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Abstract
We study a Bayesian persuasion model in which the state space is finite, the sender and the

receiver have state-dependent quadratic loss functions, and their disagreement regarding the

preferred action is of arbitrary form. This framework enables us to focus on the understudied

sender’s trade-off between the informativeness of the signal and the concealment of the state-

dependent disagreement about the preferred action. In particular, we study which states

are pooled together in the supports of posteriors of the optimal signal. We provide an

illustrative graph procedure that takes the form of preference misalignment and outputs

potential representations of the state-pooling structure. Our model provides insights into

situations in which the sender and the receiver care about two different but connected issues,

for example, the interaction of a political advisor who cares about the state of the economy

with a politician who cares about the political situation.

Keywords: Bayesian persuasion, strategic state pooling, preference misalignment, graph

procedure
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1 Introduction

Bayesian persuasion, pioneered by Kamenica and Gentzkow (2011), studies strategic

disclosure of information when the sender controls the information environment

(called signal) and the receiver controls the choice of action to be taken. As a

review by Kamenica (2019) suggests, this literature has provided many extensions

of the original model of Kamenica and Gentzkow (2011) with interesting qualitative

insights. However, full characterization of the optimal signal is generally difficult

even in the original model. There has been little progress on this front, and it has

been limited to a small number of special cases.1

We contribute to this literature by studying a special case of the original model that

has received little attention – a Bayesian persuasion model in which both the sender

and the receiver have state-dependent preferred actions. We characterize a quali-

tative property of the optimal signal called state-pooling structure, which describes

pools of states that cannot be discerned from one another by the optimal signal.

Specifically, we ask how the structure of state-dependent preference misalignment

affects the state-pooling structure of the optimal signal.

To illustrate the main point of this paper, we present an example of a politician

(receiver, he) and his advisor (sender, she). They both wish to implement some level

of government spending a ∈ R that is adapted to the current economic situation

captured by GDP per capita y, which takes one of three possible values: 1, 2, or

3. However, they each have a different vision of optimal spending as a function

of GDP per capita. The advisor’s payoff is uA (a, y) = − (a− ωA(y))2 and the

politician’s payoff is uP (a, y) = − (a− ωP (y))2, where ωA(y) and ωP (y) represent

the preferred spending of the advisor and the politician in state y, respectively.

The advisor designs an investigation (a signal) that can inform the politician about

the realization of GDP per capita. She does that strategically to influence the

spending choice of the politician. We are interested in how the structure of this

1We return to this point in the discussion of related literature in Section 2.
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signal depends on the form of misalignment between the advisor’s and politician’s

preferences captured by ωA and ωP , respectively.

Figure 1: The form of disagreement between the advisor (ωA) and the politician

(ωP ) matters for the structure of the optimal signal:

left plot: the advisor fully reveals state 1 and pools states 2 and 3 together;

right plot: the advisor pools states 1 and 2 together and states 2 and 3 together

(note: we consider only three levels of GDP per capita; the lines are drawn only

for clarity of the picture)

Figure 1 illustrates how the form of disagreement between the advisor’s and politi-

cian’s preferred spending influences the structure of the optimal signal.2 In the case

presented in the left plot, the advisor’s optimal signal fully reveals whether the state

of the economy is low or not, i.e., one of the two outcomes of her investigation fully

reveals the low state and the other leaves the politician uncertain about the high and

middle states – we say they are pooled together. Intuitively, both the advisor and

the politician want the highest spending in the low state, so their goals are aligned

in this state and the advisor wants to reveal it perfectly. However, they disagree

about whether the spending should be higher in the middle or high state, so the

advisor wants to attenuate this disagreement by pooling these two states together.

In the case presented in the right plot, the advisor’s optimal signal reveals whether

the economy is above or below average, i.e., one of the two outcomes of her investi-

2The structures of the optimal signals for the two cases considered in Figure 1 are derived using

results from Section 6.
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gation pools the low and middle states, while the other pools the middle and high

states. Intuitively, the advisor and the politician disagree about whether the spend-

ing should be higher in the low or middle state, so the advisor wants to attenuate

this disagreement by pooling these two states together. However, they both agree

that the spending should be higher in the middle state than in the high state, but

the politician prefers a greater spending difference between these two states than

the advisor. Therefore, the advisor wants to moderate the politician’s actions by

pooling these two states together.

In Section 3, we describe our model. We use the Bayesian persuasion framework

of Kamenica and Gentzkow (2011) with one-dimensional finite state space – the

sender’s preferred action. Both the sender and the receiver have quadratic loss

functions with bliss points depending on the state of the world. The structure of

misalignment is captured by function ρ mapping the state of the world (the sender’s

preferred action) to the receiver’s preferred action. The case of linear ρ with slope

1 corresponds to the benchmark of perfect alignment.3 We do not impose any

requirements on this function and we analyze the role of its shape for the qualitative

structure of the optimal signal in terms of state pooling.

In Section 4, we present general results on the pooling structure of the optimal

signal. The patterns of pooling are driven by the sender’s trade-off between (i)

the informativeness of the signal, which leads to better adaptation of the action to

the state of the world in states of alignment, and (ii) the revelation of the realized

mismatch of the sender’s and receiver’s preferred actions, which drives the action of

the receiver away from the sender’s preferred action. First, we show that the sender

generically benefits from revealing some information. The only cases in which non-

disclosure is optimal are when ρ is linear with a slope sufficiently different from 1.

Second, we demonstrate that the optimal signal does not induce an interior belief

(except in cases of non-disclosure).

3A state-independent intercept does not affect the choice of the signal because it is a “sunk

cost” for the sender.
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In Section 5, we propose a simple graph procedure to characterize the optimal struc-

ture of state pooling for a given ρ. This procedure consists of an analysis of ρ on

pairs of states and a test of pooling of more than two states. The crucial element of

this procedure is the slope of ρ between pairs of states, which plays the role of an

index of misalignment – if it is too high (disagreement about magnitude) or lower

than zero (disagreement about order), then it indicates space for pooling; otherwise,

it indicates space for separation.

In Section 6, we provide a full characterization of the state-pooling structure in the

case of three states of the world. The state-pooling structure is completely pinned

down by the shape of ρ except for the case in which ρ has a slope sufficiently different

from 1 for each of the three pairs of states. In that case, the choice of a particular

state-pooling structure depends both on the shape of ρ and the prior.

2 Related literature

First, we relate our work to the Bayesian persuasion literature. The most relevant

results from the seminal paper by Kamenica and Gentzkow (2011) are (i) conditions

for full disclosure or non-disclosure in the general form and (ii) comparative statics of

more aligned preferences. Regarding point (i), we go beyond these two “corner” cases

for the optimal signal, similarly as in the recent studies of Arieli et al. (2020) and

Kolotilin and Wolitzky (2020). We discuss the connection of our work to Kolotilin

and Wolitzky (2020) in more detail later in this section. Regarding point (ii), we

perform a different exercise with preference misalignment: we fix the preferences

and analyze how the structure of preference misalignment is related to the structure

of state pooling of the optimal signal.

The methodological progress in Bayesian persuasion on the front of providing a

general characterization of the structure of the optimal signal has been scarce.

First, with two or three states of the world, concavification provides an insight-

ful graphical method of solving the sender’s problem (Kamenica and Gentzkow,
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2011). Second, when the sender’s utility depends only on the expected state, the

“Rothschild-Stiglitz approach” (Gentzkow and Kamenica, 2016) and linear program-

ming methods (Kolotilin, 2018; Dworczak and Martini, 2019) have been used to

solve these problems. However, we are interested in situations with the sender’s

state-dependent preferred action and the role of the structure of preference misalign-

ment, where these methods do not deliver immediate answers. We propose a new

concavification-based approach of characterizing the state-pooling structure of the

optimal signal.

