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Abstract

Copulas are a convenient framework to synthesize joint distributions, particularly

in higher dimensions. Currently, copula-based high dimensional settings are used

for as many as a few hundred variables and require large data samples for es-

timation to be precise. In this paper, we employ shrinkage techniques for large

covariance matrices in the problem of estimation of Gaussian and t copulas whose

dimensionality goes well beyond that typical in the literature. Specifically, we use

the covariance matrix shrinkage of Ledoit and Wolf to estimate large matrix pa-

rameters of Gaussian and t copulas for up to thousands of variables, using up

to 20 times lower sample sizes. The simulation study shows that the shrinkage
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estimation significantly outperforms traditional estimators, both in low and espe-

cially high dimensions. We also apply this approach to the problem of allocation

of large portfolios.

Keywords: Gaussian copula, t copula, high dimensionality, large covariance matrices,

shrinkage, portfolio allocation

JEL codes: C31, C46, C55, C58

Highlights:

• Methods of covariance matrix shrinkage are applied to estimate parameters of

Gaussian and t copulas in ultra-high dimensions.

• Simulations illustrate dominance of shrinkage estimators over traditional copula

estimators.

• The approach is applied for a large portfolio allocation problem with up to 3600

assets.



1 Introduction

Modeling joint distributions has been a major task in a wide variety of applications.

One way to deal with dependence in multivariate settings is to directly model the

joint distribution of quantities of interest using a family of multivariate distributions.

However, in most applications, there are only few such families that can capture the

crucial properties of actual data. Although the multivariate normal is popular due to

its analytical and computational convenience, it is also widely criticized for symmetry,

non-heavy tails, and linearity of conditional means. Asymmetric and heavy-tailed mul-

tivariate distributions are much more cumbersome to work with, particularly in higher

dimensions.

Copula-based settings are attractive due to a higher degree of flexibility and abil-

ity to capture various properties of the real data, both in marginal distributions and

dependence structures (Patton, 2009). In particular, the financial literature has been

giving copulas increasing attention since the 2008 financial crisis. One of critical effects

of the crisis was that the quantities previously viewed as “almost independent” were

unexpectedly co-moving, resulting in a joint crush in several markets (Zimmer, 2012;

Patton, 2012; De Leon and Chough, 2013). This effect of so-called tail-dependence ap-

pears crucial for modeling joint distributions in financial markets; yet it was absent in

the traditional multivariate normal-based settings (Patton, 2013; Oh and Patton, 2017).

Various alternative dependence structures have been proposed to account for the crit-

ical properties of real data. For example, the t copula of Demarta and McNeil (2005)

was exploited in many studies, although it captures only symmetric tail dependence

(Sukcharoen et al., 2014; Ning, 2010; Wen et al., 2012). It was then further extended

by Kollo and Pettere (2010) and Smith et al. (2012) to account for asymmetric extreme

co-movements, and the resulting versions of skewed-t copula have since been a popular

choice to model inter- and intra-market dependencies (Kollo and Pettere, 2010; Smith

et al., 2012; Patton, 2012, 2013).

3



Another recent challenge in modeling joint distributions is the upward trend in

data dimensionality. For example, financial market participants are challenged to deal

with thousands of alternative assets to allocate their funds into (Ledoit and Wolf,

2017a; De Nard et al., 2018; Müller and Czado, 2019). High dimensional datasets are

challenging in many applications that involve statistical estimation, computation, and

inference. Having hundreds and thousands of variables in the data complicates each

step of statistical modeling, with estimation and inference the most problematic. In

particular, when the dimensionality of datasets becomes comparable to available sample

sizes, a variety of traditional estimators tends to fail to deliver desirable properties that

researchers normally seek to obtain (Ledoit and Wolf, 2004a,b).

