmetric so that the

options are exchangeable in the prior, the model reduces to the standard logit model. When

the prior is not symmetric, however, the DM may have some prior knowledge of the options

that will influence his choice. Section 4.2 presents the intuition for how the solution behaves

when the options are not symmetric a priori. We then consider a context in which the logit

model has been criticized, namely when two options are duplicates and show the rationally

inattentive DM treats duplicate options as a single option. Finally, we demonstrate that the

model can generate behavior that is inconsistent with random utility maximization.

4.1 A priori homogeneous options: the multinomial logit

Let us assume that all the options seem identical to the DM a priori and are exchangeable

in the prior G. We call the options a priori homogeneous if and only if G(v) is invariant to

all permutations of the entries of v.

Problem 1. The DM chooses i ∈ {1, · · · , N}, where the options are a priori homogeneous

and take different values with positive probability.

Theorem 2. In Problem 1, the probability of choosing option i as a function of the realized

values of all of options is:

Pi(v) =
evi/λ∑N
j=1 e

vj/λ
, (8)
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which is exactly the multinomial logit formula.

Proof: Appendix B.2. We show that the homogeneity of options implies that the uncon-

ditional probabilities are uniform, (7) then takes the form of the logit. The assumption on

the difference of values is needed for uniqueness. If all options are always the same, then

whatever choice the DM makes, the realized value is independent of it, thus the solution is

not unique.

Let us emphasize that Pi(v) does not depend on the prior G. As long as the options are

a priori homogeneous, the resulting choice probabilities take the form of (8). This feature is

particularly useful as it makes applications of the rational inattention framework very simple

in this case.

The DM always chooses to process some information, which is not necessarily the case

when the prior is asymmetric. Here the marginal expected value of additional information

is initially infinite and then decreases as the DM processes more information. Therefore,

the DM chooses to process some positive amount of information as long as λ is finite. The

marginal value of information is initially high because the uniform distribution of choice

probabilities maximizes the entropy and, as a result, the derivative of the entropy reduction

with respect to the choice probabilities is zero at this point.

4.2 Departure from logit

We now explore an example illustrating how the DM’s prior influences the choice probabil-

ities. There are two options, one of which has a known value while the other takes one of

two values. One interpretation is that the known option is an outside option or reservation

value. This problem is a simple benchmark that exhibits the basic features of most solutions

to problems with asymmetric priors.

Problem 2. The DM chooses i ∈ {1, 2}. The value of option 1 is distributed as v1 = 0

with the probability g0 and v1 = 1 with the probability 1 − g0. Option 2 carries the value

V2 = R ∈ (0, 1) with certainty.
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Figure 1: P0
1 as a function of R and λ = 0.1, g0 = 0.5.

To solve the problem, we must find {P0
i }2i=1. We show in Appendix C.1 that the solution

is:

P0
1 = max

0,min

1,−
e
R
λ

(
−e 1

λ + e
R
λ − g0 + g0e

1
λ

)
(
e

1
λ − eRλ

)(
−1 + e

R
λ

)
 (9)

P0
2 = 1− P0

1 .

For a given set of parameters, the unconditional probability P0
1 as a function of R is shown in

Figure 1. For R close to 0 or to 1, the DM decides not to process information and selects one

of the options with certainty. In the middle range however, the DM does process information

and the selection of option 1 is less and less probable as the reservation value, R, increases,

since option 2 is more and more appealing. For g0 = 1/2 and R = 1/2, solutions take the

form of the multinomial logit, i.e. P0
1 = P0

2 = 1/2. If the DM observed the values, he would

choose option 1 with the probability (1 − g0) = 1/2 for any reservation value R. However,

the rationally inattentive agent chooses option 1 with higher probability when R is low.

Figure 2 again shows the dependance on R, but this time it presents the probability of

selecting the first option conditional on the realized value v1 = 1, it is P1(1, R). Since R < 1,

it would be optimal to always select the option 1 when its value is 1. The DM obviously

does not choose to do that because he is not sure what the realized value is. When R is

high, the DM processes less information and selects a low P0
1 . As a result, P1(1, R) is low.
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1 (1, R) as a function of R and λ = 0.1, g0 = 0.5.
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In general, one would expect that as R increases, the DM would be more willing to reject

option 1 and receive the certain value R. Indeed, differentiating the non-constant part of (9)

one finds that the function is non-increasing in R. Similarly, the unconditional probability

of selecting option 1 falls as g0 rises, as it is more likely to have a low value. Moreover, we

see from equation (9) that, for R ∈ (0, 1), P0
1 equals 1 for g0 in some neighborhood of 0

and it equals 0 for g0 close to 1.13 For these parameters, the DM chooses not to process

information.

The following Proposition summarizes the immediate implications of equation (9). More-

over, the findings hold for any values of the uncertain option {a, b} such that R ∈ (a, b).