The closest paper to ours is Kolotilin and Wolitzky (2020). However, we differ

along several directions, and our paper can be viewed as complementary to theirs.

First, their sender prefers higher actions independently of the state, but experi-

ences state-dependent loss from mismatching the preferred action. In contrast, our

sender has state-dependent preferred actions, but her loss from mismatching the

preferred action is state-independent. Second, their receiver prefers higher actions

in higher states; we do not impose this assumption. Third, they provide sufficient

(and “almost necessary”) conditions for special patterns of “assortative” disclosure.

However, they do not provide a procedure for finding the pooling structure of the

optimal signal explicitly, and they avoid characterization of more complicated pat-

terns. In contrast, we work in a more specialized quadratic setting and do not

restrict ourselves to characterization of specific (pairwise) pooling structures. In-

stead, we propose a general procedure for finding the pooling structure. Finally,

the mechanisms driving the results in the two papers are different: in Kolotilin and

Wolitzky (2020), the information does not have value for the sender alone, so state

pooling emerges from pure persuasion concerns, while state pooling in our model is

driven by the interplay of the sender’s incentives to disclose the state and to hide

misalignment.

Two other related papers in Bayesian persuasion literature are Alonso and Camara

(2016) and Galperti (2019). Similar to our paper, both rely on the concavifica-

tion technique to obtain insights regarding the optimal signal. Alonso and Camara

(2016) consider the standard Bayesian persuasion model, but assume that the sender
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and the receiver have heterogeneous prior beliefs. While the sender in Alonso and

Camara (2016) uses the variation of the difference between the sender’s and re-

ceiver’s prior beliefs across the states of the world to design the optimal disclosure,

our sender uses the variation in the misalignment of the sender’s and receiver’s

bliss points across the states of the world.4 Galperti (2019) considers the standard

Bayesian persuasion model in which the sender and the receiver have a special type

of heterogeneous prior beliefs: the receiver attaches zero probability to some states

that are perceived with positive probability by the sender. While we restrict atten-

tion to a sender with state-dependent bliss actions and study the general patterns

of state pooling, Galperti (2019) makes weaker assumptions about preferences and

focuses on patterns of pooling of the states that have a priori zero probability for

the receiver.

Second, the results of our study are connected to the literature on persuasion games,

in which the sender chooses how to disclose her private verifiable information regard-

ing the state of the world. Milgrom (1981) and Milgrom and Roberts (1986) analyze

the conventional model of a persuasion game and establish the result on “unraveling”

of the sender’s private information leading to full disclosure. Dye (1985) and Shin

(1994) study state pooling in a similar game but with (second-order) uncertainty

of the receiver about whether the sender actually has some private information or

not. Seidmann and Winter (1997) analyze a persuasion game in which the sender

has state-dependent preferred actions, and they demonstrate that the “unraveling”

result still holds. The combination of these two features – second-order uncertainty

and state-dependent preferred actions – has been studied in a small number of re-

cent papers. The closest paper to ours is Hummel et al. (2018), in which unraveling

does not occur due to the presence of the receiver’s second-order uncertainty. In

the Bayesian persuasion model that we study, the sender’s disclosure mechanism

serves a similar role to the one in Hummel et al. (2018): the sender moderates the

4They demonstrate that, under some mild conditions on the sender’s and receiver’s preferences,

the sender generically chooses at least partial disclosure over non-disclosure. Similarly, in our

model, the non-disclosure conditions are stringent.
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receiver’s actions via pooling of the states for which the sender’s bliss-point line is

sufficiently flat relative to that of the receiver.

Finally, Miura (2018) studies how pooling equilibria can be characterized based on

a procedure that uses a masquerade graph introduced in Hagenbach et al. (2014). In

his procedure, a pool of states is formed by the types of the sender who are mutually

interested in masquerading, i.e., being perceived by the receiver as some other type

in the pool. In spirit, this resembles the procedure for discovery of the state-pooling

structure we introduce: a masquerade edge between two nodes (types) in Miura’s

graph procedure plays a similar role as an edge between two nodes (states) in our

graph procedure – it captures a motive for manipulative non-disclosure.

3 Model

We consider the standard Bayesian persuasion framework: a sender (S, she) de-

signs and commits to an information structure (a Blackwell experiment) about an

unknown state of the world ω ∈ Ω to influence the action a ∈ A of a receiver (R,

he). The state space is finite, Ω ⊂ R, |Ω| = n, and the action space is continuous,

A = R. The sender and the receiver have a common prior p0 ∈ ∆(Ω). They have

the following preferences:

uS = −(a− ω)2,

uR = −(a− ρ(ω))2,

where ρ : Ω→ R is arbitrary. Hence, state ω represents the preferred action of the

sender and ρ(ω) the preferred action of the receiver.5

5This model can be seen as a reduced form of a model in which the state of the world is two-

dimensional, y = (ωS , ωR), and the sender can design the experiment only about the dimension

that is relevant for her, ωS . The receiver then forms expectations about his relevant dimension,

ωR, using a common prior p0 ∈ ∆(Ω2), so ρ(ωS) = Ep0 [ωR|ωS ]. This formulation maps better to

the example with a politician and his advisor presented in the Introduction.
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As is standard, the sender can be seen equivalently as choosing a Bayes-plausible

distribution over posteriors, which we refer to as signal: π ∈ ∆(∆(Ω)) such that∑
p∈supp(π)

π(p)p(ω) = p0(ω) ∀ω ∈ Ω.6 (1)

The timing is as follows: the sender chooses a signal π, a posterior belief p is drawn

according to π, and the receiver takes an action a given the belief p. The solution

concept is subgame perfect equilibrium. Going backwards, the receiver’s optimal

action given a posterior belief p is a(p) = Ep [ρ(ω)]. Hence, the game reduces to the

following problem of the sender:

max
π∈∆(∆(Ω))

−Eπ

[
Ep

[
(Ep [ρ(ω)]− ω)2

]]
s.t.

∑
p∈supp(π)

π(p)p = p0, (2)

where Eπ [·] is the expectation over posteriors with respect to π and Ep [·] is the

expectation over states with respect to p.

4 General results about the optimal signal

In this section, we present general results about the optimal signal, and combine

them in the next section to construct the procedure that allows us to discover which

states are “pooled” together in the optimal signal.

To better understand how the sender chooses the signal, we start by inspecting the

trade-off she faces. We can rewrite the objective function from her problem (2) as

varπ (Ep [ω])− Eπ

[
(Ep [ω − ρ(ω)])2

]
. (3)

The first term captures the benefit of a more informative (in the sense of Blackwell)

π – ideally, she would like to reveal all states perfectly.7 The second term captures

6Kamenica and Gentzkow (2011) show that there exists an optimal π such that |supp(π)| ≤

min{|Ω|, |A|}. Hence, we restrict our search for the optimal signal only to signals satisfying

|supp(π)| ≤ n.
7To illustrate this point, imagine an interior prior p0, a signal π1 with only interior beliefs, and

a signal π2 similar to π1, but with more extreme beliefs: p2
k = p1

k + ε(p1
k − p0) ∀k, for some small

enough ε > 0. Then, varπ2 (Ep [ω]) = (1 + ε)2varπ1 (Ep [ω]) > varπ1 (Ep [ω]).
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the “cost” of revealed misalignment – ideally, she would like to “pool” some states

to hide the largest misalignment. Hence, the sender prefers to reveal the most

information so that the action is well adapted to the state. However, since she

does not control the action directly, she wants to exploit the form of misalignment

captured by ρ to manipulate the action of the receiver.

