
                Working Paper Series  620 

(ISSN 1211-3298) 

 

 

 

 

 

 

 

Asset Prices in a Production Economy 

with Long Run and Idiosyncratic Risk  
 

 

Ivan Sutóris 
 

 

 

 

 

 

 

 

 

 

 

 

CERGE-EI 

Prague, June 2018 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ISBN 978-80-7343-427-4  (Univerzita Karlova, Centrum pro ekonomický výzkum a 

doktorské studium) 

ISBN 978-80-7344-470-9  (Národohospodářský ústav AV ČR, v. v. i.) 
 



Asset Prices in a Production Economy
with Long Run and Idiosyncratic Risk∗

Ivan Sutóris

CNB†, CERGE-EI‡

June 19, 2018

Abstract

This paper studies risk premia in an incomplete-markets economy with house-
holds facing idiosyncratic consumption risk. If the dispersion of idiosyncratic
risk varies over the business cycle and households have preference for early
resolution of uncertainty, asset prices will be affected not only by news about
current and expected future aggregate consumption (as in models with a
representative agent), but also by news about current and future changes in
cross-sectional distribution of individual consumption. I investigate whether
this additional effect can help to explain high risk premia in a production
economy, where the aggregate consumption process is endogenous and thus
can potentially be affected by the presence of idiosyncratic risk. Analyzing
a neoclassical growth model combined with Epstein-Zin preferences and a
tractable form of household heterogeneity, I find that countercyclical idiosyn-
cratic risk increases the risk premium, but also effectively lowers willingness
of households for intertemporal substitution and thus changes dynamics of
aggregate consumption. Nevertheless, with the added flexibility of Epstein-
Zin preferences, it is possible to both increase risk premia and maintain the
same dynamics of quantities if we allow for higher intertemporal elasticity of
substitution at the individual level.
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1 Introduction

Explaining joint dynamics of both macroeconomic quantities and asset prices within
the context of a microfounded general equilibrium model remains an active area of
economic research. This paper contributes to that effort by constructing a tractable
model of a production economy that combines recursive utility with preference for
early resolution of uncertainty and time-varying uninsurable idiosyncratic risk, and
investigates its macroeconomic and asset pricing properties.

Individually, each of these elements have been studied previously as a possible solution
to the well-known failures of a standard representative-agent model with power utility
in explaining observed equity premium and interest rate1. When households have
recursive preferences (Kreps and Porteus 1978; Epstein and Zin 1989), which break
the link between risk aversion and elasticity of intertemporal substitution and allow
for preference for early resolution of uncertainty, their marginal utility depends not
only on current consumption, but also on the continuation value which encodes
expectations about future consumption. News regarding the level or volatility of
future consumption thus becomes an additional priced factor, as in the long-run risk
model of Bansal and Yaron (2004) and in the production economy2 of Kaltenbrunner
and Lochstoer (2010). Another line of research has shown that when agents face
incomplete markets and uninsurable shocks, the amount of risk they face can also
affect asset prices if it changes over time, as in Constantinides and Duffie (1996) and
Krusell and Smith (1997)3.

Therefore, if agents have preference for early resolution of uncertainty and at the
same time face idiosyncratic risk and incomplete markets, it follows that both current
change in the amount of idiosyncratic risk, and also news about future such changes

1See e.g. Mehra and Prescott (1985), Weil (1989) and Hansen and Singleton (1982). A review of
the literature is provided in e.g. Cochrane (2008) and Ludvigson (2013).

2Regarding asset pricing in production/DSGE models, see, e.g., survey by Kogan and Pa-
panikolaou (2012). Among papers that study asset prices in production economies with recursive
preferences are Tallarini (2000), Kaltenbrunner and Lochstoer (2010), Croce (2014), Rudebusch
and Swanson (2012), van Binsbergen et al. (2012) and Campanale, Castro, and Clementi (2010).

3See also Mankiw (1986), Telmer (1993), Heaton and Lucas (1996), Krebs and Wilson (2004),
Storesletten, Telmer, and Yaron (2007) and Pijoan-Mas (2007). Gomes and Michaelides (2008) also
study a model with heterogeneity, production and recursive preferences, but their focus is primarily
on the effects of limited participation and they do not model variation in either individual or
aggregate risk over time. Empirical evidence is analyzed, e.g., by Cogley (2002, Brav, Constantinides,
and Geczy (2002) and Balduzzi and Yao (2007), with somewhat mixed results.
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enter the continuation value and thus affect asset prices. This presents the potential
for interaction between the two mechanisms, studied in the context of an endowment
economy in recent work by Constantinides and Ghosh (2017), Herskovic et al. (2016)
and Schmidt (2014). However, matching asset prices in a production economy is
harder than in endowment economies due to endogenous consumption process and
the need to simultaneously match properties of quantities and prices. The main
focus of this paper is therefore to look more closely at the interaction between the
effects of varying idiosyncratic risk on macroeconomic dynamics and asset prices.

To illustrate the mechanism, I first construct a simple AK model with households
having access to linear production technologies subject to heterogeneous rates of
return on capital with time-varying variance. Assuming unit intertemporal elasticity
of substitution, the model can be solved analytically and asset returns can be char-
acterized by their exposure to news about current and future aggregate consumption
and variance of idiosyncratic risk. A quantitative illustration suggests that omitting
the last term could nontrivially underestimate the importance of overall long run
risk for determining risk premia.

Next, I contruct a tractable model that embeds the Constantinides-Duffie framework
within an otherwise standard real business cycle (RBC) model4. Individual household
consumption growth is determined, in a reduced-form way, by aggregate consumption
growth and idiosyncratic shock. With homothetic preferences and random walk in
individual consumption, the model has a no-trade equilibrium in which each household
consumes its income. The aggregate stochastic discount factor is determined by the
cross-sectional average of individual intertemporal marginal rates of substitution,
and is used by a representative firm to make choices about investment and dividends,
which in turn determines aggregate consumption growth. Distribution of idiosyncratic
shocks varies over time, possibly allowing for countercyclical variance (Storesletten,
Telmer, and Yaron 2004) or procyclical skewness (Guvenen, Ozkan, and Song 2014).

The fact that there is no trade between households is somewhat unappealing (and
thus resulting allocations should perhaps be interpreted rather as post-trade outcomes
after households have smoothed out transitory shocks), yet it allows us to solve the

4A similar approach is used to analyze monetary policy in New-Keynesian models in recent
papers by Braun and Nakajima (2012), Werning (2015) and Takahashi et al. (2016). In these
setups, variation in idiosyncratic risk manifests itself in a similar way as discount rate shocks after
aggregation. In a related study, Albuquerque et al. (2016) study the role of discount rate shocks in
asset pricing.
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model without keeping track of the distribution over individual savings, and thus
avoid the need for numerically intensive computation. The model can be solved by
standard perturbation methods and its linearized dynamics can be characterized
semi-analytically. I find that the countercyclical idiosyncratic risk can raise risk
premia, but also affects aggregate dynamics through its impact on saving and
intertemporal smoothing incentives of households. The introduction of idiosyncratic
risk leads to lower “effective” intertemporal elasticity of substitution on the aggregate
level, resulting in more volatile and less predictable aggregate consumption growth.
Inspecting the linearized solution suggests that the strength of this feedback depends
on the cyclicality of idiosyncratic risk and household risk aversion.

On the other hand, thanks to the flexibility of Epstein-Zin preferences, it is, in
principle, possible to recalibrate the discount rate and intertemporal elasticity of
substitution (IES) parameters (to make households more willing to substitute con-
sumption over time) in a way that compensates for the effect described above while
risk premia remain higher. After suitable recalibration of the model, I find that
introducing heterogeneity raises the price of risk (Sharpe ratio) by about a third.
Decomposing the price of risk by its source (aggregate consumption or dispersion
of individual shocks) and channel (short-run or long-run risk) shows that the long
run idiosyncratic dispersion accounts for about 30 percent of the overall long run
channel, which int turn accounts for more than half of the overall Sharpe ratio. The
results are quite similar regardless of whether the variation in individual risk unfolds
through cyclical variance or skewness.

The paper is organized as follows: section 2 presents a simple example to motivate
introduction of recursive preferences, section 3 describes the model, while section 4
discusses calibration and results and section 5 concludes.

2 Simple Model

Analytic results which illustrate the interplay between idiosyncratic and long run
risk can be obtained relatively easily in a simplified AK-like model where output is
produced using a linear technology with capital as the only input. Previous literature
using AK models to analyze asset prices in the presence of idiosyncratic risk includes
Krebs and Wilson (2004), who focused on the case of log utility, and Toda (2014),
who provides theoretical analysis for a class of similar models.
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Time t is discrete and there is a continuum of agents indexed by i. Each agent enters
the period with some stock of capital Ki,t which is used for production according
to Yi,t = Ai,tKi,t, subject to exogenous productivity process Ai,t (which will have an
idiosyncratic component and is thus indexed by i). Agents can also trade in risk-free
one-period bonds, although the overall net supply of bonds is zero. Income obtained
from production and bond holdings Bi,t can be used for consumption Ci,t, stored as
capital for the next period (for simplicity we shall assume full depreciation) or spent
on new bonds. The budget constraint thus reads

Ci,t +Ki,t+1 + P b
t Bi,t+1 = Ai,tKi,t +Bi,t,

where P b
t is the bond price.