Proposition 2. Solutions to Problem 2 have the following properties:

1. The unconditional probability of option 1, P0
1 , is a non-increasing function of g0 and

the value R of the other option.

2. For all R ∈ (0, 1) and λ > 0, there exist gm and gM in (0, 1) such that if g0 ≤ gm,

the DM does not process any information and selects option 1 with probability one.

Similarly, if g0 ≥ gM , the DM processes no information and selects option 2 with

probability one.

Figure 3 plots P0
1 as a function of the information cost λ for three values of the prior,

g0. When λ = 0, P0
1 is just equal to 1 − g0 because the DM will have perfect knowledge of

the value of option 1 and choose it when it has a high value, which occurs with probability

1 − g0. As λ increases, P0
1 fans out away from 1 − g0 because the DM no longer possesses

perfect knowledge about the value of option 1 and eventually just selects the option with

the higher expected value according to the prior.

4.3 Duplicates and independence from irrelevant alternatives

The multinomial logit has well known difficulties when some options are similar or duplicates.

The difficulties stem from the property of independence from irrelevant alternatives (IIA),

13The non-constant argument on the right-hand side of (9) is continuous and decreasing in g0, and it is
greater than 1 at g0 = 0 and negative at g0 = 1.
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which states that the ratio of the choice probabilities for two alternatives is independent of

what other alternatives are included in the choice set. Debreu (1960) criticized this property

for being counter-intuitive. The well known example goes: The DM is pairwise indifferent

between choosing a bus or a train, and selects each with probability 1/2. If a second bus

of a different color is added to the choice set and the DM is indifferent to the color of

the bus, then IIA—and therefore the multinomial logit, which can be derived from IIA—

implies probabilities of 1/3, 1/3, 1/3. Debreu argued that this is counter-intuitive because

duplicating one option should not materially change the choice problem.

The behavior of the rationally inattentive agent does not satisfy IIA and as a result is

not subject to Debreu’s critique. IIA does not need to hold since the unconditional choice

probabilities can change in complex ways as new choices are added to the set of available

alternatives and these changes push the choice probabilities away from the logit.

We formalize the notion of duplicate options as a scenario in which two options have

perfectly correlated values across different states of the world. In this section, we begin by

showing that the rationally inattentive DM treats duplicate options as a single option. We

then extend this idea to consider other implications of the correlation structure of the values

of the options.

4.3.1 Duplicates

We study a generalized version of Debreu’s bus problem to analyze how the rationally inat-

tentive agent treats duplicate options. In our framework, we define duplicates as options

that carry the same value in all states of the world although this common value may be

unknown.

Definition 2. Options i and j are duplicates if and only if the probability that vi 6= vj is

zero.

Problem 3. The DM chooses i ∈ {1, · · · , N + 1}, where the options N and N + 1 are

duplicates.
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The following theorem states that duplicate options are treated as a single option. We

compare the choice probabilities in two choice problems, where the second one is constructed

from the first by duplicating one option. In the first problem, the DM’s prior is G(v), where

v ∈ RN . In the second problem, the DM’s prior is Ĝ(u), where u ∈ RN+1. Ĝ is generated

from G by duplicating option N . This means that options N and N + 1 satisfy Definition

2, and G(v) is the marginal of Ĝ(u) with respect to uN+1.

Theorem 3. If {P0
i }Ni=1 and {Pi(v)}Ni=1 are unconditional and conditional choice proba-

bilities corresponding to a solution to Problem 3, then {P̂i(u)}N+1
i=1 solve the corresponding

problem with the added duplicate of the option N if and only they satisfy the following:

P̂i(u) = Pi(v), ∀i < N (10)

P̂N(u) + P̂N+1(u) = PN(v), (11)

where v ∈ RN and u ∈ RN+1, and vk = uk for all k ≤ N . The analogous equalities hold for

the unconditional probabilities.

Proof: Appendix B.3. The implication of this theorem is that the DM treats duplicate

options as though they were a single option.

4.3.2 Correlated values and attention allocation

The rationally inattentive agent does not just collect exogenously given signals, but decides

how to process information. If the options are not homogeneous, the DM can choose to

investigate different options in different levels of detail. We now explore a choice among three

options, where two options have positively or negatively correlated values. Even though all

three options have the same a priori expected value, in some cases the DM will ignore one

of the options completely.

Problem 4. The DM chooses from the set {red bus, blue bus, train}. The DM knows the

value of the train exactly, vt = 1/2. The buses each take one of two values, either 0 or 1,
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Figure 4: Unconditional probability of selecting a bus for various values of λ and ρ. The
probability is the same for both the red and blue buses.

with expected values 1/2 for each, the correlation coefficient between their values is ρ. The

joint distribution of the values of all three options is:

g(0, 0, 1/2) = 1
4
(1 + ρ)

g(1, 0, 1/2) = 1
4
(1− ρ)

g(0, 1, 1/2) = 1
4
(1− ρ)

g(1, 1, 1/2) = 1
4
(1 + ρ).