Although there has been significant progress in multivariate methods addressing the

high dimensionality challenge, most of the work has been done to restore the properties

of estimators up to the second moment. In particular, a variety of estimators robust to

growing dimensionality have been recently developed to improve the estimation of large

covariance matrices (Ledoit and Wolf, 2017b; De Nard et al., 2018). At the same time,

significant progress has been observed in the copula theory and applications addressing

high dimensional data (Patton, 2009; Müller and Czado, 2019). For example, Oh and

Patton (2016) suggest a copula version of a high dimensional factor model. Later, Oh

and Patton (2017) use mixed frequency data to construct high dimensional distribu-

tions. Müller and Czado (2017) develop another type of approach to use the advantages

of copulas in high dimensional case that relies on sparse data structures, which allow

one to combine copulas with lasso estimation. Another direction in the development of

high dimensional copula-based models relies on the pair copula constructions (PCCs),

or vine copulas. Based on hierarchical pair-wise copula construction, the vines presume

very flexible settings and an intuitive interpretation of dependence structures that make

them an attractive modeling tool (Brechmann and Czado, 2013).

A common limitation of the existing approaches to constructing high dimensional
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copulas is the actual number of dimensions relative to sample sizes used that are called

’high dimensional ’. What most studies usually explore as high dimensional settings tend

to appear rather moderately dimensional. Until recently, the dimensionality of data in

empirical applications of PCCs rarely had exceeded a few dozen variables (Brechmann

and Czado, 2013), with only several studies applying the PCCs to settings with more

than a hundred variables. Currently, the very recent study by Müller and Czado (2019)

is the only one with PCCs applied in the framework with more than a thousand vari-

ables. Still, the study focuses on sparse structures that are identified heuristically

from the data, and uses a considerable number of observations in the sample (viz.,

n = 999 observations and p = 2131 variables). Given that the data dimensionality

exceeds the number of observations, this setting is indeed high-dimensional. However,

in many applications the ratio of the data dimensionality to available sample sizes can

be significantly higher, with sparse structures being an excessively strong assumption.

In this paper, we focus on elliptical copulas in high dimensions. We focus on the two

most commonly used in modeling and practical applications: Gaussian and t copulas.

These copulas are used in a vast variety of applications and as either main modeling

frameworks, important building blocks of more complicated and flexible settings, or

benchmark models. Often, Gaussian and t copulas are used to model the joint distri-

bution of characteristics of objects or events located or taking place in different points

of geographical space. This is found particularly useful in environmental and civil en-

gineering studies (Van de Vyver and Van den Bergh, 2018; Li et al., 2018; Valle and

Kaplan, 2019) and energy economics (Atalay and Tercan, 2017; Schindler and Jung,

2018). Regression analysis and pattern recognition is another field where these copu-

las are applied (Fu and Wang, 2016; Kwak, 2017; Li et al., 2017, 2019), including the

high-dimensional context, with the data dimensionality exceeding the number of obser-

vations (He et al., 2018, 2019). In finance, the Gaussian and t copulas are criticized for

inability to capture asymmetric dependence. However, they have proved beneficial for
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modeling the joint distribution of assets returns as compared to the traditional mod-

els that disregard dependencies beyond correlations. Most often, they are applied to

model joint distributions of financial assets or indices returns for the task of portfolio

allocation (Karmakar, 2017; Han et al., 2017; Lourme and Maurer, 2017), but also in

studies of tail dependence (Huang et al., 2009; Zorgati et al., 2019) and asset pricing

(Hörmann and Sak, 2010).

Nevertheless, most settings based on the Gaussian and t copulas are low-dimensional,

where the number of dimensions varies from two to a few dozen, and the ratio to cor-

responding sample sizes is considerably less than unity. However, some settings are

high-dimensional with the ratio reaching five (He et al., 2018, 2019). More importantly,

many applications that are currently low-dimensional can potentially benefit from in-

creased dimensionality. This is particularly relevant for financial applications with more

variables in datasets (e.g., more assets in multivariate models used for portfolio man-

agement). For applications in which the number of objects is rather low (e.g., in some

spatial applications), the high-dimensional case is still relevant due to the necessity of

estimating the dependence using small samples.