Agents have identical Epstein-Zin preferences with unit intertemporal elasticity of
subtitution, so that their value function satisfies

Vi,t = C1−β
i,t

(
Et[V 1−γ

i,t+1]
1

1−γ
)β
.

Here parameter β controls time preference and γ is the coefficient of relative risk
aversion. In the following, we shall focus on the empirically relevant case γ > 1, so
that agents have preference for early resolution of uncertainty. Given the process for
productivity, bond price and initial capital, each household will make its consumption-
savings and portfolio choice to maximize the value function defined above.

We shall assume that the productivity has aggregate and idiosyncratic component:

log(Ai,t) = log(At) +√xtηi,t −
xt
2 , ηi,t ∼ N(0, 1)

where idiosyncratic shocks ηi,t are independent both across time and across households.
Another exogenous process xt denotes the cross-sectional variance of log productivity,
which will fluctuate over time, and the last term ensures that the normalization At =
Ẽ[Ai,t] holds (Ẽ[ ] will denote cross-sectional averages, conditional on realizations of
aggregate variables).

The equilibrium of this economy turns out to be particularly simple:

• Since preferences are homothetic and the value function is linear in wealth,
there is a separation between the consumption-saving decision and portfolio
choices. Since idiosyncratic shocks are uncorrelated over time, the only source
of heterogeneity is in differing levels of wealth, so that all households make
the same portfolio choice. Given the zero net supply of bonds, the equilibrium
must thus involve no trade in them, so that ∀i,∀t : Bi,t = 0.

5



• Without bonds, all wealth comes from current production. With unit IES,
the consumption choice will be a constant linear function of wealth, so that
Ci,t = κYi,t and Ki,t = (1− κ)Yi,t, where κ = 1− β.

Defining aggregates straightforwardly as cross-sectional averages (e.g. Kt = Ẽ[Ki,t],
etc.), aggregate dynamics can be summarized easily:

Yt = AtKt,

Ct = κYt,

Kt+1 = (1− κ)Yt.

Note that aggregate dynamics of quantities depends only on the aggregate produc-
tivity process At, not on the cross-sectional variance process xt. If we denote logs in
lowercase, we can also derive aggregate and individual consumption growth as

∆ct = log(Ct/Ct−1) = log((1− κ)At) = log(1− κ) + at,

∆ci,t = log(Ci,t/Ci,t−1) = log((1− κ)Ai,t) = log(1− κ) + at +√xtηi,t −
xt
2 .

The process for individual consumption thus has a similar form as in Constantinides
and Duffie (1996).

Moving on to asset prices, although strictly speaking there is no aggregate capital,
we can naturally define aggregate return to capital as an average payoff at time t+ 1
to one unit of good invested at time t, so that Rk

t+1 = At+1. Return on bonds is
then defined as Rb

t+1 = 1
P bt
, and the difference between the two returns will be the

equity premium. In this case, the return to capital is entirely determined by the
linear technology, so the premium will be driven by adjusting the risk-free rate in
accordance with the intertemporal marginal rate of substitution of households in the
no-trade equilibrium, to which we turn next.

The intertemporal marginal rate of substitution (IMRS) of i-th household is given by

Mi,t+1 = β

(
Ci,t+1

Ci,t

)−1
 Vi,t+1

Et[V 1−γ
i,t+1]

1
1−γ

1−γ

and includes the usual consumption growth term as well as deviation of the next-
period value function from its certainty-equivalent that would capture news about
future consumption. In the equilibrium, each household’s IMRS is a valid stochastic
discount factor, and so will be their cross-sectional averageMt+1 = Ẽ[Mi,t+1]. Returns
to capital and bonds must satisfy the following equations:

1 = Et[Mt+1R
k
t+1], 1 = Et[Mt+1R

b
t+1].
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Assuming (conditional) lognormality, we can express the conditional equity premium
in terms of logarithm of stochastic discount factor (SDF) and log returns as

Et[rkt+1] + 1
2Vart[rkt+1]− rbt+1 = −Covt[mt+1, r

k
t+1]. (1)

Since the capital return is exogenous, asset pricing properties will mainly depend
on conditional distribution of the stochastic discount factor and its sensitivity to
aggregate shocks.

To explicitly characterize the innovation to the logarithm of SDF, we need to find the
innovation to the value function. To this purpose, define the logarithm of normalized
value function vi,t = log(Vi,t/Ci,t) and rewrite the value function recursion as

vi,t = β
1

1− γ logEt [exp ((1− γ)(vi,t+1 + ∆ci,t+1))]

= β
1

1− γ logEt
[
exp

(
(1− γ)(vi,t+1 + ∆ct+1 −

1
2γxt+1)

)]
,

where the second line follows from substituting for individual consumption growth
and integrating out idiosyncratic shock. Since the above expression involves only
aggregate variables, clearly the normalized value function will be equalized across
households: vi,t = vt. If we furthermore assume that at (and thus ∆ct) and xt jointly
follow Gaussian homoscedastic process, we get

vt = β
(
Et

[
vt+1 + ∆ct+1 −

1
2γxt+1

]
+ 1− γ

2 Σ
)

with Σ = Vart
[
vt+1 + ∆ct+1 − 1

2γxt+1
]
being a (constant) conditional variance. It-

erating forward and imposing proper terminal condition, value function can be
expressed as

vt = β

1− β
1
2(1− γ)Σ +

∞∑
i=1

βi
(
Et
[
∆ct+i −

1
2γxt+i

])
.

The log of aggregate SDF in terms of vt+1 has the form of

mt+1 = log(β)− γ∆ct+1 + (1− γ)(vt+1 − vt/β) + 1
2γ(1 + γ)xt+1,

where the last term arises from integrating over cross-sectional consumption growth.
The innovation to mt+1 can subsequently be shown to equal

mt+1 − Et[mt+1] = −γεct+1 + 1
2γ(1 + γ)εxt+1 − (γ − 1)ηct+1 + 1

2γ(γ − 1)ηxt+1
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where εct+1 = ∆ct+1 − Et[∆ct+1] is a short-run innovation to consumption growth,
εxt+1 = xt+1−Et[xt+1] is a short-run innovation to cross-sectional consumption growth
variance, ηct+1 = (Et+1 − Et)

[∑∞
j=1 β

i∆ct+1+j
]
is an innovation to long-run expected

consumption growth, and ηxt+1 = (Et+1 − Et)
[∑∞

j=1 β
ixt+1+j

]
is an innovation to long-

run expected cross-sectional variance. Increases in current or future consumption
growth decrease marginal utility and thus carry a positive market price of risk,
whereas increases in current or future cross-sectional variance enter with the opposite
sign and thus carry a negative price of risk. In other words, assets which pay well in
those states of the world in which a household receives bad news about current or
future cross-sectional risk are less attractive and must offer higher returns.

In the above expression, the first term is standard and captures aggregate consumption
growth. The second term is the same as in the Constantinides & Duffie model and
captures contemporaneous effects of idiosyncratic risk. The third term describes news
about future consumption, and has been studied in long run risk literature. The final
term then captures news about future idiosyncratic risk, and is present only with
preference for early resolution of uncertainty (γ > 1) and in a non-iid environment.
The presence of this last term can potentially increase the equity premium if bad
news about current and future consumption growth are accompanied by bad news
about future levels of idiosyncratic risk.

As a more specific example, consider the following joint process for ∆ct, xt:

∆ct = (1− ρc)µc + ρc∆ct−1 + εt, εt ∼ N(0, σ2
ε )

xt = µx + φx(∆ct − µc).

so that aggregate consumption growth follows the AR(1) process and the idiosyncratic
risk level is its affine function. Setting φx < 0 corresponds to the countercyclical
cross-sectional variance emphasized by Constantinides & Duffie. Since there is just
one aggregate shock, we can obtain the following expression for log SDF innovation:

mt+1−Et[mt+1] =
(
−γ + 1

2γ(1 + γ)φx − (γ − 1) βρc
1− βρc

+ 1
2γ(γ − 1)φx

βρc
1− βρc

)
εt+1.

(2)
When γ > 1 and φx < 0, all terms inside the paretheses have the same sign and
their magnitude can be interpreted as the contribution of individual channels to the
overall price of risk.

For a quantitative illustration, choose β = 0.99, γ = 5 (standard values), ρc = 0.27
(autocorrelation of quarterly US consumption growth) and φx = −0.16 (see section
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Figure 1: Comparative static of conditional Sharpe ratio decomposition
according to equation (2). Filled areas show the relative contribution of each
channel (long or short run, aggregate consumption or idiosyncratic risk). While
varying each parameter, others are kept fixed (β = 0.99, γ = 5, ρc = 0.27, φx =
−0.16, see also black lines in corresponding subplots).
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4.1). Following the above expression, we obtain that short-run consumption risk
contributes 53.0%, short-run idiosyncratic risk 25.4%, long-run consumption risk
contributes 15.5% and long-run idiosyncratic risk 6.2%. In relative terms, news
about future idiosyncratic risk constitute 40% of the overall long-run risk. Figure 1
shows the sensitivity of this decomposition to each parameter. Varying the discount
rate should in principle affect the weight households put on future events and thus
also the relative importance of long run risk, but for the range of values usually
considered it does not seem to play a large role. Higher risk aversion raises the share
of both long run and idiosyncratic risk. Autocorrelation of consumption growth
has a similar, although even stronger, effect, as with more predictability, a current
shock to consumption causes greater revision of expectations about future. Finally,
the degree of countercyclicality (plotted using its absolute value) makes the role of
idiosyncratic risk larger.