(12)

In Appendix C.2 we describe how to solve the problem analytically. Figure 4 illustrates

the behavior of the model for various values of ρ and λ. The figure shows the unconditional

probability that the DM selects a bus of a given color (the probability is the same for both

buses). As the correlation between the values of the buses decreases, the probability that

a bus carries the largest value among the three options increases and the unconditional

probability of choosing either bus increases, too. If the buses’ values are perfectly correlated,

then the sum of their probabilities is 0.5, they are effectively treated as one option, i.e.

they become duplicates in the limit. On the other hand, if ρ = −1, then the unconditional

probability of either bus is 0.5 and thus the train is never selected.

For λ > 0 and ρ ∈ (−1, 1), the probability that a bus is selected is larger than it is in
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the perfect information case (λ = 0). With a larger cost of information, the DM economizes

on information by paying more attention to choosing among the buses and less to assessing

their values relative to the reservation value 1/2.

The choice probabilities strongly reflect the endogeneity of the information structure in

this case. As the correlation decreases, the DM knows that the best option is more likely to

be one of the buses. As a result, the DM focusses more of his attention on choosing between

the buses and eventually ignores the train completely. Notice that this can happen even

when there is some chance that the train is actually the best option.

4.4 Relation to random utility models

The standard multinomial logit model, with its IIA property, has the feature that adding

another option to the choice set reduces the choice probabilities of existing options in a

proportionate manner.14 The same is not true of our generalized logit model because the

unconditional choice probabilities depend on the full choice set. In fact, adding an additional

option can even raise the probability that an existing option is selected. This type of behavior

is not just inconsistent with the standard logit model, but is inconsistent with any random

utility model. We now demonstrate this possibility with an example.

Problem 5. Suppose there are three options and two states of the world. The options take

the following values in the two states of the world

state 1 state 2

option 1 0 1

option 2 1/2 1/2

option 3 Y −Y

States 1 and 2 have prior probabilities g(1) and g(2), respectively.

First, consider a variant of this choice situation in which only options 1 and 2 are available.

14Adding option N + 1 to the choice set reduces the probability of option i ∈ {1, · · · , N} by a factor of∑N
j=1 exp(vj/λ)/

∑N+1
j=1 exp(vj/λ).
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Using our results from Problem 2, we know that there exists g(1) ∈ (0, 1) large enough that

the DM will not process information and select option 2 with probability 1 in all states of

the world so P0
1 = 0. Now add option 3 to the choice set. For a large enough value of Y and

g(1) ∈ (0, 1), the DM will find it worthwhile to process information about the state of the

world in order to determine whether option 3 should be selected. Given that the DM will

now have information about the state of the world, if state 2 is realized, the DM might as

well select option 1. From an a priori perspective, there is a positive probability of selecting

option 1 so P0
1 > 0. The choice probabilities conditional on the realization of the state of

the world are given by equation (7), which implies that the probability of selecting option 1

is zero if P0
1 = 0 and positive if P0

1 > 0 and all options have finite values. So we have the

following.

Proposition 3. For λ > 0, there exist g(1) ∈ (0, 1) and Y > 0 such that adding option 3 to

the choice set in Problem 5 increases the probability that option 1 is selected in all states of

the world.

Proof: Appendix C.3.

Corollary 1. The behavior of a rationally inattentive agent cannot always be described by a

random utility model.

Proof. Random utility models obey a regularity condition: the probability of selecting a

given option cannot be increased by expanding the choice set (Luce and Suppes, 1965, p.

342).

Obviously there are cases, such as the standard logit case, when the rationally inattentive

agent’s behavior can be described by a random utility model.

5 Conclusion

In this paper, we have studied the optimal behavior of a rationally inattentive agent who

faces a discrete choice problem. This model gives rise to a version of the multinomial logit
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model. This result is derived from assumptions about the technology that the agent uses to

process information and is not driven by specific assumptions concerning the kinds of signals

the agent acquires.

The behavior of the rationally inattentive agent differs from the standard logit model

in that the values of the available options are adjusted to reflect the DM’s a priori beliefs

and information processing decisions. When the agent views the options as symmetric or

interchangeable a priori this adjustment is the same for all of the options and the model

reduces to the standard logit model.

An implication of the relationship between rational inattention and the multinomial

logit model is that future work can incorporate rational inattention into larger models that

involve discrete choices subject to information frictions by exploiting the tractability of the

multinomial logit.
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A Existence and Uniqueness

Lemma 1. The DM’s optimization problem in Definition 1 always has a solution.

Proof: Since (7) is a necessary condition for the maximum, then the collection {P0
i }Ni=1

determines the whole solution. However, the objective is a continuous function of {P0
i }Ni=1,

since {Pi(v)}Ni=1 is also a continuous function of {P0
i }Ni=1. Moreover, the admissible set for

{P0
i }Ni=1 is compact. Therefore, the maximum always exists.