In the case of Gaussian and t copulas, the dimensionality of the parameter space is

directly connected to the data dimensionality, with the matrix parameter naturally in-

terpretable in the description of the degree of pairwise dependence among the variables.

In low dimensions, copulas are effectively estimated via computationally very practical

method-of-moments-like techniques based on rank correlations and sample correlation

matrices. However, in high dimensions the settings and their estimates inherit the same

problems as the traditional covariance matrix estimators.

Recently, a substantial amount of research has focused on developing covariance

matrix estimators that are robust to and well-conditioned under the data dimensionality

growing along with the sample size. Two main directions towards solving the problem

can be distinguished (Fan et al., 2008; Ledoit and Wolf, 2004b). The first approach
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is based on manipulating the data and relies on dimensionality reduction techniques

to impose some structure on the covariances (Wong et al., 2003; Huang et al., 2006;

Fan et al., 2008). Alternatively, researchers adjust the traditional sample covariance

matrix by directly restricting its structure, eigenvalues or the inverse to achieve better

properties under moderate or high data dimensionality (Daniels and Kass, 2001; Ledoit

and Wolf, 2004b). Ledoit and Wolf (2012), Ledoit and Wolf (2017b) and Ledoit et al.

(2020) developed newer versions of the previously developed estimator by Ledoit and

Wolf (2004b). The new estimator relies on the random matrix theory and leads to

fast and relatively easy estimation of large covariance matrices of dimensionality higher

than had been feasible ever before. It has also proved substantially more efficient than a

number of previously developed estimators of the same type (Ledoit and Wolf, 2017b).

These advances in large covariance matrix estimation rather conveniently match

with the structure of Gaussian and t copulas. An important property of these copulas

is that their matrix parameter is very close the correlation matrix of pseudo-observations

(Demarta and McNeil, 2005; Kojadinovic and Yan, 2010). This allows one to use the

shrinkage estimators of Ledoit and Wolf (2004b, 2017b); Ledoit et al. (2020) to estimate

the matrix parameters of Gaussian and t copulas in high dimensional datasets.1 In

particular, we consider datasets with up to thousands of variables that use up to 20

times lower sample sizes. Thus, we take the data dimensionality well beyond what

is studied in the copula literature; hence the prefix “ultra-” in “high dimensions” in

the title.2 In a simulation study, we compare the quality of performance of different

estimators for various ratios of data dimensionality to sample size. We show that the

1In the case of t copula, one also needs to estimate the scalar degrees-of-freedom parameter that
controls the thickness of copula tails. We confirm that once the large matrix parameter is sufficiently
precisely estimated, the remaining scalar parameter can be effectively estimated via the method of
maximum pseudo-likelihood.

2The maximum of 1000 for data dimensionality in the simulation study is determined by the com-
putational capacities at our disposal. With a thousand variables and largest samples, simulations are
computationally very demanding, particularly due to multiple iterations in computing quality criteria.
The results suggest, however, that the shrinkage estimators can be effectively used in even higher
dimensions; in our empirical example, the t copula is estimated for 3600 variables in the dataset.
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shrinkage estimators significantly outperform the traditional copula matrix parameter

estimators based on sample analogs of Kendall’s rank correlation and approximate

Spearman’s rank correlation. The performance of estimators is measured in terms of

both the closeness of estimated parameter values to their actual values and the closeness

of the entire estimated copula function to its true counterpart. Not only do we show

that the shrinkage estimators outperform the traditional estimators of the copula matrix

parameters, but also we find that non-linear shrinkage generally tends to dominate the

linear one.

As an empirical application, we apply shrinkage-based estimators of copula correla-

tion matrices in high dimensions to a large portfolio allocation problem and compare

emerging portfolios to those from a multivariate normal model and copula models based

on traditional estimators. Using daily data on prices of over 3600 U.S. stocks, we con-

struct portfolios of up to 3600 assets and simulate buy-and-hold portfolio strategies.