The model presented in this section is too simplified in certain aspects. In a more
standard production economy, the aggregate consumption process is endogenous and
thus introduction of idiosyncratic risk may affect asset pricing results via general
equilibrium effects. In addition, equity returns are also endogenous in the sense
that the presence of idiosyncratic risk can affect the sensitivity of price-dividend
ratios (and thus of returns themselves) to aggregate shocks, which might affect the
predicted equity premium (although not the Sharpe ratio). For these reasons, in the
next section I embed idiosyncratic risk into a version of a real business cycle model
which will allow for both of these additional effects.

3 Full Model

This section describes the main model of a production economy with households
facing idiosyncratic shocks. The model could be described as a variant of standard
stochastic growth model, similar to Kaltenbrunner and Lochstoer (2010), modified
with a tractable form of heterogeneity on the household side, modelled according to
Constantinides and Duffie (1996).
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3.1 Production

On the production side, there is a representative firm with standard Cobb-Douglas
technology, producing output from capital Kt and labor Ht:

Yt = Kα
t (ZtHt)1−α, (3)

where Zt is labor-augmenting productivity and its log growth rate ∆zt = log(Zt)−
log(Zt−1) is a given exogenous stochastic process. The firm hires labor on a competi-
tive market at wage rate Wt to the point where wage equals the marginal product of
labor:

Wt = (1− α) Yt
Ht

. (4)

The household labor supply is inelastic and fixed at unity, so in equilibrium

Ht = 1 (5)

The firm owns its capital stock, uses part of its profits for investment It into the
capital stock and pays the residual as dividend Dt:

Yt = WtHt + It +Dt. (6)

Capital accumulation is standard:

Kt+1 = (1− δ)Kt + It. (7)

Since the firm faces an intertemporal choice, it is necessary to discuss its objective.
We shall assume the firm will choose an investment policy to maximize the present
value of its dividends evaluated with a one-period stochastic discount factor Mt+1

(to be discussed later), which is taken as given by the firm. Multi-period SDF is
then defined as Mt→t+j = ∏j

i=1Mt+i, and the firm’s objective is to maximize the sum
of current dividend and (ex-dividend) stock price P s

t , with the latter equal to the
present discounted value of future dividends:

maxDt + Et

 ∞∑
j=1

Mt→t+jDt+j


︸ ︷︷ ︸

P st

.

Under constant returns to scale, return to the claim to firm’s equity (priced with
the SDF referred to above) will be equal to return on physical capital (Restoy and
Rockinger 1994), in this case given by

RK
t+1 = α

Yt+1

Kt+1
+ 1− δ (8)
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and by standard variational arguments, firm’s first order condition is

1 = Et
[
Mt+1R

K
t+1

]
. (9)

Finally, resources left for aggregate consumption consist of wages and dividend
payments, or, equivalently, of output less investment:

Ct = Dt +WtHt = Yt − It. (10)

Note that the production side of the model determines the dynamics of macroeconomic
aggregates such as capital, output and consumption once the stochastic discount
factor is specified. Of course, in equilibrium the SDF process captures the attitudes
of households toward intertemporal choice and risk, so we shall discuss the household
side of the model next.

3.2 Households

There is a continuum of households indexed by i, with each having (the same)
Epstein-Zin preferences over its own consumption stream {Ci,t}, summarized by a
recursion for the value function

Vi,t =
{

(1− β)C1−ρ
i,t + βEt

[
V 1−γ
i,t+1

] 1−ρ
1−γ

} 1
1−ρ

, (11)

where β captures time preference, ρ is the inverse of intertemporal elasticity of
substitution and γ is relative risk aversion. Each household also inelastically supplies
one unit of labor.

The main object of interest on the household side of the model is the stochastic
discount factor, which enters into the firm’s intertemporal decision. In a model with
a representative household, we could drop the i subscript and the relevant SDF would
be directly determined by the representative household’s intertemporal marginal rate
of substitution, the expression for which is known to be

MRA
t+1 = β

(
Ct+1

Ct

)−ρ Vt+1

Et
[
V 1−γ
t+1

] 1
1−γ


ρ−γ

.

On the other hand, if households face idiosyncratic risks and markets are incomplete,
so the risk cannot be insured away, we will observe dispersion in individual consump-
tion growth rates. In principle, individual consumption is an endogenous outcome,
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depending on the household’s optimal decisions, which are themselves functions
of individual and aggregate state variables. Generally, the aggregate state would
include a cross-sectional distribution of wealth, necessitating the use of complex
solution methods, such as those used in Krusell and Smith (1998). Instead, I will
follow Constantinides and Duffie (1996) and assume directly5 that the resulting
dispersion of consumption growth rates can be described by a multiplicative shock
to the aggregate consumption growth:

Ci,t+1

Ci,t
= Ct+1

Ct
exp(ηi,t+1) (12)

where innovations ηi,t+1 are uncorrelated across households and across time. However,
since we are interested in idiosyncratic risk with varying severity over the business
cycle, we shall allow the distribution of ηi,t to vary according to an exogenous
parameter process xt. It will turn out advantageous to summarize this dependence
via a moment-generating function

G(τ ;x) = E [eτη|x] (13)

and to assume that the parametrization satisfies the property G(1, x) = 1 for all
possible x, ensuring that average consumption equals the aggregate consumption.
For example, if ηi,t is normal with variance xt and mean −xt/2, the MGF would be
G(τ ;x) = e(x/2)(τ2−τ).

The main advantage of the above approach is that it allows us to define the aggregate
stochastic discount factor as a cross-sectional average of individual marginal rates
of subtitution in a tractable way, so that the resulting expression depends only on
aggregate variables. For this purpose, define the logarithm of value function scaled
by individual consumption vi,t = log(Vi,t/Ci,t), as well as the logarithm of scaled
certainty equivalent ψi,t = log

(
Et
[
V 1−γ
i,t+1

] 1
1−γ /Ci,t

)
, which satisfy the following:

vi,t = 1
1− ρ log ((1− β) + β exp((1− ρ)ψi,t))

ψi,t = 1
1− γ log (Et [exp((1− γ)(vi,t+1 + ∆ci,t+1))])

Under the maintained assumption on individual consumption growth, we have
∆ci,t+1 = ∆ct + ηi,t+1, and the distribution of ηi,t+1 is the same for each household

5See section 3.4 for a discussion of how such a result could be derived as a particular equilibrium
outcome.
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from the point of view of period t. Using the law of iterated expectation to integrate
over ηi,t+1 (conditional on the next-period parameters of its distribution xt+1), we can
rewrite the scaled value function recursion in terms of aggregates only, implying that
these variables are equalized across households (thus we can drop the i subscript):

vt = 1
1− ρ log ((1− β) + β exp((1− ρ)ψt))

ψt = 1
1− γ log (Et [exp((1− γ)(vt+1 + ∆ct+1)) ·G(1− γ, xt+1)])

(14)

Note the MGF term G(1− γ, xt+1) = E[exp((1− γ)ηi,t+1)|xt+1], which arises from
integrating over individual shock in the next period, conditional on its distribution
which depends on aggregate variables xt+1.

The individual household’s intertemporal marginal rate of substitution is

Mi,t+1 = β

(
Ci,t+1

Ci,t

)−ρ Vi,t+1

Et
[
V 1−γ
i,t+1

] 1
1−γ


ρ−γ

(15)

which can be equivalently expressed as

Mi,t+1 = β exp (−γ∆ci,t+1 + (ρ− γ)(vt+1 − ψt)) , (16)

and subsequently the aggregate SDF is obtained by averaging over individual Mi,t+1

conditional on aggregate variables up to and including in period t+ 1:

Mt+1 = β exp (−γ∆ct+1 + (ρ− γ)(vt+1 − ψt)) ·G(−γ, xt+1). (17)

where again the term G(−γ, xt+1) appears due to integration over individual shock.

Although defining aggregate SDF by averaging individual rates of substitution may
seem arbitrary, if we grant that individual consumption allocations are outcomes
of some (still unspecified) equilibrium, and abstracting from binding portfolio con-
straints, each household intertemporal rate of substitution would in fact be a valid
SDF in the sense that it would be compatible with asset prices in the economy.
Taking a cross-sectional average of these will result in a SDF which is valid too, but
does not depend directly on any individual-level variables.

The presence of idiosyncratic risk thus affects the resulting discount factor through
the properties of its distribution: specifically, through the G(1− γ, xt+1) term in the
value function recursion, provided that ρ 6= γ, as well as through G(−γ, xt+1) term
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in the SDF. Since the modifications are expressed in terms of moment generating
functions, all the higher moments of idiosyncratic risk could, in principle, affect the
economy, although in the most commonly studied case of normal shocks, only the
variance will matter. It is also clear that if the distribution of idiosyncratic shocks
were time-invariant (i.e. xt were constant), the only effect would be to introduce
constant offsets into the value function and discount factor, while risk premia would
not be affected directly. Finally, making the distribution of η collapse to a constant
would yield expressions identical to those of a representative-agent version of the
model, which can thus be considered a special case of the setup presented above.