Assessing uniqueness is less straightforward. The following assumptions are each sufficient

conditions for a unique solution to exist, which we prove below.

Assumption 1. The prior G(v) is invariant with respect to permutations of the entries of

v. Moreover, vi and vj are not almost surely equal for all i 6= j.

Assumption 2. N = 2, and the values of the two options are not almost surely equal.

Assumption 3. For all but at most one k ∈ {1, · · · , N}, there exist two sets S1 ⊂ RN , S2 ⊂

RN with positive probability measures with respect to the prior, G(v), such that for all v1 ∈ S1

there exists v2 ∈ S2 where v1 and v2 differ in kth entry only.

In Assumption 1, the condition that the options are exchangeable in the prior is a for-

malization of the notion that they are viewed symmetrically ex ante. In Section 4.1 we call

such options a priori homogeneous. The second part of the assumption is that there is some

positive probability that the options have different values. When N = 2, as in Assumption 2,

the solution is unique even if the prior is not symmetric. For N > 2 and ex ante asymmetric

options, we have Assumption 3. In words, this assumption says that there is independent

variation in the value of all options except possibly one. Assumption 3 is, for instance, satis-

fied if the values of the options are independently distributed and no more than one of their

marginals is degenerate to a single point. Although the assumption is quite a bit weaker

than independence as it just requires that there is not some form of perfect co-movement

between the values.

We start by proving a lemma that we then use in proving the following uniqueness results.
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Lemma 2. If P = {Pi(v)}Ni=1 and P̂ = {P̂i(v)}Ni=1 are two distinct solutions to the DM’s

optimization problem, then the unconditional probabilities satisfy

N∑
i=1

(P0
i − P̂0

i )evi/λ = 0 a.s. (13)

Proof: Mutual information is a convex function of the joint distribution of the two

variables.15 The objective (5) is thus a concave functional: the first term is linear and the

second is concave. Moreover, the admissible set of {Pi(v)}Ni=1, satisfying the constraints is

convex. Therefore, any convex linear combination P̃(ξ) of the solutions P and P̂ is also a

solution. Notice that the unconditional probabilities of the convex combination will satisfy:

P̃0
i (ξ) = P0

i + ξ
(
P̂0
i − P0

i

)
ξ ∈ [0, 1],∀i. (14)

Since the convex combination is also a solution, it must satisfy (7), which is necessary.

Therefore, we have

P̃i(v; ξ) =
P̃0
i (ξ)e

vi
λ∑N

j=1 P̃0
j (ξ)e

vj
λ

.

P̃i(v; ξ)/P̃0
i (ξ) gives the conditional distribution over v conditional on option i being selected.

This must integrate to one:

∫
e
vi
λ∑N

j=1 P̃0
j (ξ)e

vj
λ

G(dv) = 1 for all ξ ∈ [0, 1]. (15)

Let us express the second derivative of the left hand side of (15) with respect to ξ at ξ = 0.

The derivative has to equal zero in order for (15) to hold for all ξ ∈ [0, 1]. It equals:

∫ e
vi
λ

(∑N
j=1(P̂0

j − P0
j )e

vj
λ

)2
(∑N

j=1 P̃0
j (ξ)e

vj
λ

)3 G(dv). (16)

15See Chapter 2 in Cover and Thomas (2006).
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Therefore, for the two different solutions to exist, (13) has to hold.

Lemma 3. If any of Assumptions 1, 2, or 3 holds, then the solution to the DM’s optimization

problem is unique.

Proof: We now show that each of Assumptions 1-3 is sufficient for uniqueness. We start

with Assumption 1: Let us assume the solution is not unique. There exist two different

solutions, P = {Pi(v)}Ni=1 and P̂ = {P̂i(v)}Ni=1. As (7) is necessary for a solution, it follows

that if the solutions have the same unconditional probabilities, {P0
i }Ni=1 and {P̂0

i }Ni=1, then

they must be the same solution. Therefore, the solutions must have different unconditional

probabilities in order to be distinct. In addition, Lemma 2 establishes that (13) must hold.

According to Assumption 1, the options have different values with positive probability

and the prior is invariant to all permutations, there exists S1 ⊂ RN , a set of value vectors

v, of a positive probability measure w.r.t. G such that v1 6= v2 for all v ∈ S1. Let S2 ⊂ RN

be another set of vectors that is generated from S1 by switching v1 and v2 of all its vectors.

Therefore, S2 also has a positive measure, in fact it has the same measure as S1.