We can notice that the intercept of ρ does not play a role for the optimal signal.

Formally, consider any function ρ and take ρ′ = b + ρ for some arbitrary constant

b ∈ R. The sender’s objective function

varπ (Ep [ω])− Eπ

[
(Ep [ω − ρ′(ω)])2

]
(4)

can be rewritten in the form

varπ (Ep [ω])− Eπ

[
(Ep [ω − ρ(ω)])2

]
− 2bEp0 [ω − ρ(ω)] + b2. (5)

The last two terms in (5) do not depend on π, so the optimal signals under ρ and ρ′

coincide. Hence, a state-independent bias b (no matter how large) does not affect the

optimal signal.8 Intuitively, the state-independent bias acts as a sunk cost for the

sender. She cannot hide it by any manipulation of the signal because it is perfectly

known ex ante.

It follows from the irrelevance of the intercept of ρ that what matters for the optimal

signal is the overall shape of ρ, not agreement in particular states. In particular,

perfect agreement between the sender and the receiver about the preferred action

in a state of the world does not suffice for disclosure of that state. For example,

consider two states ω1 < ω2, ρ (ω1) = ω1, ρ (ω2) = 2ω1−ω2. Even though the sender

and the receiver perfectly agree about the preferred action in ω1, they substantially

disagree in ω2. It will be evident from the results in this section that full disclosure

of the “perfect-agreement state” ω1 is not optimal. Intuitively, due to the Bayesian

consistency constraint, full disclosure of ω1 would limit the opportunity to moderate

the substantial disagreement in ω2.9

8We can contrast this feature with cheap talk (Crawford and Sobel, 1982) in which the value

of b matters for the informativeness of the equilibrium communication.
9In fact, Proposition 1 will imply that it is optimal not to disclose anything in this example.
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4.1 Characterization of non-disclosure

In this subsection, we characterize the situation in which the sender does not benefit

from revealing any information to the receiver.

Proposition 1. The sender never (i.e., for any prior) benefits from providing any

information if and only if ρ is linear with the slope from (−∞, 0] ∪ [2,+∞).

Proof. The proof is in Appendix A. It identifies the conditions for concavity of the

expected utility of the sender as a function of the induced posterior by the principal-

minor test of the Hessian matrix of this function.

Surprisingly, it is relatively easy to introduce some information revelation in our

setting: it is sufficient to have a nonlinearity in ρ. The intuition for this generic

taste for information revelation is that information has high value for the sender

who wants to match the state of the world. The cases of optimal non-disclosure

identified in Proposition 1 are intuitive too: (i) misalignment in order, i.e., when

the sender and the receiver disagree about the order of the bliss actions (slope of ρ

negative) or (ii) misalignment in magnitude, i.e., when they agree about the order,

but the receiver overreacts relative to the sender (slope of ρ greater than two).

The non-disclosure characterized in Proposition 1 is never uniquely optimal for n ≥

3. To resolve such cases of indifference, we make the following assumption.

Assumption 1. Under indifference, the sender chooses not to disclose the states.

This assumption can be justified by the sender’s interest in saving effort on com-

munication when it is not needed. Technically, it greatly simplifies the analysis.

Substantively, it leads us to identify the least informative signal in the indifference

set of the sender. In Appendix B, we analyze the structure of our problem that gives

rise to the cases of indifference, and discuss the role of Assumption 1 as opposed to

other selection criteria.
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4.2 Full disclosure

In the next proposition, we provide a sufficient condition for full disclosure of the

state of the world.

Proposition 2. If ρ is linear with a slope in [0, 2], full revelation of the state is

always optimal (i.e., for any prior).

Proof. The proof is in Appendix A. It mostly follows from the proof of Proposition

1.

For general n, Proposition 2 provides only a sufficient condition for full disclosure,

but for n = 2 we can provide a full characterization. This special case is a cornerstone

of our analysis of the case with general n.

Lemma 1. For n = 2, the sender strictly prefers full revelation if and only if the

slope of ρ is in (0, 2). The sender is indifferent between any feasible signals if and

only if the slope of ρ is either zero or two. The sender strictly prefers no revelation

if and only if the slope of ρ is in (−∞, 0) ∪ (2,∞).

Proof. The proof is in Appendix A.

4.3 “Extremization” – non-existence of an interior posterior

After analyzing the conditions for extreme signals (non-disclosure and full disclo-

sure), we look at more structured signals. The following proposition provides the

key result enabling that analysis.

Proposition 3 (Extremization). Suppose non-disclosure is not optimal. Then, it

is never optimal to induce an interior posterior.

Proof. The proof is in Appendix A. It is constructed by contradiction with the

optimality of the signal, based on an improvement by splitting one of its posteriors.

12



We call this result “extremization” because it leads us from the interior of the simplex

to its extreme (boundary) subsimplexes.

We can apply Proposition 3 iteratively to eliminate the areas of posteriors that will

not appear in the optimal signal. This sharpens the idea about the structure of the

optimal signal, which is our main interest, and simplifies the search for it. We use

this idea in the next section.

5 State-pooling structure of the optimal signal

In this section, we go beyond the extreme cases of full disclosure and non-disclosure

and study how preference misalignment, captured by ρ, affects a qualitative property

of the optimal signal that we call state pooling. We define the state-pooling structure

of a signal and present an illustrative procedure for its discovery that builds on the

general results from Section 4.

5.1 Definitions

Definition 1. We say that states ωk1 , . . . , ωkm , for some k1, . . . , km ∈ {1, . . . , n}, are

pooled together (or form a pool of states) under signal π if the setM = {ωk1 , . . . , ωkm}

satisfies

∃p ∈ supp(π) : supp(p) = M & ∀p′ ∈ supp(π) s.t. p′ 6= p : M * supp(p′), (6)

where supp(·) denotes support.10 The set of all pools of states that signal π induces

is called the state-pooling structure of signal π.

10In intuitive terms, ωk1 , . . . , ωkm
are pooled together under signal π if π reveals whether the

event {ωk1 , . . . , ωkm
} occurred.
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The state-pooling structure of a signal can be captured graphically by representing

each state of the world by a node and each pool by highlighting the corresponding

set of nodes; an example is presented in Figure 2.

ω1 ω2

ω3 ω4

Figure 2: Example of a graphical representation of the state-pooling structure

when n = 4 and the signal induces posteriors supported on {ω1} and {ω2, ω3, ω4}

In the next subsection, we propose a procedure that aims to find the state-pooling

structure of the optimal signal for a given form of preference misalignment captured

by ρ. This procedure can easily be represented graphically; its desired output is a

graphical representation of the state-pooling structure of the type depicted in Figure

2, i.e., nodes representing states and highlighted pools. However, the proposed pro-

cedure may not identify the state-pooling structure of the optimal signal completely

in some cases, but may offer only candidates for optimal pools. Nevertheless, we

can often identify which of the candidate pools are certainly a part of the optimal

state-pooling structure. Hence, we introduce two types of highlighting in the proce-

dure – dashed (highlighting candidate pools) and full (highlighting pools certainly

belonging to the optimal state-pooling structure). Naturally, highlighting in full is

superior to highlighting in dashed because it expresses certainty.

An important working component of the graphical procedure is the edges between

pairs of nodes – they represent a pooling tendency of the corresponding states. We

will see that this pooling tendency is driven by the slope of ρ between pairs of

corresponding states; we denote the slope of ρ between states ωi and ωj by

sij = ρ(ωj)− ρ(ωi)
ωj − ωi

. (7)
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This object represents an index of misalignment between the receiver (the numera-

tor) and the sender (the denominator).11

A subroutine of our procedure relates to the well-known problem from computer

science called the clique problem. Thus, we borrow a few notions from graph theory.