3.3 Quantity dynamics and asset prices

To close the model, we need to further specify the exogenous process for productivity
Zt and the evolution of parameters xt controlling the distribution of individual shocks
(these could be functions of other aggregate variables, or follow their own exogenous
process).

Productivity is assumed to be a random walk, so that

∆zt = µz + σzεt, εt ∼ N (0, 1) (18)

Regarding the form of individual risk, I will assume that the individual element of
consumption growth is lognormal, so that

ηi,t ∼ N
(
−xt2 , xt

)
and xt representes its variance, which is exogenously given as an affine function of
consumption growth

xt = µx + φx(∆ct − µz). (19)

Equations (18) and (19) together with equations (3), (5), (7), (8), (9), (10), (14),
(17) and the functional form for G(τ, x) mean that we have a sufficient number of
relationships for solving the model. Since there is no need to track cross-sectional
distribution of assets, the model can be solved by standard perturbation methods
after detrending.

In terms of asset prices, unlevered return to capital has been defined in (8), and its
logarithm will be denoted rkt+1 = logRk

t+1. We will define the price of a one-period
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riskless bond that pays one unit in the following period in a standard way:

P b
t = Et [Mt+1 · 1] (20)

and define log-return on the bond as rbt+1 = log(1/P b
t ). The excess return is the

difference between return to capital and return to bonds: rxt+1 = rkt+1 − rbt+1. The
conditional equity premium and Sharpe ratio are then defined as:

EPt = Et[rxt+1]

SRt = Et[rxt+1]√
Vart[rxt+1]

(21)

and their unconditional averages are EP = E[EPt], SR = E[SRt].

Recall the expression for conditional equity premium in a lognormal setting (adjusted
for Jensen inequality) from equation (1):

Et[rkt+1] + 1
2Vart[rkt+1]− rbt+1 = −Covt[mt+1, r

k
t+1].

In case of just one aggregate shock, so thatmt+1−Et[mt+1] = ηmεεt+1, the conditional
Sharpe ratio and equity premium is approximately

SRt ≈ |ηmε|σz, EPt = SRtVart[rxt+1].

In the model, all conditional volatility of returns arises from fluctuations in the
marginal product of capital, which is not volatile enough to match the observed
variation in stock returns. This issue could in principle be fixed by introducing
capital adjustment costs or leveraged equity, although in this paper I will focus
mainly on the price rather than quantity of risk, i.e. on the Sharpe ratio.

3.4 No trade equilibrium

The model presented so far relies on a reduced-form way to incorporate idiosyncratic
consumption risk. It is possible to support such an outcome as a no-trade equilib-
rium6 of a model with households facing particularly defined idiosyncratic additive

6The discussion here adapts the no-trade equilibrium setup of Constantinides and Duffie (1996)
from endowment to a production economy with EZ preferences. A close, although not identical
aggregation approach is offered in Braun and Nakajima (2012), who allow for elastic labor supply,
but also consider only time-separable utility function.
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shocks to their budget constraints, which could represent unexpected expenditures,
gains or redistitributive payments (which, however, cancel out in the aggregate)
that cannot be insured against due to incomplete markets. Intuitively, given that
a household’s utility function is homothetic and in the proposed equilibrium the
deviation of individual consumption from the aggregate is a geometric random walk
with shocks uncorrelated in time, all the households behave essentially symmetrically
in their consumption/saving and portfolio decisions, thus implying no trade in assets.
No trade, together with symmetric initial portfolios, in turn lead to individual con-
sumption heterogeneity of the form described in previous sections. For completeness,
this section will present such an equilibrium in more detail.

The individual household receives labor income and can trade firm shares and bonds.
Its budget constraint reads:

Ci,t + P s
t Ai,t+1 + P b

t Bi,t+1 = Wt + (P s
t +Dt)Ai,t +Bi,t + Υi,tCt,

where P s
t , P b

t are prices of firm equity and a risk-free one-period bond respectively,
Ai,t, Bi,t are the household’s beginning-of-period portfolio positions, and other vari-
ables are as defined previously. The household also faces an additive shock Υi,t to its
wealth, scaled by the current level of aggregate consumption. We will require that
the cross-sectional average of Υi,t equals zero, so that individual shocks do not add
or subtract resources to the economy.

The evolution of idiosyncratic shock is specified as:

Υi,t = (1 + Υi,t−1) exp(ηi,t)− 1

where ηi,t are the same shocks which were previously characterized in equation
(13). Since we assumed

∫
exp(ηi,t)di = 1, the above law of motion maintains a zero

cross-sectional mean of Υi,t. For example, if ηi,t is normally distributed, Υi,t will
have a lognormal distribution shifted by a negative constant.

The household takes asset prices, wages, dividends, aggregate consumption and
idiosyncratic shocks as given, and chooses its consumption and portfolio positions
to maximize its value function (11). Given the allocation of consumption across
households, the rest of the model functions as previously described, although we will
also require that stock and bond prices are consistent with market clearing in financial
markets, so that, in the aggregate, households own the whole firm (

∫
Ai,tdi = 1) and

bonds are in zero net supply (
∫
Bi,tdi = 0). Given the specification of exogenous

shocks Zt,Υi,t, the equilibrium of the economy can be thus defined as:
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• stochastic process for aggregate output Yt, consumption Ct, investment It,
capital Kt, wage Wt, return to capital Rk

t and dividend Dt,

• firm equity price P s
t and bond price P b

t

• individual household consumption Ci,t, portfolio positions Ai,t, Bi,t, value func-
tion Vi,t and IMRS Mi,t+1

• aggregate SDF Mt+1

such that

• given the aggregate SDF, Yt, It, Kt, Ct, Dt, R
k
t ,Wt are consistent with firm

optimality condition (9), production function (3), capital accumulation (7),
resource constraints (6), (10) and marginal products (4), (8).

• markets for financial assets clear.

• Ci,t, Ai,t, Bi,t, Vi,t and Mi,t+1 are consistent with optimal decisions by a house-
hold.

• Mt is consistent with cross-sectional aggregation of household intertemporal
rates of substitution Mi,t as described in (17).

Next, notice that if households held symmetric market-clearing portfolios, i.e. ∀t, ∀i :
Ai,t = 1, Bi,t = 0, their consumption growth would be in fact described by (12), since
in such case their consumption is Ci,t = Wt +Dt + Υi,tCt = (1 + Υi,t)Ct and their
consumption growth thus satisfies

Ci,t+1

Ci,t
= Ct+1

Ct

1 + Υi,t+1

1 + Υi,t

= Ct+1

Ct
exp(ηi,t+1)

The following result shows that an outcome where households hold symmetric
portfolios at all times, embedded within the rest of the model described previously,
is in fact an equilibrium:

Claim: Consider an allocation where

• firm stock price is given by P s
t = Kt+1 and bond price is determined by

aggregate SDF as in (20),

• households hold symmetric portfolios Ai,t = 1, Bi,t = 0,

• and rest of the model functions as described previously;
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then such an allocation is an equilibrium. Moreover, households are in agreement in
terms of the firm’s investment policy.

To see why the above holds, we need to check whether first-order conditions of indi-
vidual households are satisfied. The intertemporal rate of substitution of household i
between two consecutive periods (implicitly, taking as given current aggregate state
of the economy; I also supress time indices for clarity) can be generally written as a
function of some first-period individual state si and second-period individual shock
η′i and aggregate shock ε′: Mi(si, η′i, ε′). In our case, however, individual IMRS given
by (16) depends on the individual state only through the household’s consumption
growth, which is assumed to be uncorrelated over time and determined by future
idiosyncratic shock η′i. Therefore individual IMRS does not depend on the initial
individual state and can be written as M(η′i, ε′). Intuitively, if individual consump-
tion behaves like a multiplicative random walk and households have homothetic
preferences, any differences in wealth are simply a matter of scale.

The aggregate stochastic discount factor is obtained by averaging over individual
shocks: M(ε′) = E [Mi(η′i, ε′) | ε′] (since distribution of shocks is symmetric across
households, this does not actually depend on i). We can then show that the aggre-
gate optimality condition E [M(ε′)R(ε′)] for some return R also implies individual
optimality E [Mi(η′i, ε′)R(ε′)], since here this follows directly from the law of iterated
expectations. The aggregate optimality is satisfied by return on bonds by assumption,
and it is easy to show that it also holds for return on stocks held by households7. It
then follows that the household individual optimality conditions are also satisfied
and that a no-trade euqilibrium is consistent with optimal consumption and portfolio
choice by households.

The same argument also ensures that households do not differ in their preferred
investment policy (see also Carceles-Poveda and Coen-Pirani (2009) for a more
general discussion of when this is true): in equilibrium, each household receives the
stream of dividends from the firm, so its preferred policy is to maximize the present
value of future dividends, using its own IMRS as a discount factor. This would lead
to a first order condition for investment 1 = E[Mi(η′i, ε′)RK(ε′)], but by the same
logic of iterated expectations, this is equivalent to the assumed firm’s condition (9).