The solution is not unique, therefore (13) holds almost surely in both S1 and S2. Since

S2 was generated from S1 by switching the first two entries of v, (13) can be expressed in

terms of almost sure equality on S1 for both sets:

(P0
1 − P̂0

1 )ev1/λ + (P0
2 − P̂0

2 )ev2/λ +
N∑
i=3

(P0
i − P̂0

i )evi/λ = 0 a.s. in S1 (17)

(P0
1 − P̂0

1 )ev2/λ + (P0
2 − P̂0

2 )ev1/λ +
N∑
i=3

(P0
i − P̂0

i )evi/λ = 0 a.s. in S1 (18)

Subtracting the two, we get:

(∆1 −∆2)
(
e
v1
λ − e

v2
λ

)
= 0 a.s. in S1, (19)

where ∆i denotes (P0
i − P̂0

i ). This implies that ∆1 = ∆2, because S1 is of positive measure

and v1 6= v2. However, since the prior is invariant to permutations, we could repeat this

argument for other pairs of options so all ∆i for i in {1, · · · , N} are equal to each other. Let
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us denote the quantity they are equal to as ∆. Because 1 =
∑N

i=1P0
i =

∑N
i=1 P̂0

i , then

N∑
i=1

(P0
i − P̂0

i ) =
N∑
i=1

∆i = N∆ = 0.

This implies that ∆ = 0, unconditional probabilities of the two solutions are equal. There-

fore, we find that the solution must be unique.

Assumption 2: for N = 2, (P0
1 −P̂0

1 ) = −(P0
2 −P̂0

2 ), since the unconditional probabilities

of each solution sum up to one. (13) takes the form:

(P0
1 − P̂0

1 )(e
v1
λ − e

v2
λ ) = 0 a.s. (20)

If v1 and v2 are not equal almost surely, then P0
1 = P̂0

1 . The solution must be unique.

Assumption 3: If there are two different solutions with {P0
i }Ni=1 and {P̂0

i }Ni=1, then there

exist k1, k2 such that (P0
k − P̂0

k) 6= 0 for k ∈ {k1, k2}, since probabilities sum up to one.

In other words, if the two solutions differ, then they have to differ at least in two entries.

Using Assumption 3, we know that at least one of k1, k2 above satisfies the second part of

Assumption 3. Let it be k1. (13) then implies

(P0
k1
− P̂0

k1
)e

vk1
λ = 0 a.s. (21)

The solution must be unique.

Perhaps an illustrative interpretation of non-unique solutions is that there always exist

options that can be eliminated for the DM to still achieve the same expected utility. This

process can be repeated until the solution is unique. In other words, there exist options that

the DM can ignore and never select. If two solutions exist, then all their linear combinations

are solutions too as long as all P0
i ’s are non-negative. Therefore, there exists k, such that

a solution with P0
k = 0 exists. The simplest example is the duplicates, see Problem 3 in

Section 4.3, where either of the two options can be eliminated.
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B Main proofs

B.1 Proposition 1

Statements 1 and 2 are trivial. With λ = 0, the information constraint is not binding, while

with λ =∞ the DM does not process any information and must make his decision based on

the prior belief alone.

Proof of statement 3 : by contradiction. Option j is dominated by option k. Let us

assume that P0
j > 0, where P is the DM’s optimal strategy. We show there exists another

strategy P̂ such that P̂0
j = 0 that generates higher expected utility than P .

Let P̂ be generated from P in the following way:

P̂i(v) = Pi(v) ∀i 6= j, k (22)

P̂j(v) = 0 (23)

P̂k(v) = Pj(v) + Pk(v). (24)

P̂ is constructed from P by relocating the probability distribution conditional on j onto the

distribution conditional on k. This strategy certainly generates a higher expected value of

the selected option, since k dominates j.

Moreover, the cost of information of P̂ is not higher than that of P . The amount of

information processed is the difference between the entropy of the prior and the expected

entropy of posteriors, H(v)−Ei [H(v|i)], see equation (4).16 The prior entropy is fixed, given

by G. Since entropy is a concave function of the distribution, and the posterior conditional

on k of P̂ is the sum of the posteriors of P conditional on j and k, then the expected entropy

of the posteriors of P̂ is not lower that that of P . The original strategy P requires at least

as much information as P̂ , and thus P̂ generates higher expected utility. P0
j must equal

zero.

16In this proof, it is convenient to use the symmetry of mutual information, equation (4), and express it
in terms of entropies of the prior and posteriors, rather than using the RHS of (4). Therefore, while in most
parts of the text we use the probability of i conditional on v, which is Pi(v), here the expectation of the
entropy of the posterior is a function of the conditional distributions of v conditional on different values of i.
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Proof of statement 4 : by contradiction. Let us assume that

P0
k > P̂0

k , (25)

where P = {Pi(v)}Ni=1 is a solution to an original problem with the prior G and P̂ =

{P̂i(v)}Ni=1 is a solution to the problem with Ĝ, which is generated from G such that the

value of option k is increased by ω > 0:

Ĝ(v1, .., vk, ..vN) := G(v1, .., vk − ω, ..vN). (26)

Let U(P , G) stand for the DM’s expected utility derived from the strategy P = {Pi(v)}Ni=1

with the prior G,

U(P , G) =
N∑
i=1

∫
v

viPi(v)G(dv)− λκ(P , G), (27)

where κ(P , G) is given by (4). The following inequalities are statements that P and P̂ are

solutions to the two problems.