The joint distributional models of asset returns are estimated over the period of six

months (120 observations), hence the problem is ultra-high dimensional, with the ratio

of data dimensionality to sample size being 30. To our knowledge, this is the highest di-

mensionality of the large portfolio allocation problem considered in the literature. The

comparison of the portfolios based on different models to equally weighted portfolios

shows that the shrinkage-based estimators applied to t copula based models of return

distribution deliver better portfolios in terms of both cumulative return and maximum

downfall over the portfolio lifetime than the corresponding portfolios derived from the

multivariate normal or copula-based models estimated via traditional estimators.

The rest of this paper is organized as follows. Section 2 covers the methodology

including a description of chosen copulas and their main properties, existing approaches

to copula estimation, drawbacks thereof and the solution we propose. In Section 3,

we describe the simulation study design and results. An empirical application of the

shrinkage estimators to a large portfolio allocation problem is presented in Section 4.
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Section 5 concludes. Appendices contain some additional technical material, including

tables with detailed results of the simulations in the Supplementary Appendix

2 Methodology

2.1 Sklar’s theorem and copula classes

A convenient way to introduce the copula approach is through the Sklar’s theorem

(Sklar, 1959), the key result in the copula theory. Given X ≡ (X1, ..., Xp)
′ ∈ Rp a

p-dimensional random vector from a distribution with the joint cumulative distribution

function (CDF) FX(x) and marginal CDFs {Fi(xi)}i=1,...,p, there exists a copula function

C(u),

C : [0, 1]p → [0, 1], (2.1)

such that for all x = (x1, ..., xp)
′ ∈ Rp,

FX(x) = C
(
F1(x1), ..., Fp(xp)

)
. (2.2)

This theorem is particularly useful as its converse also holds: given a set of univariate

distributions with CDFs {Fi(xi)}i=1,...,p and a copula function C(u), the corresponding

function FX(x) defined for these functions from (2.2) is a legit joint CDF with marginals

{Fi(xi)}i=1,...,p.

Thus, marginal distributions of the quantities of interest can be modeled separately

from the interdependence embedded by the copula function C(u). This brings on a

variety of classes of copulas developed in the literature over the years. We only briefly

recall some of the main existing classes of copulas focusing on the Gaussian and t

copulas.

One of essential classes of copulas is the Archimedean copulas, whose members are

often used in modeling bivariate distributions. A major advantage of this class of cop-
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ulas is that most of them have a closed-form representation. Further, by construction,

any Archimedean copula is extendable to an arbitrary dimensionality p. However, the

parameter space (uni-dimensional in most cases) is disconnected from the data dimen-

sionality resulting in insufficient flexibility of dependence structures as data dimen-

sionality grows (Hofert et al., 2012). The tightness of parameterization of Archimedean

copulas is the main reason for this class to be rarely chosen to model dependence beyond

bivariate settings.

Another class of copulas is pair copula constructions (PCCs), also known as vine

copulas, based on sequential construction of the multivariate distribution (2.2) from

the marginals and a series of corresponding bivariate conditional copulas. In general,

the bivariate copulas for all pairs are chosen independently of the marginal models

and of each other. Thus, this class allows one to attain maximal flexibility in copula

construction. However, the cost of this flexibility is an ultimately growing number of al-

ternative specifications with higher data dimensionality. To make the PCCs operational

in practice, simplifying assumptions are made to restrict the structure, and heuristic

algorithms are applied to identify and distinguish between alternative restricted struc-

tures (Aas et al., 2009; Brechmann et al., 2012; Brechmann and Czado, 2013; Czado

et al., 2013; Dissmann et al., 2013). Further, the PCCs are well extendable to high

data dimensionality. Yet, they become computationally demanding because of both

the heuristic algorithms used to pre-identify the vine structure, and actual estimation

of parameters of a high-dimensional vine. For the heuristic algorithms to work and de-

liver sustainable results, the sample sizes need to remain comparable with the number

of variables. So far, the highest dimensionality has been reached by Müller and Czado

(2019), with a vine applied to 2131 variables (stock returns from industrial sectors)

with 999 observations (daily data). The dimensionality ratio is thus slightly above 2,

and the structure of the vine is sparse.