7This can be verified by plugging in the proposed expression for stock price into the definition of
return and using the fact that Dt+1 = Yt+1 −Wt+1 − It+1 = αYt+1 − It+1. After some rearranging,
we obtain that the stock return is equal to the return to capital defined in (8), and thus satisfies
the condition due to the firm’s optimality condition (9).
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Another possible question is whether a different choice of weights across households
when defining the aggregate SDF might affect the results. In general this is possible
in models with incomplete markets (Carceles-Poveda 2009), but it turns out that
in the current model weighting does not matter. Any weights corresponding to
some reasonable corporate governance mechanism should depend only on current
states of firm owners, not on realizations of next-period shocks. A weighted SDF
M̃(ε′) = E [w(s)Mi(s, η′i, ε′) | ε′] will not make a difference when Mi is independent
of s.

4 Results

To evaluate how the addition of idiosyncratic risk affects the behavior of the neoclas-
sical growth model, I first calibrate most of the parameters based on a representative-
agent version of the model, then solve the model with and without idiosyncratic risk,
and inspect its properties. In the second part of this section, I proceed by describing
a log-linear approximate solution to the model, which is helpful to illustrate the
interplay between idiosyncratic risk and dynamics of macroeconomic aggregates in
the model. Finally, I will also consider an alternative way to model cyclical variation
in the distribution of idiosyncratic risk by way of cyclical skewness rather than
variance.

4.1 Calibration

Model calibration is summarized in table 1. Frequency is quarterly. Starting with
a representative-agent version of the model, most parameters are chosen close to
standard values in the literature, as in, e.g., Campbell (1994). α is set to match
the capital share of income of one third, δ implies annual depreciation rate of 10%.
Discount rate β and the inverse of IES ρ are set so as to match the steady state
return to capital of 6% per annum and output growth being twice as volatile as
consumption growth. Trend productivity growth is set at 2% per year. The volatility
of productivity shocks matches standard deviation of quarterly output growth of
1%, roughly corresponding to postwar US data. Finally, risk aversion is set to 5, a
relatively standard value.

Following Storesletten, Telmer, and Yaron (2007), who use a process for variance of
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Parameter Value Description

β 0.988 discount factor
ρ 0.7 inverse of IES
γ 5 risk aversion
α 0.33 capital share
δ 0.025 depreciation rate
µz 0.005 mean productivity growth
σz 0.015 volatility of productivity shock

µx 0.0036 mean level of ind. risk
φx -0.16 cyclicality of ind. risk

Table 1: Parameter values.

idiosyncratic shocks of the same form, I set µx = 0.0036 (i.e. their value 0.014 rescaled
to quarterly setting) and φx = −0.16. The average level µx corresponds to annualized
standard deviation of individual consumption growth of about 12%. The value of
sensitivity φx captures the sensitivity of idiosyncratic risk to the business cycle,
with negative values representing counter-cyclical variation. Given that quarterly
(non-annualized) standard deviation of consumption growth will be approximately
half a percent and assuming a normal distribution, the chosen value implies that
fluctuations in xt correspond to the annualized standard deviation of individual
consumption growth ranging from approximately 9% to 15% with 95% probability
(in terms of the ergodic distribution).

After detrending by productivity (a list of detrended equations can be found in
the appendix), I solve the model by a 3rd-order perturbation method using Dynare
(Adjemian et al. 2011), as higher-order approximation is necessary to obtain non-
zero risk premia when the perturbation approach is used for numerical solution.
Model-implied moments for various variables are then computed from a pruned
representation of the system, using the approach and code presented by Andreasen,
Fernandez-Villaverde, and Rubio-Ramirez (2013). In a recent work, Pohl, Schmedders,
and Wilms (2018) argue that models with long-run risk can exhibit nonlinearities that
make local approximations potentially unreliable, and suggest using global solution
methods. It turns out that in the model presented here, nonlinearities are quite mild,
so that local and global solutions yield very similar results, as documented in the
appendix.
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data model: RA model: HA1 model: HA2

moments:
σ[∆yt] 1.90% 2.02% 2.01% 2.02%
σ[∆ct]/σ[∆yt] 0.56 0.50 0.74 0.49
σ[∆it]/σ[∆yt] 2.58 2.65 1.81 2.63
cor(∆yt,∆yt−1) 0.37 0.03 0.02 0.03
cor(∆ct,∆ct−1) 0.27 0.21 0.06 0.21
Sharpe ratio 0.39 0.121 0.163 0.161

risk price decomposition:
short run, ∆c - 39.1% 45.8% 29.7%
short run, x - 0.0% 22.0% 14.2%
long run, ∆c - 60.9% 23.0% 40.1%
long run, x - 0.0% 9.2% 16.0%

Table 2: Comparison of model-implied annualized moments. Data: US
quarterly series 1947-2016; see appendix for definitions. Model RA: calibrated
as in table 1, but setting µx = φx = 0. Model HA1: as in table 1, but setting
β = 0.973 to match RA model steady state. Model HA2: as in table 1, but
setting β = 0.975, ρ = 0.214 to match RA model steady state and quantity
dynamics. Standard deviations and Sharpe ratio are annualized by doubling
from quarterly values. The bottom section shows relative contributions to the
price of risk based on loglinear approximation.

4.2 Quantitative results

Table 2 displays selected unconditional moments from three versions of the model, as
well as from US quarterly macroeconomic data. A representative agent variant of the
model (RA column) matches variances of output and consumption growth (which, of
course, it has been calibrated to match), as well as autocorrelation of consumption
growth. The implied Sharpe ratio of about 12% is lower than observed, yet still quite
substantial compared to its value in a model with separable utility (approximately
0.6%). The second variant (HA1 column) is a model with idiosyncratic risk parameters
calibrated as described above and otherwise the same as a representative-agent model,
with the exception of the discount factor β which has been adjusted to obtain the
same steady state. Looking at our main object of interest, we see that the presence of
countercyclical idiosyncratic risk has increased the market price of risk (proxied here
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Figure 2: Impulse responses of log consumption and output to a 1 s. d.
(permanent) productivity shock. Right panel: models RA (representative
agent) and HA2 (het. agents, with β and ρ adjusted to match RA model
dynamics). Left panel: model HA1 (het. agents, with β adjusted to match RA
model steady state).

by the Sharpe ratio of excess returns) by approximately a third, but the dynamics
of macroeconomic quantities has also changed significantly: with idiosyncratic risk,
aggregate consumption growth has volatility closer to that of the output growth
and autocorrelation closer to zero, which worsens the empirical fit of the model. In
the third version (HA2 column), both the discount factor and the intertemporal
elasticity of substitution are modified to maintain the same dynamics of output and
consumption as in the RA variant of the model. We can see that the market price of
risk remains high, so that by using a suitable choice of preference parameters, the
model can be relatively succesful along both dimensions.

The bottom part of the table presents decomposition of the risk premium based
on loglinear approximation, similar to the discussion in section 2 (see also the next
subsection and the appendix for more details about loglinear solution). Dispersion
of idiosyncratic shocks constitutes a bit less than a third of the overall long run
risk contribution and around a third of the overall short run risk contribution. The
overall contribution of long run risk is 61% in representative agent model and 56%
in the HA2 model, but it is only 32% in the HA1 model, due to the overall amount
of predictability in the economy being lower (the aggregate consumption is closer to
a random walk).

To better understand how the introduction of idiosyncratic risk affects the behavior
of output and consumption, figure 2 plots impulse responses to a productivity shock
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of output and consumption (log) levels for both RA and HA1 variants of the model
(impulse responses in HA2 calibration are by construction close to the RA variant).
The representative agent version shows both consumption and output growing over
time toward their new, permanently higher, values implied by the permanent increase
in productivity, but the response of consumption on impact is about half of output
response (in line with calibration targeting volatility of consumption growth being
half of output growth volatility). Thus households are willing to spread consumption
increases over a longer horizon and to accept variation in future consumption growth
rates in order to accumulate capital stock more quickly and thus to obtain more
benefits from the increased productivity. However, in the model with idiosyncratic
risk, the response of consumption on impact is much stronger and essentially consumes
the whole productivity gain straight away at the cost of slower accumulation of
capital, as if households were much more averse to intertemporal substitution of
consumption.

This effect on consumption smoothing also complicates the analysis of asset prices,
since the price of risk can be affected by the presence of idiosyncratic risk, in addition
to its direct impact on the stochastic discount factor described in section 2, also
through the changes in the endogenous process for aggregate consumption caused by
a lower steady state interest rate and lower “aggregate” intertemporal elasticity of
substitution. Specifically, with less predictable consumption growth, the long run
consumption risk emphasized by Kaltenbrunner and Lochstoer (2010) becomes less
important, although the overall market price of risk has gone up in our case. On the
other hand, as can be seen from the final column of table 2, it is possible to counteract
such impacts by increasing IES (i.e. decreasing ρ) of individual households, although
in general the size of the adjustment will depend on both the level and cyclicality of
idiosyncratic risk, as well as households risk aversion, as discussed in more detail in
the next subsection.