U(P , G) ≥ U(P∗, G) (28)

U(P̂ , Ĝ) ≥ U(P̂∗, Ĝ), (29)

where P∗ is any collection of conditional distributions. Let the collection P ′ = {P ′i(v)}Ni=1

be generated from P = {Pi(v)}Ni=1 and let P̂ ′ be generated from P̂ such that

P ′i(v1, .., vk, ..vN) = Pi(v1, .., vk − ω, ..vN), ∀i ∈ 1..N,

P̂ ′i(v1, .., vk, ..vN) = P̂i(v1, .., vk + ω, ..vN), ∀i ∈ 1..N.
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Equation (29) for P̂∗ = P ′ takes the following form:

N∑
i=1,i 6=k

∫
v

viP̂i(v) Ĝ(dv) +

∫
v

vkP̂k(v) Ĝ(dv)− λκ(P̂ , Ĝ) ≥

≥
N∑

i=1,i 6=k

∫
v

viP ′i(v) Ĝ(dv) +

∫
v

vkP ′k(v) Ĝ(dv)− λκ(P ′, Ĝ). (30)

Now, we perform a transformation of coordinates: (v1, .., vk, ..vN) → (u1, .., uk + ω, ..uN),

which allows us to substitute G for Ĝ, P for P ′, and P̂ ′ for P̂ .

N∑
i=1,i 6=k

∫
u

uiP̂ ′i(u)G(du) +

∫
u

(uk + ω)P̂ ′k(u)G(du)− λκ(P̂ ′, G) ≥

≥
N∑

i=1,i 6=k

∫
u

uiPi(u)G(du) +

∫
u

(uk + ω)Pk(u)G(du)− λκ(P , G). (31)

Finally, we write the second term on the left hand side in the following form

∫
u

(uk + ω)P̂ ′k(u)G(du) =

∫
u

ukP̂ ′k(u)G(du) + ω

∫
u

P̂ ′k(u)G(du). (32)

Equation (31) then states:

U(P̂ ′, G) ≥ U(P , G) + (P0
k − P̂0

k)ω. (33)

Using the assumption, (25), we show the following

U(P̂ ′, G) > U(P , G), (34)

which is a contradiction to equation (28).
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B.2 Problem 1

Proof of Theorem 2: The solution to the DM’s problem is unique. This is due to Lemma 3

together with Assumption 1 in Appendix A.

The DM forms a strategy such that P0
i = 1/N for all i. If there were a solution with

non-uniform P0
i , then any permutation of the set would necessarily be a solution too, but

the solution is unique. Using P0
i = 1/N in equation (7), we arrive at the result.

B.3 Problem 3

Proof of Theorem 3: Let us consider a problem with N + 1 options, where the options N

and N + 1 are duplicates. Let {P̂0
i (u)}N+1

i=1 be the unconditional probabilities in the solution

to this problem. Since uN and uN+1 are almost surely equal, then we can substitute uN for

uN+1 in the first order condition (7) to arrive at:

P̂i(u) =
P̂0
i e

ui/λ∑N−1
j=1 P̂0

j e
uj/λ + (P̂0

N + P̂0
N+1)e

uN/λ
a.s.,∀i < N (35)

P̂N(u) + P̂0
N+1(u) =

(P̂0
N + P̂0

N+1)e
ui/λ∑N−1

j=1 P̂0
j e

uj/λ + (P̂0
N + P̂0

N+1)e
uN/λ

a.s. (36)

Therefore, the right hand sides do not change when only P̂0
N and P̂0

N+1 change if their

sum stays constant. Inspecting (35)-(36), we see that any such strategy produces the same

expected value as the original one. Moreover, the amount of processed information is also

the same for both strategies. To show this we use (7) to rewrite (4) as:17

κ =

∫ N+1∑
i=1

P̂i(u) log
P̂i(u)

P̂0
i

G(du) =

∫ N+1∑
i=1

P̂i(u) log
eui/λ∑N−1

j=1 P̂0
j e

uj/λ + (P̂0
N + P̂0

N+1)e
uN/λ

G(du).

(37)

Therefore, the achieved objective in (5) is the same for any such strategy as for the original

strategy, and all of them solve the DM’s problem.

17Here we use the fact that the mutual information between random variables X and Y can be expressed

as Ep(x,y)

[
log p(x,y)

p(x)p(y)

]
. See Cover and Thomas (2006, p. 20).

38



Finally, even the corresponding strategy with P̂0
N+1 = 0 is a solution. Moreover, this

implies that the remaining {P̂0
i }Ni=1 is the solution to the problem without the duplicate

option N + 1, which completes the proof.