Definition 2. Let G = (V,E) be an undirected graph (with V denoting the set of

nodes and E denoting the set of edges). We call a subset of nodes C ⊆ V clique if the

subgraph of G induced by C is complete (i.e., the nodes in C are fully connected).

A clique C is called maximal if there does not exist another clique strictly above C

(in the sense of inclusion).

The version of the clique problem that we are interested in is finding all maximal

cliques in an undirected graph. Systematic inspection of all subsets of nodes or the

Bron–Kerbosch algorithm can be used to solve this problem.

5.2 Procedure for discovery of the state-pooling structure

of the optimal signal

We present a procedure that inspects the form of misalignment function ρ and

reflects its implications for the state-pooling structure of the optimal signal on a

graph. The output are pools highlighted in full (which are certainly present in the

state-pooling structure of the optimal signal) and candidate pools highlighted in

dashed (which may be present in the state-pooling structure of the optimal signal).

We present an example of the output of this procedure at the end of this subsection

and a step-by-step illustration of the procedure leading to this output in Appendix

C.

11A similar object plays an important role for the pooling structure (of types) in Hummel et al.

(2018).
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Procedure for discovery of the state-pooling structure of the optimal

signal:

Input: Set of states Ω (|Ω| = n) and preference-misalignment function ρ : Ω→ R.

1. Create a fully connected graph on n nodes where node i corresponds to state

ωi.

2. Eliminate all edges ij such that the slope of ρ on ωi < ωj, sij, is in (0, 2).

3. Highlight in full each isolated node (i.e., a node with no edges leading to any

other node) as a singleton pool.

4. Among the remaining (i.e., non-isolated) nodes, list all maximal cliques.

5. For each maximal clique C:

for k from |C| to 2:

for all subsets M ⊆ C such that |M | = k:

• If M was ever inspected before, do nothing and continue iteration.

• If M is a subset of a highlighted set of nodes, do nothing and

continue iteration.

• Otherwise, apply the non-disclosure test to the inspected pool M :

Is ρ linear with slope in (−∞, 0]∪[2,∞) on the states corresponding

to the nodes in M?

– If yes, highlight pool M in dashed on output and continue

iteration.

– If no, denote M as inspected and continue iteration.

6. If any node belongs only to one highlighted pool (in dashed), highlight the

corresponding pool in full (if not already highlighted in full).

An example of the output produced by this procedure appears in the right panel

of Figure 3; an example of function ρ leading to this output is depicted in the left

panel.12 State 1 is isolated because the sender and the receiver agree on its position

12A step-by-step illustration of the procedure leading to this output appears in Appendix C.
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relative to other states both in order and in magnitude, so there is no reason for the

sender to leverage this state for manipulation of beliefs. States 2, 3, and 4 are pooled

together (they pass the non-disclosure test) because the sender tries to moderate

the action of the receiver, who would overreact in these states (disagreement about

magnitude). States 3 and 5 may be pooled together (disagreement about order) and

4 and 5 may also be pooled together (disagreement about order), but states 3, 4, and

5 are not pooled together even though they form a maximal clique (because they

do not pass the non-disclosure test) – the sender prefers to exploit some variation

in this collection of nodes. Hence, the optimal signal will induce posterior p1 = δ1

and posterior p2 supported on 2, 3, and 4. Moreover, it will induce at least one of

the posteriors p3 or p4 supported on 3 and 5 or 4 and 5, respectively.

Figure 3: Output of the graph procedure (right panel) for function ρ on the left

panel: 1 is isolated; 2, 3, and 4 are pooled together (they pass the non-disclosure

test); 3 and 5 may be pooled together; 4 and 5 may be pooled together; 3, 4, and 5

are not pooled together (they do not pass the non-disclosure test)

5.3 Discussion of the procedure

The idea underlying our proposed procedure is the iterative application of Proposi-

tion 1 and Proposition 3, which we call a top-down approach. Starting from the full

17



(n−1)-dimensional simplex,13 we can check whether non-disclosure is optimal using

Proposition 1. If it is optimal, the sender chooses a completely uninformative signal.

If it is not, Proposition 3 suggests that the optimal signal will induce posteriors on

the boundary of the (n − 1)-dimensional simplex. Hence, we focus on each of the

(n − 2)-dimensional boundary simplexes and apply the same test. Specifically, by

restricting the sender’s expected utility (as a function of the posterior) on a partic-

ular (n− 2)-dimensional simplex, we use Proposition 1 to check if non-disclosure is

optimal there:

• If it is optimal, then the sender cannot benefit from splitting the pool of states

corresponding to the vertices of the inspected (n − 2)-dimensional simplex.

However, the sender might not want to choose this pool of states at all, so this

pool of states constitutes only a candidate pool for the optimal signal.14

• If it is not optimal, then by Proposition 3 we eliminate all interior points

from the inspected (n − 2)-dimensional simplex and restrict our focus to its

(n−3)-dimensional boundary simplexes; for each of them, we repeat the same

steps.

Along the path from the full (n − 1)-dimensional simplex to lower-dimensional

simplexes due to elimination of “interior” posteriors outlined in the second bul-

let point, we move closer to the trivial case of 1-dimensional simplexes where we

apply Lemma 1.

Our procedure relies on this top-down approach in Step 5. However, compared to

the top-down approach, the procedure starts with a simplification of the problem

by identifying the only relevant subsets of nodes for this inspection – the maximal

cliques (Steps 2 and 4). This step is justified by the fact that the necessary condition

for optimality of non-disclosure on a simplex is optimality of non-disclosure on its

13We start from the (n− 1)-dimensional simplex because pn = 1− p1 − · · · − pn−1.
14Here, we also use Assumption 1. This simplifies the analysis because we do not need to keep

track of all equivalent splits.
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boundary simplexes, which follows easily from Proposition 1. Hence, if we have a

given collection of nodes with some pair of nodes in it that is not pooled, this whole

collection of nodes cannot form a pool.

In Steps 3 and 6 of the procedure, we exploit Bayesian consistency (and the interior

prior). In particular, the structure of the graph obtained after Step 2 is informative

about the state-pooling structure by itself: any isolated node represents a state that

is fully disclosed. In Step 5, we can identify only candidates for optimal pools, but,

in Step 6, Bayesian consistency can help us to determine which of them will be

certainly a part of the optimal pooling structure.

Note that we have not mentioned the prior in our identification of the optimal

pooling structure. This prior-independence of our procedure relies on a feature of

the quadratic setting: constant convexity/concavity structure in all points. However,

even in the quadratic setting, the pooling structure of the optimal signal itself is not

always prior-independent. This feature imposes a limit on how far we can go with

our simple prior-independent procedure in identifying the full pooling structure of

the optimal signal. In some cases, we also need to incorporate the prior into our

analysis at the end of the procedure (see Section 6 for examples).

6 Characterization of the state-pooling structure

for n = 3

In this section, we use the above procedure to characterize the state-pooling struc-

ture of the optimal signal in the simplest interesting case of three states (the case

of two states is trivial and is fully characterized in Lemma 1). We describe the

state-pooling structure for all possible cases of the form of ρ, which we capture

through s12, s23, and s13. For clarity of exposition, we divide the cases into five

classes (i)-(v) based on the features of the resulting state-pooling structure and the

role of the prior. Class (i) corresponds to full disclosure, class (ii) corresponds to
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signals that fully disclose one of the states, classes (iii) and (iv) correspond to signals

that reveal some information without fully revealing any of the states, and class (v)

corresponds to non-disclosure. Within a given class, we use letters to distinguish

between particular state-pooling structures.