We stick to the class of elliptical copulas that are defined directly from elliptical
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distributions by inversion of (2.2). The copulas are parameterized in a way close to the

corresponding distributions from which they are defined. As all elliptical distributions

are transformations of the multivariate normal, a key parameter is the matrix corre-

sponding to the covariance matrix of the underlying normal random variable. This

makes the dimensionality of the parameter space naturally connected to the dimension-

ality of the data and correspondingly interpretable.

The most popular elliptical copula is Gaussian, which is the copula of the multi-

variate normal distribution. Another important elliptical copula is a natural extension

to the normal one, the t copula of the multivariate Student’s t distribution. These two

elliptical copulas inherit their main limitations from the underlying elliptical distribu-

tions. Thus, both Gaussian and t copulas are symmetric, and only the t copula exhibits

(also symmetric) non-zero tail dependence (Demarta and McNeil, 2005). Nevertheless,

these copulas are often used as building blocks in more complicated settings seeking

to capture desired properties of the data (Zimmer, 2012; Patton, 2012; De Leon and

Chough, 2013; Patton, 2013; Oh and Patton, 2017).

In the next subsection we formally introduce the Gaussian and t copulas and some

of their properties that are important for our analysis.

2.2 Gaussian and t copulas

The Gaussian copula in p dimensions associated with correlation matrix P ∈ Rp×p is

defined as

CNP (u) = FP
(
Φ−1(u1), ...,Φ

−1(up)
)
, (2.3)

where FP (x) is the joint CDF of the p-dimensional random vector drawn from multivari-

ate normal distribution N (Op, P ), and Φ−1(u) is the quantile function of the univariate

standard normal distribution. Similarly, the t copula with correlation matrix P and
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degrees of freedom parameter ν > 2 is defined as

Ct
P,ν(u) = tP,ν

(
t−1ν (u1), ..., t

−1
ν (up)

)
, (2.4)

where tP,ν(x) is the joint CDF of the p-dimensional multivariate Student’s t-distribution

with ν degrees of freedom and the matrix parameter P , and t−1ν (ui) is the quantile

function of the standard univariate t-distribution with ν degrees of freedom.

As any other copula function, the copulas (2.3) and (2.4) are legit CDFs living on

the domain [0, 1]p, and can be used accordingly. The first important property of these

copulas is the relation between Kendall’s rank correlation and the regular correlation

coefficient3. For a pair of random variables {Ui, Uj}, Kendall’s rank correlation, or

Kendall’s i-τ , is defined as

τij ≡ E
[
sign

(
(Ui − Ũi)(Uj − Ũj)

)]
, (2.5)

where {Ũi, Ũj} is an independent from {Ui, Uj} pair of similarly distributed random

variables. Then, for U = (U1, ..., Up)
′ ∼ C(u) for either C(u) = CNP (u) or C(u) =

Ct
P,ν(u) it holds that:

τij =
2

π
arcsin

(
Pij
)
. (2.6)

Another important property is the relation between the matrix parameter P and

the correlation of the random variables U distributed according to the copula function

as their CDF4. Firstly, in the case of multivariate normal distribution and its copula,

3by regular correlation we call the correlation coefficient of the underlying multivariate distribution,
from which the copula is constructed, i.e. either multivariate normal or multivariate Student’s t
distribution in our case, that is exactly the coefficients of the matrix parameter P .