4.3 Qualitative analysis

To gain better intuition about the implications of idiosyncratic risk, we shall inspect
a loglinear approximation to the model solution along the lines of Campbell (1994).
Since the productivity process is a random walk, the detrended model has just one
relevant state variable, (log) ratio of capital and productivity k∗t = log(Kt/Zt) (in
terms of notation, lowercase symbols shall denote logs and starred variables are
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detrended by productivity). The dynamics of capital, output and consumption are
determined by the deterministic steady state and by the sensitivity of detrended
consumption to detrended capital: c̃∗t = ηckk̃

∗
t , with a tilde denoting deviation from

the steady state value.

A complete derivation can be found in the appendix, but it is possible to show that
the steady state depends on preference and idiosyncratic risk parameters only through
their effect on steady state return to capital r̄k = − log(β) + ρµz − 1

2γ(1 + ρ)µx.
The coefficient ηck depends on the steady state, as well as on the “effective” inverse
of IES ρ̂ = ρ − 1

2γ(1 + ρ)φx. In other words, any combinations of parameters
β, ρ, γ, µx, φx which imply the same r̂k and ρ̂ will lead to identical dynamics of output
and consumption growth.

More specifically, if we start with a representative-agent model with parameters
βRA, ρRA, γRA (i.e. µRAx = φRAx = 0), and then introduce idiosyncratic risk by setting
µx > 0, φx 6= 0, we can maintain the same quantity dynamics in the heterogeneous-
agent model by choosing parameters βHA, ρHA, γHA such that

− log(βRA) + ρRAµz = − log(βHA) + ρHAµz −
1
2γ

HA(1 + ρHA)µx

ρRA = ρHA − 1
2γ

HA(1 + ρHA)φx

If we, for example, decide to keep risk aversion the same: γHA = γRA, the above
two equations pin down the new values of the discount rate and intertemporal
elasticity of substitution. If the individual risk was acyclical (φx = 0), the only
necessary adjustment is in the discount rate, which should be set lower to counteract
the precautionary saving effect pushing interest rates down. In the presence of
countercyclical individual risk (φx < 0), we would additionally need to make ρHA

lower8, to counteract the greater aversion of agents to intertemporal substitution.

Why do agents exhibit this aversion? We can gain some intuition by looking at the
power utility case (γ = ρ). The individual Euler’s equation can be then written
approximately as

log(β) + ρEt[∆ci,t+1]− 1
2ρ

2V art[∆ci,t+1] = rbt+1

Since ∆ci,t+1 = ∆ct+1 + ηi,t+1, if we ignore the small normalization shift in ηi,t+1,
expected individual consumption growth moves one to one with aggregate expected

8A similar expression for “effective” intertemporal substitution in CRRA case was derived in
Constantinides and Duffie (1996).
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consumption growth. However, with countercyclical risk, the conditional variance
of individual consumption growth will vary inversely to ∆ct+1, and thus the whole
left hand side will be more sensitive to Et[∆ct+1]. As a result, if we considered
only aggregate data, the agent behaves as if he had higher ρ (lower intertermporal
substitution) than he really does, which is consistent with empirical estimates of IES
finding higher values when estimated on micro data compared with findings from
aggregate time series (Havranek 2015).

Moreover, if the agent has Epstein-Zin preferences with risk aversion differing from
the inverse of IES, the above result suggests that the degree of required adjustment
in ρ depends on risk aversion as well, or alternatively, that risk aversion affects the
dynamics of macroeconomic aggregates even at a first order approximation. The
separation property described by Tallarini (2000) (i.e. that risk aversion affects
the risk premia but not the behavior of quantities) thus does not hold outside
the representative-agent model. A related issue with the proposed adjustment
might be that, if idiosyncratic risk is strongly cyclical (φx has large magnitude) or
households are very risk averse (γ is high), the adjustment might imply parameter
values for ρ that are too low or even negative. It is possible that introducing other
extensions affecting intertemporal choice, such as habit formation, might counteract
this tendency, although I do not follow this direction in the current paper.

Even though the above discussion would suggest that the effect of idiosyncratic risk
(at least as modelled here) does not affect qualitative properties of the representative-
agent model conditional on suitable recalibration of preference parameters, the
equivalence does not carry over to asset prices. Up to a linear approximation, log of
scaled value function vt = log(Vi,t/Ci,t) can also be solved for as a function of capital
stock, so that in terms of deviations from steady state, ṽt = ηvkk̃

∗
t . The coefficient ηvk

is a function of the steady state and ηck, but depends also on both µx and φx. With
countercyclical risk (φx < 0), the value function will be more sensitive to detrended
capital stock and thus also to a productivity shock. The innovation to log SDF can
be written as

mt+1 − Et[mt+1] = −
[(
γ − 1

2γ(1 + γ)φx
)
ηcz + (γ − ρ)(−ηvk)

]
︸ ︷︷ ︸

ηmε

εt+1 = ηmεεt+1

implying a conditional Sharpe ratio

log
(
Et[Rk

t+1]
)
− rbt+1

sdt[rkt+1] = −ηmεσz
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Figure 3: Comparative static for the conditional Sharpe ratio. Left: depen-
dence on idiosyncratic risk parameters. Right: dependence on risk aversion. At
each point, ρ and β are recalibrated to imply the same dynamics of aggregate
quantities.

Therefore, even if we recalibrate the parameters to maintain the same dynamics of
aggregate consumption, market price of risk will still differ from the one implied by
the representative-agent model with the same dynamics.

The left panel of figure 3 plots the (annualized) conditional Sharpe ratio as a function
of µx, φx when preference parameters are recalibrated to match the quantity dynamics
of the representative-agent model solved previously. Each point on the graph thus
implies the same consumption process so that we can distinguish the pure effects of
idiosyncratic risk on the risk premium. If the risk was acyclical (φx = 0), the price of
risk would actually go slightly down due to lower required discount rate, which in turn
weakens the impact of long-run consumption risk (this effect is present only when
consumption growth is not iid, otherwise acyclical idiosyncratic risk would have no
impact, as in Krueger and Lustig (2010)). However, making the risk countercyclical
increases the price of risk substantially. Note that Epstein-Zin preferences are crucial
for this result, since if we imposed γ = ρ, we would obtain ηmε = −ρ̂ηcz and thus the
recalibration procedure would imply the same price of risk for any combination of
parameters.

The right panel of figure 3 plots the dependence of the risk premium on the risk aver-
sion parameter, for a representative-agent model and for a model with idiosyncratic
risk calibrated as in the previous section, again while keeping the quantity dynamics
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the same. We can observe that the presence of idiosyncratic risk not only makes the
risk premium rise faster with higher risk aversion, but it causes it to do so at an
increasing rate, leading to a convex relationship (whereas the dependence is linear
in RA model). This confirms that the combination of Epstein-Zin preferences with
idiosyncratic risk leads to an interaction that makes it easier to match observed risk
premia with lower levels of risk aversion.

4.4 Cyclical skewness

Recent research (Guvenen, Ozkan, and Song 2014) suggests that it is cyclical variation
in skewness, rather than variance of idiosyncratic shocks that is more consistent with
data. Although cyclical variance, as analyzed in the previous sections, is especially
tractable given the loglinear form of moment generating function for Gaussian
distribution, the model allows the use of other distributions as well, as long as their
moment generating function can be expressed in closed form. To see how much the
results described above depend on specific form of idiosyncratic risk, I solve the
model with ηi,t following a mixture of three normal distributions with time varying
means, as proposed by McKay (2017)9. Specifically I assume that

ηi,t ∼ constant +


N(µ1,t, σ

2
1) with prob. p1

N(µ2,t, σ
2
2) with prob. p2

N(µ3,t, σ
2
3) with prob. p3

where the constant captures normalization, so that E[exp(ηi,t)] = 1, the means are
given by

µ1,t = 0
µ2,t = µ2 − xt, µ2 < 0
µ3,t = µ3 − xt, µ3 > 0

and, as before, xt is a function of aggregate consumption growth:

xt = φx(∆ct − µz).

Individual consumption growth can belong either to the first mixture component,
which stands for the “normal” experience faced by a majority of households, or to one

9To be precise, I use the distribution of the permanent component of income shock faced by
employed agents in the model described in that paper.
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of the other two components which represent negative or positive jumps. Movements
in xt then shift the position of the second and third components relative to first one,
making the size of negative jumps larger during recessions (provided φx < 0) and
thus making the cross-sectional distribution of consumption growth more negatively
skewed.

The calibration of means, variances and probabilities of the mixture elements follows
McKay (2017), although I scale the overall size of the shock (i.e. means and standard
deviations of mixture components) by one half to achieve a variance comparable
to lognormal calibration used in previous sections. Sensitivity of xt is estimated
by regressing the time series for xt provided by Alisdair McKay on his website10

on US consumption growth, and the resulting coefficient is also scaled by one
half. The chosen parameters are thus: µ2 = −0.835, µ3 = 0.1970, σ1 = 0.0319,
σ2 = σ3 = 0.1668, p1 = 94.87%, p2 = 3.24%, p3 = 1.89% and φx = −7.285. At
the steady state, standard deviation of η with given parameters is 6.1%, or around
12.2% annualized, while the coefficient of skewness is 1.05 and of kurtosis 27.6, so
the distribution is slightly positively skewed and fat-tailed. Measured in terms of
plus/minus two standard deviations of aggregate consumption growth, skewness
ranges from -1.5 to 3.1 over the business cycle.