Proposition 4. Assume that there are three states of the world, Ω = {ω1, ω2, ω3}.

Depending on the form of ρ, as pinned down by s12, s23, and s13, the state-pooling

structure of the optimal signal is as follows:

s12 s23 s13 state-pooling structure

i ∈ (0, 2) ∈ (0, 2) ∈ (0, 2) {{ω1} , {ω2} , {ω3}}

ii.a ∈ (0, 2) /∈ (0, 2) ∈ (0, 2) {{ω1} , {ω2, ω3}}

ii.b /∈ (0, 2) ∈ (0, 2) ∈ (0, 2) {{ω3} , {ω1, ω2}}

iii.a /∈ (0, 2) ∈ (0, 2) /∈ (0, 2) {{ω1, ω2} , {ω1, ω3}}

iii.b ∈ (0, 2) /∈ (0, 2) /∈ (0, 2) {{ω2, ω3} , {ω1, ω3}}

iii.c /∈ (0, 2) /∈ (0, 2) ∈ (0, 2) {{ω1, ω2} , {ω2, ω3}}

iv15 /∈ (0, 2) /∈ (0, 2) /∈ (0, 2)
depending on s12, s23, s13, and prior,

either (iii.a), (iii.b), or (iii.c) pooling

v s12 = s23 = s13 = s /∈ (0, 2) {{ω1, ω2, ω3}}

Proof. The proof is in Appendix A.

The observed state-pooling structures emerge from the interaction of the two main

forces that drive the sender’s choice. On the one hand, the sender wants to disclose

the states so that the induced receiver’s actions vary sufficiently with the state of

the world. On the other hand, she wants to pool the states together to dampen

15s12 = s23 = s13 = s /∈ (0, 2) corresponds to non-disclosure, so we exclude this combination

from case (iv) and denote it as a separate case (v). See Appendix A for details on the choice from

(iii.a), (iii.b), and (iii.c).
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that variation if there is a severe misalignment in either order or magnitude in some

pairs of states. The slope of ρ for states ωi and ωj, sij (i, j ∈ {1, 2, 3}, i 6= j), serves

as an index that can capture the misalignment in either order or magnitude in that

pair of states.

In case (i), there is no severe preference misalignment in either pair of states, so

the sender fully discloses each state. In case (ii.a), s23 captures a severe preference

misalignment in the pair of states ω2, ω3, so the sender pools these states together

to conceal the misalignment but reveals state ω1 to maximize the informativeness

of the signal. In case (iii.a), s12 and s13 capture a severe preference misalignment in

two pairs of states, so the sender pools the respective pairs together but still reveals

some information: {{ω1, ω2} , {ω1, ω3}}. In case (iv), there is a misalignment in each

of the three pairs of states and the optimal state-pooling structure is sensitive to

the prior and to the relation between the slopes of ρ.

A notable feature of the state-pooling structure of the optimal signal under n = 3 is

that the sender never chooses to fully disclose the middle state of the world ω2 and

pool ω1 and ω3 together. For that to be the case, it would need to hold s13 /∈ (0, 2),

s12 ∈ (0, 2), and s23 ∈ (0, 2), which cannot happen.16 The intuition is that full

disclosure of ω2 and pooling of ω1 and ω3 is not in line with the sender’s preference

for maximizing the variance of the induced posterior beliefs. A potentially better

way to leverage state ω2 is to form two pools {ω2, ω1} and {ω2, ω3} because it can

induce relatively more variation in the receiver’s actions.

7 Conclusion

We consider a Bayesian persuasion model in which both the sender and the receiver

have state-dependent preferred actions. We specialize to a quadratic-utility setting

to simplify the otherwise nontrivial problem of characterizing the optimal signal. In

16Note that s13 = ρ(ω3)−ρ(ω1)
ω3−ω1

= 1
(ω3−ω2)+(ω2−ω1) (s23 (ω3 − ω2) + s12 (ω2 − ω1)) and (0, 2) is a

convex set.
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this framework, we make the trade-off that drives the sender’s choice of the signal

transparent: on the one hand, the sender wants to reveal information to adapt the

action to the state of the world; on the other hand, she wants to hide information

to conceal the misalignment between her and the receiver.

We focus on characterization of the state-pooling structure of the optimal signal.

In particular, we link the form of misalignment between the sender and the receiver

in their preferred (state-dependent) actions to the state-pooling structure of the

sender’s optimal signal. To achieve this goal, we propose an illustrative graphical

procedure for finding the sets of states that are pooled together in the supports of

posteriors of the optimal signal.

Our model naturally suits the analysis of influence in political economy. The sender’s

and receiver’s (state-dependent) single-peaked preferences over the continuous ac-

tion space are consistent with ideology-based preferences over a continuous set of

policy alternatives. That set could represent potential allocations of a resource such

as the amount of budget spending on a public good. Thus, our framework can

capture an arbitrary form of ideological disagreement between a lobbyist and a poli-

cymaker regarding the preferred state-dependent policy and yield predictions about

the structure of the lobbyist’s chosen information disclosure.

Our analysis motivates a number of directions for further research. First, further

investigation and economic interpretation of particular state-pooling patterns that

emerge when there are more than three states of the world might be of interest.

Second, more progress could be made on analyzing state-pooling patterns that may

emerge under loss functions of a more general form.
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Appendix

A Technical details and proofs

A.1 The structure of the sender’s problem

We are interested in the solution of the sender’s problem

max
π∈∆(∆(Ω))

−Eπ

[
Ep

[
(Ep [ρ(ω)]− ω)2

]]
s.t.

∑
p∈supp(π)

π(p)p = p0. (8)

We can rewrite the objective function as

− Eπ

[
Ep [ρ(ω)]2 − 2Ep [ρ(ω)] Ep [ω] + Ep

[
ω2

]]
. (9)

Using the Bayesian consistency condition ∑
p π(p)p = p0, we can see that the last

term becomes

− Ep0

[
ω2

]
. (10)

Therefore, the solution to the problem above is the same as the solution to the

problem

max
π∈∆(∆(Ω))

Eπ [Ep [ρ(ω)] (2Ep [ω]− Ep [ρ(ω)])] s.t.
∑

p∈supp(π)
π(p)p = p0. (11)

A general approach to solving this problem is concavification of the function

g(p) = Ep [ρ(ω)] (2Ep [ω]− Ep [ρ(ω)]). (12)

We use the parametrization g(p) = g(p1, p2, . . . , pn−1), where pn = 1−p1−· · ·−pn−1.

We collect the free variables in the vector

p̄ = (p1, . . . , pn−1)′.

We also denote

ρ̄ = (ρ(ω1)− ρ(ωn), . . . , ρ(ωn−1)− ρ(ωn))′,

ω̄ = (ω1 − ωn, . . . , ωn−1 − ωn)′.
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With this notation, we can write

g(p̄) = p̄′ [2ρ̄ω̄′ − ρ̄ρ̄′]︸ ︷︷ ︸
G

p̄+ [2ωnρ̄′ − ρnρ̄′ + 2ρnω̄′ − ρnρ̄′]p̄+ 2ρnωn − ρ2
n. (13)

Hence, the curvature of g is driven by matrix G because the Hessian matrix is

H = G+G′.17 (15)

The ij element (i, j ∈ {1, . . . , n− 1}) of H is

Hij = ∂2g(p)
∂pi∂pj

= 2{[ρ(ωi)− ρ(ωn)](ωj − ωn)− [ρ(ωi)− ρ(ωn)][ρ(ωj)− ρ(ωn)]

+[ρ(ωj)− ρ(ωn)](ωi − ωn)}. (16)

This special structure of the problem implies that general submatrices of order 3 (for

n ≥ 4) of the Hessian matrix H have zero determinants.18 Hence, by the Laplace

expansion of determinants, all submatrices of order k ≥ 3 have zero determinants.