C Additional proofs and solutions (not for publication)

C.1 Problem 2

To solve the problem, we must find P0
1 , while P0

2 = 1 − P0
1 . These probabilities must be

internally consistent in that P0
i =

∫
v
Pi(v)G(dv), where Pi(v) is given by equation (7).

Dividing each side of this condition by P0
i yields:

1 =
g0

P0
1 + P0

2e
R
λ

+
(1− g0)e

1
λ

P0
1e

1
λ + P0

2e
R
λ

if P0
1 > 0, (38)

1 =
g0e

R
λ

P0
1 + P0

2e
R
λ

+
(1− g0)e

R
λ

P0
1e

1
λ + P0

2e
R
λ

if P0
2 > 0. (39)

There are three solutions to this system,

P0
1 ∈

0, 1,−
e
R
λ

(
−e 1

λ + e
R
λ − g0 + g0e

1
λ

)
(
e

1
λ − eRλ

)(
−1 + e

R
λ

)
 (40)

P0
2 = 1− P0

1 .

Now, we make an argument using the solution’s uniqueness to deduce the true solution to

the DM’s problem. The first solution to the system, P0
1 = 0, corresponds to the case when

the DM chooses option 2 without processing any information. The realized value is then R

with certainty. The second solution, P0
1 = 1, results in the a priori selection of option 1

so the expected value equals (1 − g0). The third solution describes the case when the DM

chooses to process a positive amount of information.

Problem 2 satisfies Assumption 2 as there are just two options and they do not take the

same values with probability one. Therefore, Lemma 3 establishes that the solution to the
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DM’s optimization problem must be unique.

Since the expected utility is a continuous function of P0
1 , R, λ and g0, then the optimal

P0
1 must be a continuous function of the parameters. Otherwise, there would be at least

two solutions at the point of discontinuity of P0
1 . We also know that, when no information

is processed, option 1 generates higher expected utility than option 2 for (1− g0) > R, and

vice versa. So for some configurations of parameters P0
1 = 0 is the solution and for some

configurations of parameters P0
1 = 1 is the solution. Therefore, the solution to the DM’s

problem has to include the non-constant branch, the third solution. To summarize this, the

only possible solution to the DM’s optimization problem is

P0
1 = max

0,min

1,−
e
R
λ

(
−e 1

λ + e
R
λ − g0 + g0e

1
λ

)
(
e

1
λ − eRλ

)(
−1 + e

R
λ

)
 . (41)

C.2 Problem 4

To find the solution to Problem 4 we must solve for {P0
r ,P0

b ,P0
t }. The normalization condi-

tion P0
r =

∫
v
Pr(v)G(dv) yields:

1 =
1
4

(1 + ρ)

P0
r + P0

b + (1− P0
r − P0

b )e1/2λ
+

1
4

(1− ρ) e1/λ

P0
r e

1/λ + P0
b + (1− P0

r − P0
b )e1/2λ

+
1
4

(1− ρ)

P0
r + P0

b e
1/λ + (1− P0

r − P0
b )e1/2λ

+
1
4

(1 + ρ) e1/λ

P0
r e

1/λ + P0
b e

1/λ + (1− P0
r − P0

b )e1/2λ
(42)

Due to the symmetry between the buses, we know P0
r = P0

b . This makes the problem one

equation with one unknown, P0
r . The problem can be solved analytically using the same

arguments as in Appendix C.1. The resulting analytical expression is:
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P0
r = max


0,min


0.5,


e

1
2λ − 8e

1
λ + 14e

3
2λ − 8e2/λ + e

5
2λ

+1
2
e

1
2λ (1− ρ)− e 3

2λ (1− ρ) + 1
2
e

5
2λ (1− ρ)

+e
1
2λ

(
−1 + e

1
λ

)
x


2
(

4e
1
2λ − 16e

1
λ + 24e

3
2λ − 16e2/λ + 4e

5
2λ

)




,

where

x =

√√√√√√√√
2− 2e

1
λ + e2/λ − 8e

1
2λ (1− ρ) + 14e

1
λ (1− ρ)

−8e
3
2λ (1− ρ) + e2/λ(1− ρ) + 1

4
(1− ρ)2

−1
2
e

1
λ (1− ρ)2 + 1

4
e2/λ(1− ρ)2 − ρ

.

C.3 Inconsistency with a random utility model

This appendix establishes that the behavior of the rationally inattentive agent is not consis-

tent with a random utility model. The argument is based on the counterexample described

in section 4.4. Let Problem A refer to the choice among options 1 and 2 and Problem B

refer to the choice among all three options. For simplicity, Pi(s) denotes the probability of

selecting option i conditional on the state s, and g(s) is the prior probability of state s.

Lemma 4. For all ε > 0 there exists Y s.t. the DM’s strategy in Problem B satisfies

P3(1) > 1− ε, P3(2) < ε.