Table 3, organized similarly as table 2, contains unconditional moments from two
versions of a model with cyclical skewness. Again, I compare a version of the
model with β recalibrated to match steady state return to capital (HA3 column),
and another (HA4 column) with β and ρ recalibrated to match the dynamics of
output and consumption11. The results are largely comparable to those in table 2,
although the Sharpe ratio of 18% under skewed idiosyncratic shocks is somewhat
higher compared to 16% under lognormal shocks. Without adjusting individual
intertemporal elasticity of substitution, we again observe a change in the behavior of
aggregate consumption, although the change is not as strong as in the lognormal
case. Decomposition of risk premium is qualitatively also similar to the lognormal
case, but quantitatively the role of idiosyncratic risk is slightly higher in relative
terms.

10http://people.bu.edu/amckay/files/risk_time_series.csv
11It is possible to derive approximate formulas for adjusting the parameters as in the previous

section, although they are somewhat more involved due to the necessity of loglinearizing MGF
terms. However, qualitatively the direction of adjustment is same as before.
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data model: RA model: HA3 model: HA4

moments:
σ[∆yt] 1.90% 2.02% 2.01% 2.02%
σ[∆ct]/σ[∆yt] 0.56 0.50 0.76 0.53
σ[∆it]/σ[∆yt] 2.58 2.65 1.69 2.47
corr(∆yt,∆yt−1) 0.37 0.03 0.02 0.03
corr(∆ct,∆ct−1) 0.27 0.21 0.05 0.17
SR 0.39 0.121 0.189 0.184

risk price decomposition:
short run, ∆c - 39.1% 41.1% 26.4%
short run, x - 0.0% 26.1% 16.8%
long run, ∆c - 60.9% 20.8% 36.1%
long run, x - 0.0% 12.0% 20.8%

Table 3: Comparison of model-implied annualized moments under cyclical
skewness. Data: US quarterly series 1947-2016; see the appendix for definitions.
Model RA: calibrated as in table 1 without idiosyncratic risk. Model HA3: as in
table 1 and section 4.4, but setting β = 0.974 to match RA model steady state.
Model HA4: as in table 1 and section 4.4, but setting β = 0.974, ρ = 0.255 to
match RA model steady state and quantity dynamics. Standard deviations and
Sharpe ratio are annualized by doubling from quarterly values. The bottom
section shows relative contributions to the price of risk computed using the
loglinear approximation.
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5 Conclusion

In this paper, I have studied how preferences for early resolution of uncertainty and
idiosyncratic, uninsurable risk affect risk premia in a tractable macroeconomic model
with production. On one hand, the combination of the two elements implies that
households care about direct shocks as well as news about both aggregate consumption
and the amount or shape of individual risk, and if the latter varies cyclicaly over time,
both can increase the price of risk more than each element would in isolation. On
the other hand, when households can shift consumption intertemporally by investing
in productive capital, countercyclical risk affects their incentive to do so, and on
the aggregate level, the economy behaves as if households had lower intertemporal
elasticity of substitution, potentially leading to different behavior of macroeconomic
quantities. Nevertheless, at least in the setting analyzed here, one can maintain the
same quantity dynamics by suitably recalibrating preference parameters. Specifically,
if we are willing to assume that individual agents have higher intertemporal elasticity
of substitution, it is possible to compensate for the effect of cyclical risk on aggregate
consumption while keeping the price of risk higher.

There are several directions that could be pursued in further research. Introducing
elastic labor supply or habit formation would allow for greater flexibility in matching
macroeconomic dynamics. It might be also interesting to investigate independent
shocks to the process describing distribution of idiosyncratic risk, either as a source
of macroeconomic fluctuations or as an asset pricing factor, although identifying
such shocks might present a challenge. An additional direction to consider would
be to include stochastic volatility of aggregate shocks, which is another channel of
time-varying uncertainty often analyzed in the literature, in order to compare and
contrast the effects of “macro” and “micro” uncertainty on the economy. Finally,
closer comparison to models with more realistic structure of household heterogeneity
and trade between households would be useful in establishing the validity of the
modelling approach used in the present paper.
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A Appendix

A.1 Detrended model equations

Notation:

Lowercase variable names usually denote logarithms, e.g. kt = log(Kt). Starred
variables denote variables detrended by productivity, i.e. y∗t = log(Yt/Zt) = yt − zt.
Delta denotes 1st difference, e.g. ∆ct = ct − ct−1.

List of variables:

Variable Description

∆zt productivity growth rate
y∗t log detrendend output
k∗t log detrended capital
c∗t log detrended agg. consumption

∆ct growth rates of output, consumption
rkt log return to capital
pbt log bond price
rbt log return to risk-free bond
mt log of aggregate SDF
vt log of scaled value function
ψt log of scaled certainty equivalent
xt variance of individual consumption growth rates
εt productivity shock

Equations:

• The production block contains equations describing productivity growth, the
production function, capital accumulation, marginal product of capital, the
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Euler equation for investment and definition of consumption growth:

∆zt = µz + εt

y∗t = αk∗t

exp
(
k∗t+1 + ∆zt+1

)
= (1− δ) exp (k∗t ) + exp (y∗t )− exp (c∗t )

exp
(
rKt
)

= α exp ((α− 1)k∗t ) + 1− δ

1 = Et
[
exp

(
mt+1 + rKt+1

)]
∆ct+1 = c∗t+1 − c∗t + ∆zt+1

• The household block contains equations describing scaled value function, cer-
tainty equivalent, process of variance of individual consumption growth rates
and the stochastic discount factor:

vt = 1
1− ρ log (1− β + β exp((1− ρ)ψt))

exp((1− γ)ψt) = Et [exp((1− γ)(vt+1 + ∆ct+1−(γ/2)xt+1))]
xt+1 = µx + φx(∆ct+1 − µz)
mt+1 = log(β)− ρ∆ct+1 + (ρ− γ)(vt+1 − ψt + ∆ct+1)+(1/2)γ(1 + γ)xt+1

• The remaining equations describe price and return of the risk-free bond:

exp(pbt) = Et [exp (mt+1)]
rbt = −pbt−1

Steady state:

Setting productivity shocks to zero allows us to find a stationary steady state, which
corresponds to the balanced growth path in terms of original, undetrended variables.
We shall denote steady state values by dropping the time index and bars over the
variables.

• Along the balanced growth path, productivity and consumption grow at the
same rate, so ∆z = ∆c = µz. Idiosyncratic risk is at its average level: x̄ = µx.

• Given the constant consumption growth, we can solve for the value function
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and steady state SDF:

v̄ = 1
1− ρ log

(
1− β

1− βe(1−ρ)(µz−(γ/2)µx)

)
ψ̄ = v̄ + µz − (γ/2)µx

m̄ = log(β)− ρµz + 1
2γ(1 + ρ)µx

• Steady state SDF determines the return to capital, which in turn allows us to
solve for steady state capital, output and consumption:

r̄k = − log(β) + ρµz −
1
2γ(1 + ρ)µx

k̄∗ = 1
α− 1 log

exp
(
r̄k
)
− 1 + δ

α


ȳ∗ = αk̄∗

c̄∗ = log
(
exp(ȳ∗)− (exp(µz)− 1 + δ) exp(k̄∗)

)
• Finally, the SDF determines the bond price and return, which equals the return

to capital:

p̄b = log(β)− ρµz + 1
2γ(1 + ρ)µx

r̄b = − log(β) + ρµz −
1
2γ(1 + ρ)µx

A.2 Local vs. global solution

To find whether solving the model numerically with perturbation omits any substantial
nonlinearities, I also solve a version of the model with counter cyclical variance also
by using a projection method. I approximate consumption and value functions
as combinations of Chebyshev polynomials up to the 10-th degree and solve for
polynomial coefficients such that forward-looking conditions (i.e. the definition of
the value function and the Euler equation, with expectations evaluated by 5-point
Gauss-Hermite quadrature) hold exactly at a set of corresponding collocation nodes.
Table 4 shows the resulting Sharpe ratios (obtained as averages from a simulation
with each solution), which are very similar. Other moments are omitted as they
were virtually identical up to 3 decimal places. Thus it seems that for the model and
calibration studied here, nonlinearities do not matter very much.
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model: RA model: HA1 model: HA2

3rd order perturbation
Sharpe ratio 0.121 0.163 0.161
projection
Sharpe ratio 0.119 0.160 0.160

Table 4: Comparison of solutions from perturbation and projection methods.