We can deduce from this observation, using the fact that the determinant rank of

a matrix is equal to the column/row rank of the matrix,19 that H has at most

two non-zero eigenvalues. Therefore, there are at least n − 3 orthogonal directions

(in space Rn−1 3 p̄) that span the space along which g is linear, and at most two

orthogonal directions that span the space (orthogonal to the space spanned by the

linear directions) on which g has a less trivial shape.

17We can also rewrite g as a linear-quadratic form

g(p̄) = 1
2 p̄
′Hp̄+ [2ωnρ̄′ − ρnρ̄′ + 2ρnω̄′ − ρnρ̄′]p̄+ 2ρnωn − ρ2

n. (15)

18Proof is available upon request. It is basically just tedious algebra.
19The determinant rank of H is the size k of the largest k× k submatrix with a non-zero deter-

minant. The column/row rank of H is the dimension of the space spanned by the columns/rows

of H. It is straightforward to show that these ranks are equal.
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A.2 Proofs

Proof of Proposition 1. The sender does not benefit from providing any information

if and only if g is concave.20 g is concave if and only if its Hessian matrix is negative

semidefinite, which can be checked with the test on its principal minors.

Suppose n ≥ 3 (the case n = 2 is covered separately in Lemma 1). Let ∆k be a

principal minor of order k of the Hessian matrix of g. Since ∆k = 0 for k ≥ 3 (see

the discussion above), a necessary and sufficient condition for g to be concave is

∆1 ≤ 0 and ∆2 ≥ 0 for all ∆1,∆2.

Let ∆i
1 be the first-order principal minor obtained from row (column) i:

∆i
1 = 2 (ρ (ωi)− ρ (ωn)) (2 (ωi − ωn)− (ρ (ωi)− ρ (ωn))) . (17)

Let ∆ij
2 be the second-order principal minor obtained from rows (columns) i and j:

∆ij
2 = −4[(ρ(ωi)− ρ(ωj))(ωj − ωn)− (ρ(ωj)− ρ(ωn))(ωi − ωj)]2. (18)

We can see that ∆ij
2 ≤ 0. Hence, g is concave or convex only if ∆2 = 0 for all ∆2.

This condition yields a system of (n−1)(n−2)
2 equations

∆ij
2 = 0, i, j ∈ {1, ..., n− 1}, i 6= j. (19)

Under the natural assumption that ω1 < · · · < ωn (which is without loss of general-

ity), we obtain from ∆ij
2 = 0

ρ (ωj)− ρ (ωi)
ωj − ωi

= ρ (ωn)− ρ (ωj)
ωn − ωj

(20)

or, equivalently,
ρ (ωj)− ρ (ωi)

ωj − ωi
= ρ (ωn)− ρ (ωi)

ωn − ωi
. (21)

20The “if” part follows directly from the definition of concavity. The “only if” part would also

follow directly from the definition of concavity if the sender did not benefit from providing any

information for every prior. But if the sender does not benefit from providing any information only

in one prior, because g is a linear-quadratic form, this property extends to all priors.
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Therefore, the system of equations (19) gives rise to (n−1)(n−2)
2 slope equality condi-

tions. From (20) and (21), we have

j = n− 1, i = n− 2 : ρ (ωn)− ρ (ωn−1)
ωn − ωn−1

= ρ (ωn−1)− ρ (ωn−2)
ωn−1 − ωn−2

= ρ (ωn)− ρ (ωn−2)
ωn − ωn−2

,

j = n− 2, i = n− 3 : ρ (ωn)− ρ (ωn−2)
ωn − ωn−2

= ρ (ωn−2)− ρ (ωn−3)
ωn−2 − ωn−3

= ρ (ωn)− ρ (ωn−3)
ωn − ωn−3

,

...

j = 2, i = 1 : ρ (ωn)− ρ (ω2)
ωn − ω2

= ρ (ω2)− ρ (ω1)
ω2 − ω1

= ρ (ωn)− ρ (ω1)
ωn − ω1

.

Hence, system (19) is equivalent to a linearity of ρ:

s := ρ (ω2)− ρ (ω1)
ω2 − ω1

= ρ (ω3)− ρ (ω2)
ω3 − ω2

= · · · = ρ (ωn)− ρ (ωn−1)
ωn − ωn−1

. (22)

Finally, given that ∆2 = 0 for all ∆2 holds, one can establish whether g is concave

or convex based on the sign of ∆1. Inspecting the sign of (17) yields:

∆i
1 ≥ 0 ⇐⇒ (ρ (ωn)− ρ (ωi) ≥ 0) ∧ ρ (ωn)− ρ (ωi)

ωn − ωi
≤ 2 ⇐⇒ 0 ≤ s ≤ 2. (23)

The complement identifies the concavity slopes (including the borderline slopes s ∈

{0, 2}).

Proof of Proposition 2. This proposition is basically proven in the proof of Propo-

sition 1, using the fact that g is convex if and only if ∆1 ≥ 0 and ∆2 ≥ 0 for all ∆1,

∆2. The only difference is that the convexity of g is only sufficient for optimality

of full disclosure, but is not necessary (we can provide an example of optimal full

disclosure with non-convex g).

Proof of Lemma 1. For n = 2, g is a quadratic function, so its second derivative

completely characterizes its curvature, which completely characterizes the type of

optimal signals. In particular, let ω1 < ω2. Then,

∂2g(p1)
∂p2

1
= 2 (ρ (ω1)− ρ (ω2)) (2 (ω1 − ω2)− (ρ (ω1)− ρ (ω2))) , (24)

which is strictly positive if and only if the slope of ρ is in (0, 2) (strict convexity and

full disclosure), strictly negative if and only if the slope of ρ is in (−∞, 0) ∪ (2,∞)
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(strict concavity and non-disclosure), and zero if and only if the slope of ρ is either

zero or two (linearity and indifference).

Proof of Proposition 3. Non-disclosure is optimal if and only if g is concave. Hence,

if non-disclosure is not optimal, g is not concave. Therefore, g has to have a direction

along which it is strictly convex.21

Suppose (toward contradiction) that it is optimal to induce an interior posterior,

i.e., there exists a posterior p in the support of the optimal signal π such that

p(ω) > 0 ∀ω. Then, we can split p along a strictly convex direction to q1 and q2, i.e.,

there exists some λ ∈ (0, 1) such that p = λq1 + (1 − λ)q2. Then, π′ formed from

π by replacing p by q1 with probability λπ(p) and q2 with probability (1 − λ)π(p)

is Bayes-plausible and it induces a strict improvement for the sender because, from

strict convexity of g along the direction determined by q1 and q2,

Eπ′ [g(p)]− Eπ [g(p)] = π(p)(λg(q1) + (1− λ)g(q2)− g(p)) > 0. (25)

This is a contradiction with optimality of π.

Proof of Proposition 4. We derive the state-pooling structure for the form of ρ for

each case presented in the table of Proposition 4 using the graph procedure presented

in Section 5.2.

Case (i). Since s12, s23, s13 ∈ (0, 2), Step 2 of the procedure eliminates all edges, so

each node is highlighted in full in Step 3. Thus immediately after Step 3, the pro-

cedure yields the state-pooling structure of the optimal signal {{ω1} , {ω2} , {ω3}}.