Proof: For Y > 1, an increase of P3(1) (decrease of P3(2)) and the corresponding reloca-

tion of the choice probabilities from (to) other options increases the agent’s expected payoff.

The resulting marginal increase of the expected payoff is larger than (Y − 1) min(g(1), g(2)).

Selecting Y allows us to make the marginal increase arbitrarily large and therefore the

marginal value of information arbitrarily large.
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On the other hand, with λ being finite, the marginal change in the cost of information

is also finite as long as the varied conditional probabilities are bounded away from zero.

See equation (4), the derivative of entropy with respect to Pi(s) is finite at all Pi(s) > 0.

Therefore, for any ε there exists high enough Y such that it is optimal to relocate probabilities

from options 1 and 2 unless P3(1) > 1− ε, and to options 1 and 2 unless P3(2) < ε.

Proof of proposition 3: we will show that there exist g(1) ∈ (0, 1) and Y > 0 such

that option 1 has zero probability of being selected in Problem A, while the probability is

positive in both states in Problem B. Let us start with Problem A. According to Proposition

2, there exists a sufficiently high g(1) ∈ (0, 1), call it gM , such that the DM processes no

information and P1(1) = P1(2) = 0. We will show that for g(1) = gM there exists a high

enough Y , such the choice probabilities of option 1 are positive in Problem B.

Let P = {Pi(s)}3,2i=1,s=1 be the solution to Problem B. We now show that the optimal

choice probabilities of options 1 and 2, {Pi(s)}2,2i=1,s=1, solve a version of Problem A with

modified prior probabilities. The objective function for Problem B is

max
{Pi(s)}3,2i=1,s=1

3∑
i=1

2∑
s=1

vi(s)Pi(s)g(s)

− λ

[
−

2∑
s=1

g(s) log g(s) +
3∑
i=1

2∑
s=1

Pi(s)g(s) log
Pi(s)g(s)∑
s′ Pi(s′)g(s′)

]
, (43)

where we have written the information cost as H(s)−E[H(s|i)].18 If P3(1) and P3(2) are the

conditional probabilities of the solution to Problem B, the remaining conditional probabilities

solve the following maximization problem.

max
{Pi(s)}2,2i=1,s=1

2∑
i=1

2∑
s=1

vi(s)Pi(s)g(s)− λ

[
2∑
i=1

2∑
s=1

Pi(s)g(s) log
Pi(s)g(s)∑
s′ Pi(s′)g(s′)

]
, (44)

subject to P1(s)+P2(s) = 1−P3(s), ∀s. Equation (44) is generated from (43) by omitting the

18Recall that H(Y |X) = −
∑
x∈X

∑
y∈Y p(x, y) log p(y|x) (Cover and Thomas, 2006, p. 17).

42



terms independent of {Pi(s)}2,2i=1,s=1. Now, we make the following substitution of variables.

Ri(s) = Pi(s)/
(

1− P3(s)
)

(45)

ĝ(s) = Kg(s)
(

1− P3(s)
)

(46)

1/K =
2∑
s=1

g(s)
(

1− P3(s)
)
. (47)

where K, which is given by (47), is the normalization constant that makes the new prior,

ĝ(s), sum up to 1.

The maximization problem (44) now takes the form:

max
{Ri(s)}1,2i=1,s=1

2∑
i=1

2∑
s=1

vi(s)Ri(s)ĝ(s)− λ
2∑
i=1

2∑
s=1

Ri(s)ĝ(s) log
Ri(s)ĝ(s)∑
s′Ri(s′)ĝ(s′)

, (48)

subject to

R1(s) +R2(s) = 1 ∀s. (49)

The objective function of this problem is equivalent to (44) up to a factor of K, which is a

positive constant. The optimization problem (48) subject to (49) is equivalent to Problem

A with the prior modified to from g(s) to ĝ(s), let us call it Problem C.19

According to Proposition 2, there exists ĝm ∈ (0, 1) such that the DM always selects

option 1 in Problem C for all ĝ(1) ≤ ĝm. From equations (46) and (47) we see that for any

ĝm > 0 and g(1), g(2) ∈ (0, 1) there exists ε > 0 such that if P3(1) > 1 − ε and P3(2) < ε,

then ĝ(1) < ĝm.20 Moreover, Lemma 4 states that for any such ε > 0 there exists Y such

that P3(1) > 1 − ε and P3(2) < ε. Therefore there is a Y such that in Problem C, option

1 is selected with positive probability in both states, which also implies it is selected with

positive probabilities in Problem B, see equation (45).

19To see the equivalence to Problem A, observe that this objective function has the same form as (43)
except for a) the constant corresponding to H(s) and b) we only sum over i = 1, 2.

20ĝ(1) = g(1)(1−P3(1))∑
s g(s)(1−P3(s))

< g(1)(1−P3(1))
g(2)(1−P3(2))

< g(1)ε
g(2)(1−ε) .
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