A.3 Linearized solution

The model summarized above has a single state variable, detrended capital k∗t and
thus its inearized solution can be found explicitly. We shall denote deviations from a
steady state value by tilde, e.g. k̃∗t = k∗t − k̄∗. First, linearize key equations around
the steady state:

k̃∗t+1 = λ1k̃
∗
t − λ2c̃

∗
t − εt+1

r̃Kt = λ3k̃
∗
t

Et[r̃Kt+1] = −Et[m̃t+1]
m̃t+1 = −γ∆̃ct+1 + (ρ− γ)(ṽt+1 − ψ̃t)+(1/2)γ(1 + γ)x̃t+1

ṽt = κψ̃t

ψ̃t = Et
[
ṽt+1 + ∆̃ct+1 − (γ/2)x̃t+1

]
∆̃ct+1 = c̃∗t+1 − c̃∗t + ∆̃zt+1

∆̃zt+1 = εt+1

x̃t+1 = φx∆̃ct+1

where λ1, λ2, λ3 and κ are defined as

λ1 = exp
(
r̄k − µz

)
λ2 = exp

(
c̄∗ − k̄∗ − µz

)
λ3 = α(α− 1) exp

(
(α− 1)k̄∗ − r̄K

)
κ = β exp((1− ρ)(µz − (γ/2)µx))

We are looking for consumption policy in the form of c̃∗t = ηckk̃
∗
t .

Claim: if we can write the expected log SDF as Et[m̃t+1] = −ρ̂Et
[
∆̃ct+1

]
for some

ρ̂, then ηck can be found by using the method of undetermined coefficients as a
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(positive) solution to the quadratics

ρ̂λ2η
2
ck + (ρ̂− λ2λ3 − ρ̂λ1) ηck + λ1λ3 = 0.

Proof: substitute law of motion for capital and consumption policy into the linearized
Euler equation, take expectation (simply cancels shock), rearrange. There will be
two real roots, one positive, one negative (since ρ̂λ2 > 0 and λ1λ3 < 0), and the
positive one corresponds to the stable solution. �

Claim: our model satisfies the above with

ρ̂ = ρ− 1
2γ(1 + ρ)φx.

Proof: since

ṽt+1 − ψ̃t = ṽt+1 − Et[ṽt+1]− Et[∆̃ct+1] + (γ/2)Et[x̃t+1]

and
Et[ṽt+1 − ψ̃t] = −Et[∆̃ct+1] + (γ/2)Et[x̃t+1]

after bit of algebra, we get

Et[m̃t+1] = −
(
ρ− 1

2γ(1 + ρ)φx
)
Et
[
∆̃ct+1

]
�

Finally, we can also solve for the value function in the form of ṽt = ηvkk̃
∗
t , also by

using the method of undetermined coefficients. The result:

ηvk =
κ
(
1− γ

2φx
)
ηck (λ1 − λ2ηck − 1)

1− κ (λ1 − λ2ηck)
.

Having solved for the consumption and value functions, innovation to the log SDF
can be expressed as

mt+1 − Et[mt+1] =
(
γ(1− ηck) + (γ − ρ)(−ηvk) + 1

2γ(1 + γ)(−φx)(1− ηck)
)

(−εt)

Since typically γ > ρ, ηvk < 0 and φx < 0, each of the three added terms inside the
large parentheses is positive and can be understood as standing for short-run aggregate
consumption risk, long run risk and short-run idiosyncratic risk, respectively. To
further decompose long run risk, iterate forward on the definition of ṽt to obtain

ṽt =
∞∑
i=1

κi
(
Et[∆̃ct+i]−

1
2γEt[x̃t+i]

)
=
(

1 + 1
2γ(−φx)

) ∞∑
i=1

κiEt[∆̃ct+i]

so that the share of long run risk attributable to news about x can be taken as
1
2γ(−φx)

(1+ 1
2γ(−φx)) .
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A.4 Linearized solution with general MGF

The previous derivation of loglinear approximation can be relatively easily extended
to the case of a general moment-generating function describing the distribution
of idiosyncratic shocks. Specifically, let G(t, x) be the MGF as described in the
main text (normalized so that G(1, x) = 1), and denote the cumulant generating
function g(t, x) = log(G(t, x)). We will continue to assume that x is a scalar following
xt = µx + φx∆̃ct. The relevant equations for the value function and log-SDF are
modified as follows:

exp((1− γ)ψt) = Et

[
exp

(
(1− γ)

(
vt+1 + ∆ct+1 + 1

1− γ g(1− γ, xt+1)
))]

mt+1 = log(β)− ρ∆ct+1 + (ρ− γ)(vt+1 − ψt + ∆ct+1) + g(−γ, xt+1)

and their steady state values, given that x̄ = µx, are

v̄ = 1
1− ρ log

 1− β
1− βe(1−ρ)(∆c+ 1

1−γ g(1−γ,x̄))


ψ̄ = v̄ + ∆c+ 1

1− γ g(1− γ, x̄)

m̄ = log(β)− ρ∆c+ γ − ρ
1− γ g(1− γ, x̄) + g(−γ, x̄)

To solve for dynamics, linearize g wrt. x at t = −γ and t = 1− γ:

g(−γ, x) ≈ g(−γ, x̄) + θ(−γ)x̃

g(1− γ, x) ≈ g(1− γ, x̄) + θ(1−γ)x̃

where θ(t) = ∂g(t,x̄)
∂x

. Linearized equations then become

ṽt = κψ̃t

ψ̃t = Et
[
ṽt+1 + ∆̃ct+1 + (1/(1− γ))θ(1−γ)x̃t+1

]
m̃t+1 = −γ∆̃ct+1 + (ρ− γ)(ṽt+1 − ψ̃t) + θ(−γ)x̃t+1

where κ = β exp
(
(1− ρ)

(
∆c+ 1

1−γg(1− γ, µx)
))

. Everything else is the same as in
the previous case, and following the same argument we can derive effective inverse
IES:

ρ̂ = ρ+ γ − ρ
γ − 1θ(1−γ)φx − θ(−γ)φx
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and then ηck is (the positive) solution to

ρ̂λ2η
2
ck + (ρ̂− λ2λ3 − ρ̂λ1) ηck + λ1λ3 = 0

Using the method of undetermined coefficients, ηvk can be derived to be

ηvk =
κ
(
1 + 1

1−γ θ(1−γ)φx
)
ηck (λ1 − λ2ηck − 1)

1− κ (λ1 − λ2ηck)
Then one can show that the innovation to log-SDF is

mt+1 − Et[mt+1] =
(
γ(1− ηck) + (γ − ρ)(−ηvk) + θ(−γ)(−φx)(1− ηck)

)
(−εt+1)

which can again be used to decompose the risk premium, with the share of long run
risk attributable to news about x being ( 1

1−γ θ(1−γ)φx)
(1+ 1

1−γ θ(1−γ)φx) .

A.5 Data sources

Data moments in table 2 for macroeconomic variables are obtained from quarterly
national accounts data constructed by the U.S. Bureau of Economic Analysis and
published in the St. Louis Fed FRED database. The sample period is 1947Q1 -
2016Q2. Output and investment growth (∆y, ∆i) are computed as logarithmic
growth rates of GDP and gross private domestic fixed investment quantity indices
(NIPA table 1.1.3) divided by population (NIPA table 7.1). Consumption growth (∆c)
is computed as a weighted average of logarithmic growth rates in quantity indices
for nondurables and services consumption (NIPA table 1.1.3) divided by population,
with weights determined by nominal shares of both consumption components in
combined nominal nondurable+services consumption (NIPA table 1.1.5), i.e. using
the Tornqvist index method (however, simply summing both series in real chained
dollars yields almost identical results).

Data for financial returns are constructed from monthly dataset on Fama-French 3
factors published on Kenneth French’s website12. In place of the return on capital/firm
stock (Rs) I use the market return (i.e. the return on value-weighted portfolio of
all firms listed at NYSE, AMEX or NASDAQ), while the risk-free rate (Rb) is
represented by the return on 1-month Treasury bill. Returns are expressed in real
terms by subtracting CPI inflation (series CPIAUCSL from FRED) and aggregated
to quarterly frequency by summing monthly returns over the given quarter. The
resulting sample period is 1947Q1 - 2016Q3.

12http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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Abstrakt 

Tento článek zkoumá rizikovou prémii v ekonomice s nekompletními trhy a domácnostmi 

čelícími idiosynkratickému riziku ve spotřebě. Pokud je rozptyl idiosynkratického rizika 

proměnlivý v průběhu hospodářského cyklu a domácnosti preferují dřívější rozřešení 

nejistoty, pak ceny finančních aktiv budou ovlivněny nejen zprávami o současné a očekávané 

budoucí spotřebě (jako je tomu v modelech s reprezentativní domácností), ale také zprávami o 

současných a budoucích změnách distribuce individuální spotřeby napříč domácnostmi. 

V článku zkoumám, jestli tento dodatečný efekt může pomoci vysvětlit vysokou rizikovou 

prémii v produkční ekonomice, ve které je proces pro agregátní spotřebu endogenní a 

potenciálně může být ovlivněn přítomností idiosynkratického rizika. Analýzou neoklasického 

růstového modelu kombinovaného s Epstein-Zin preferencemi a jednoduše řešitelnou formou 

heterogenity domácností jsem zjistil, že proticyklické idiosynkratické riziko zvyšuje rizikovou 

prémii, ale zároveň snižuje efektivní ochotu domácností k intertemporální substituci, čímž se 

změní dynamika agregátní spotřeby. Pokud umožníme vyšší elasticitu intertemporální 

substituce na individuální úrovni, pak je díky flexibilitě Epstein-Zin preferencí možné zvýšit 

rizikovou prémii beze změny dynamiky agregátních veličin. 
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