Case (ii.a). Since s12, s13 ∈ (0, 2) and s23 /∈ (0, 2), after Step 2 of the procedure,

node 1 is isolated (thus, it is highlighted in full in Step 3) and there is an edge left

between nodes 2 and 3. Since the pool {2, 3} is a maximal clique (Step 4) and ρ is

obviously linear with slope from (−∞, 0] ∪ [2,∞) on states ω2 and ω3, this pool is

highlighted in dashed in Step 5. Finally, it is highlighted in full in Step 6 because

21This is independent of the position because g is a linear-quadratic form.
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nodes 2 and 3 belong only to this pool. Therefore, the state-pooling structure of the

optimal signal is {{ω1} , {ω2, ω3}}.

Case (ii.b). Analogous to case (ii.a).

Case (iii.a). Since s12, s13 /∈ (0, 2) and s23 ∈ (0, 2), after Step 2 of the procedure,

there are two edges left: one between nodes 1 and 2 and one between nodes 1 and 3.

Since both pools {1, 2} and {1, 3} are maximal cliques (Step 4) and ρ is obviously

linear with slope from (−∞, 0]∪[2,∞) on states ω1, ω2 and ω1, ω3, respectively, these

pools are highlighted in dashed in Step 5. Finally, they are highlighted in full in Step

6 because node 2 belongs only to pool {1, 2} and node 3 belongs only to pool {1, 3}.

Therefore, the state-pooling structure of the optimal signal is {{ω1, ω2} , {ω1, ω3}}.

Case (iii.b). Analogous to case (iii.a).

Case (iii.c). Analogous to case (iii.a).

Case (iv). We assume that s12 = s23 = s13 = s /∈ (0, 2) does not hold (this case is

covered by case (v)). Thus, the graph procedure yields the candidate pools {ω1, ω2},

{ω2, ω3}, and {ω1, ω3} (corresponding to the pools of nodes highlighted in dashed

in the graph). To determine the optimal state-pooling structure given the set of

candidate pools is non-trivial.

Denote the n-th directional derivative of a function f : R2 → R along a direction

(a, b) by Dn
(a,b)f . Denote p1 := Pr (ω1) and p2 := Pr (ω2). From the proof of Propo-

sition 1, the nonlinearity in ρ implies that there exists a direction (a, b) along which

g (p1, p2) (defined in (12)) is strictly convex. The set of all such directions is pinned

down by the condition

D2
(a,b)g (p) > 0, (26)
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which rewrites as (assuming s13 6= 0 and s23 6= 0; see below for the discussion of

these cases)

a2 (ρ (ω1)− ρ (ω3)) [2 (ω1 − ω3)− (ρ (ω1)− ρ (ω3))] +

b2 (ρ (ω2)− ρ (ω3)) [2 (ω2 − ω3)− (ρ (ω2)− ρ (ω3))] +

abρ(ω2)−ρ(ω3)
ρ(ω1)−ρ(ω3) (ρ (ω1)− ρ (ω3)) [2 (ω1 − ω3)− (ρ (ω1)− ρ (ω3))] +

abρ(ω1)−ρ(ω3)
ρ(ω2)−ρ(ω3) (ρ (ω2)− ρ (ω3)) [2 (ω2 − ω3)− (ρ (ω2)− ρ (ω3))] > 0.

(27)

Next, s13 /∈ (0, 2) ∧ s23 /∈ (0, 2) implies22
(ρ (ω1)− ρ (ω3)) [2 (ω1 − ω3)− (ρ (ω1)− ρ (ω3))] ≤ 0,

(ρ (ω2)− ρ (ω3)) [2 (ω2 − ω3)− (ρ (ω2)− ρ (ω3))] ≤ 0.
(28)

We can see from (27) and (28) that if (a, b) is a direction along which g is strictly

convex, both a and b have to be non-zero. Thus, we can normalize the direction

(a, b) to (a
b
, 1) and denote x := a

b
. Hence, the set of directions along which g is

strictly convex is characterized by

x2 (ρ (ω1)− ρ (ω3)) [2 (ω1 − ω3)− (ρ (ω1)− ρ (ω3))] +

(ρ (ω2)− ρ (ω3)) [2 (ω2 − ω3)− (ρ (ω2)− ρ (ω3))] +

xρ(ω2)−ρ(ω3)
ρ(ω1)−ρ(ω3) (ρ (ω1)− ρ (ω3)) [2 (ω1 − ω3)− (ρ (ω1)− ρ (ω3))] +

xρ(ω1)−ρ(ω3)
ρ(ω2)−ρ(ω3) (ρ (ω2)− ρ (ω3)) [2 (ω2 − ω3)− (ρ (ω2)− ρ (ω3))] > 0.

(29)

Inspecting (29) given (28), one observes that the first two terms in (29) are non-

positive. Therefore, the sum of the last two terms must necessarily be strictly

positive for any direction along which g is strictly convex. Further, if the third term

is strictly negative, the fourth term is non-positive and vice versa. So, if either of the

last two terms is strictly negative, their sum is also strictly negative. Equivalently,

if their sum is non-negative, they both have to be non-negative. Moreover, if their

sum is strictly positive, they cannot both be zero. But if any one of the last two

terms in (29) is strictly positive, then by (28)

x
ρ(ω1)− ρ(ω3)
ρ(ω2)− ρ(ω3) < 0. (30)

22At least one of these terms is non-zero due to the assumption that s12 = s23 = s13 = s /∈ (0, 2)

does not hold.
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To summarize, if (x, 1) is a direction along which g is strictly convex, then
x > 0 if ρ(ω1)−ρ(ω3)

ρ(ω2)−ρ(ω3) < 0 (⇐⇒ s13
s23

< 0),

x < 0 if ρ(ω1)−ρ(ω3)
ρ(ω2)−ρ(ω3) > 0 (⇐⇒ s13

s23
> 0).

(31)

By similar arguments, if s13 = 0,23 the necessary condition for (x, 1) being the

direction along which g is strictly convex is
x > 0 if s23 > 0,

x < 0 if s23 < 0
(32)

and if s23 = 0, the necessary condition for (x, 1) being the direction along which g

is strictly convex is 
x > 0 if s13 > 0,

x < 0 if s13 < 0.
(33)

Given some interior prior, the sender splits it along a direction along which g is

strictly convex and induces posteriors that lie on two edges of the simplex. We can

distinguish the following cases:

1. If s13
s23

< 0 or s13 = 0 ∧ s23 > 0 or s23 = 0 ∧ s13 > 0, then x > 0. Hence,

the optimal split is either of the form (q1, 0, 1 − q1), (1 − q2, q2, 0) (pooling

case (iii.a)) or of the form (q1, 1 − q1, 0), (0, q2, 1 − q2) (pooling case (iii.c))

depending on the prior.

2. If s13
s23

> 0 or s13 = 0 ∧ s23 < 0 or s23 = 0 ∧ s13 < 0, then x < 0. In this case,

we need to distinguish further:

(a) If the optimal split goes along the direction (−1, 1), it is of the form

(q1, 0, 1− q1), (0, q2, 1− q2) (pooling case (iii.b)).

(b) If the optimal split goes along direction (x, 1) with x < −1, it is either of

the form (q1, 0, 1− q1), (0, q2, 1− q2) (pooling case (iii.b)) or of the form

(q1, 1− q1, 0), (0, q2, 1− q2) (pooling case (iii.c)) depending on the prior.

23Notice that s13 and s23 cannot be simultaneously zero by assumption, because this would lead

to case (v).
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(c) If the optimal split goes along direction (x, 1) with x > −1, it is either of

the form (q1, 0, 1− q1), (0, q2, 1− q2) (pooling case (iii.b)) or of the form

(q1, 0, 1− q1), (q2, 1− q2, 0) (pooling case (iii.a)) depending on the prior.

Case (v). Proposition 1 applies and under Assumption 1 yields non-disclosure.

B Comment on Assumption 1

The structure of function g (see (12)) uncovered in Section A.1 implies that for

n ≥ 4, there always exists a direction along which g is linear. Therefore, even when

g is concave and non-disclosure is optimal, it is never uniquely optimal for n ≥ 4.

In particular, the sender is indifferent between sticking to the prior and splitting it

to some posteriors from the space determined by the linear directions of g (and the

prior), possibly all the way to the boundaries of the original simplex. Moreover, if

g is concave, it is also concave on the boundary simplexes and we can repeat the

same argument, proceeding downward in dimensions. For n = 3, by Proposition

1, g is concave only if it is linear in one direction. Hence, even for n = 3, non-

disclosure is not uniquely optimal and the sender is indifferent between choosing

a non-informative signal (keeping the belief at the prior) and splitting the prior

into posteriors along the linear direction, all the way to the edges of the simplex.

Therefore, pairwise signals (i.e., signals leading to posteriors supported on at most

two states) are also always optimal.24

In the main text, we impose Assumption 1, which resolves indifference in favor of

non-disclosure of states. It is a natural assumption that can be justified by the

sender not wasting resources (time and energy) on communication when it is not

needed (although the cost of communication is not featured explicitly in our model).

This selection criterion simplifies the analysis. First, it enables us to avoid imposing

some ad hoc assumptions about the selection of specific partial disclosure patterns

24This result is reminiscent of the result of Kolotilin and Wolitzky (2020) that there is no loss

of generality from focusing on pairwise signals in their setup.
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from the indifference set. Second, a different natural assumption might be that

the sender resolves her indifference in favor of splitting. However, this assumption

would require us to impose some additional ad hoc assumptions about the selection

of specific directions along which to split (for higher n) in order to deliver concrete

predictions. Moreover, such a resolution of indifference would be very sensitive to

the prior (even in terms of the predicted pooling structure), so we would need to

keep track of the specific directions of indifference, which would render the analysis

much more cumbersome.25

C Demonstration of the procedure for discovery of the state-

pooling structure of the optimal signal

We demonstrate the application of the procedure for discovery of the state-pooling

structure of the optimal signal (presented in Section 5) to the example introduced in

Figure 3 (for convenience, we reproduce it in Figure 4 in this section). This demon-

stration is accompanied by Figure 5. Red color in Figure 5 represents highlighting

as defined in Section 5 – final pools in full and candidate pools in dashed. Green

color denotes cliques chosen for application of the non-disclosure test (Step 5 of the

procedure).

25To illustrate the dependence on the prior, for n = 3 under linear ρ (which is sufficient for

global concavity or convexity), the direction of linearity is (−ω3−ω2
ω3−ω1

, 1)′. Since the first component is

strictly between 0 and -1, we can see that, while the non-disclosure is also optimal, the state-pooling

structure (defined in Section 5) of the optimal informative signal can be either {{ω1, ω3}, {ω2, ω3}}

or {{ω1, ω3}, {ω1, ω2}}, depending on the prior.
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Figure 4: Preference misalignment function ρ considered for the demonstration of

the graph procedure

Figure 5: Illustration of the execution of the procedure, applied to the input from

Figure 4; the output is in (f); red color represents highlighting as defined in

Section 5 – final pools in full and candidate pools in dashed; green color denotes

cliques chosen for application of the non-disclosure test

The inputs to the procedure are the values of ω and ρ (ω) from Figure 4. From

formula (7), we obtain the values of all sij: s12 = 0.5, s13 = 1.5, s14 = 5.5
3 , s15 = 2.5

4 ,

s23 = 2.5, s24 = 2.5, s25 = 2
3 , s34 = 2.5, s35 = −1

4 , s45 = −3.

In (a) in Figure 5, we start with a fully connected graph on five nodes (n = 5)

corresponding to states 1, 2, ..., 5.
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In (b) in Figure 5, we observe the same graph after the application of Steps 2 and 3

of the procedure. We removed all edges ij such that sij ∈ (0, 2). As a result, node

1 became isolated, so we highlighted it in full. Hence, we can leave out node 1 from

further analysis and focus on nodes 2, 3, 4, and 5.

In (c) in Figure 5, we proceed to Steps 4 and 5 of the procedure. It is easily seen that

there are two maximal cliques: one formed by nodes 2, 3, and 4 and one formed

by nodes 3, 4, and 5. First, we inspect the maximal clique formed by 2, 3, and

4 (highlighted in green) and we apply the non-disclosure test. The non-disclosure

condition holds, so we highlight the maximal clique {2, 3, 4} in dashed (as illustrated

in (d)). Hence, we do not need to consider any more of its subsets in Step 5 and we

can move our focus to the other maximal clique.

In (d) in Figure 5, we inspect the maximal clique formed by nodes 3, 4, and 5

(highlighted in green). The non-disclosure condition does not hold, so we denote

the maximal clique {3, 4, 5} as inspected and proceed to consider its subsets of

cardinality 2.

In (e) in Figure 5, we first consider the clique formed by nodes 4 and 5. As the non-

disclosure condition is satisfied, we highlight this clique in dashed. Proceeding with

the iteration, we test clique {3, 5}. Again, the non-disclosure condition is satisfied,

so we highlight it in dashed. Finally, clique {3, 4} is a subset of the highlighted set

{2, 3, 4}, so we do not test it.

In (f) in Figure 5, we proceed to Step 6 of the procedure: as node 2 belongs to only

one highlighted clique, {2, 3, 4}, we highlight that clique in full. The output of the

procedure is depicted in (f) in Figure 5: the singleton pool {1} and pool {2, 3, 4}

highlighted in full and pools {3, 5} and {4, 5} highlighted in dashed. Hence, the

posteriors induced by the optimal signal certainly include a posterior supported on

states ω2 = 2, ω3 = 3, ω4 = 4 and the posterior δω1 . Moreover, the optimal signal

will induce at least one posterior supported on ω3 = 3, ω5 = 5 or ω4 = 4, ω5 = 5.
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Abstrakt 

 

V této práci se zabýváme modelem Bayesiánskeho přesvědčování s konečně mnoha stavy a 
kvadratickými ztrátovými funkcemi odesílatele a příjemce závisejícími na stavu. Nesouhlas 
mezi odesílatelem a příjemcem ohledně optimální akce může mít libovolný tvar. Tento model 
umožňuje zaměřit se na relativně neprozkoumaný kompromis mezi informativností signálu a 
utajením nesouhlasu ohledně optimální akce. Konkrétně se zaměřujeme na to, jak odesílatel 
sdružuje stavy v posteriorech optimálního signálu. Předkládáme ilustrativní grafovou 
proceduru, která vyžaduje na vstupu formu nesouhlasu ohledně optimální akce (jako funkci 
stavu) a na výstupu produkuje potenciální reprezentace struktury sdružování stavů při 
optimálním signálu. Naše analýza může přispět k porozumění situacím, kde odesílateli a 
příjemci záleží na různých aspektech společného objektu zájmu, např. komunikace mezi 
politickým poradcem, kterému záleží na stavu ekonomiky, a politikem, kterému záleží na 
politické situaci. 

Klíčová slova: Bayesiánské přesvědčování, strategické sdružování stavů, tvar nesouladu 
preferencí, grafová procedura 
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