4similarly to the regular correlation coefficient, in terms of the underlying distributions, from which
the copulas are constructed, the correlation of the transformed r.v. U is called the Spearman’s rank
correlation
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i.e. U ∼ CNP (u), the relation has the following analytical form:

Corr(U) =
6

π
asin

(
P

2

)
. (2.7)

However, in practical estimation, especially beyond bivariate case, the following

approximation of this relation is used (Karmakar, 2017):

Corr(U) ≈ P. (2.8)

Further, in the case of t copula, U ∼ Ct
P,ν(u), there is no closed form expression for

Corr(U). However, the relations (2.7) and (2.8) can be used as reliable approximations,

with the corresponding approximation errors diminishing fast as ν grows (Demarta and

McNeil, 2005; Karmakar, 2017). In the case of Gaussian copula the absolute error of

this approximation reaches at most 0.018. In the case of t copula, the error is higher, yet

it approaches the level of the one for the Gaussian copula rather quickly as the degrees

of freedom value grows. For example, for the t copula with 10 degrees of freedom the

error does not exceed 0.024. See more details in Appendix A.

Thus, (2.8) and (2.6) can be used to estimate the copula matrix parameter. We

address the corresponding estimation techniques as traditional/benchmark estimators

to compare with the proposed approach. The estimators are presented later in Section

2.3.

Another construct related to the copula function is the copula density function, the

probability density function (PDF) associated with the copula function C(u) as a CDF:

c(u) =
∂pC(u)

∂u1...∂up
. (2.9)

In the case of Gaussian and t copulas defined by (2.3) and (2.4) it is easy to show using
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(2.9) that the corresponding copula log-densities are

log cNP (u) = −1

2
log |P | − 1

2
φ′(u) · (P−1 − Ip) · φ(u), (2.10)

and

log ctP,ν(u) = log Γ

(
ν + p

2

)
+ (p− 1) log Γ

(ν
2

)
− p log Γ

(
ν + 1

2

)
− 1

2
log |P |

− ν + p

2
log

(
1 +

ψ′ν(u)P−1ψν(u)

ν

)
+

p∑
i=1

log

(
1 +

t−1ν (ui)
2

ν

)
, (2.11)

where φ(u) =
(
Φ−10,1(u1), ...,Φ

−1
0,1(up)

)′
and ψν(u) =

(
t−1ν (u1), ..., t

−1
ν (up)

)′
. The log-

densities (2.10) and (2.11) are used in evaluation of estimation precision via the Kull-

back–Leibler information criterion (KLIC) presented later in Section 3.1.2.

Finally, the Gaussian and t copulas share the following important property. Con-

sider CP (u), the Gaussian (or t) copula function (the degrees-of-freedom parameter

is unimportant if it is a t copula) of a p-dimensional distribution of random vec-

tor X = (X1, ..., Xp)
′. Then, for any p̃-dimensional sub-vector X̃ = (Xi1

, ..., Xip̃
)

(with p̃ < p, {is}s=1,...,p̃ ⊂ {1, ..., p}, and ∀s1 6= s2 ∈ {1, ..., p̃}, is1 6= is2), the cop-

ula of the joint distribution of X̃ is also Gaussian (or t) with the matrix parameter

P̃ = {Pis1 is2}s1,s2∈{1,...,p̃}.

2.3 Copula estimation

2.3.1 Traditional estimators

Copulas allow one to separate estimation of the marginal distributions from estimation

of the dependence structure embedded in the copula function. Even though for any

copula (2.2) the full maximum likelihood estimation (full MLE, FMLE) problem can

be specified, the actual estimation is very demanding, especially in high dimensions.
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Hence, most of the estimators of such models are performed in stages.

First, the marginal distributions {Fi}i=1,...,p are estimated from the corresponding

univariate data on each of the variables Xi = {Xit}t=1,...,n = (Xi1, ..., Xin)′, where n is

sample size. The curse of dimensionality does not apply at this stage, and we follow

the convention in the copula literature and do not focus on estimating the marginals,

assuming one can estimate them efficiently. Second, the estimates of the marginal

distributions, {F̂i}i=1,...,p, are used to transform the initial data {Xi}i=1,...,p into a cor-

responding set of so-called pseudo-observations

Uit = F̂i(Xit), (2.12)

and the copula function (2.1) is treated as the joint distribution function of the pseudo-

observations (2.12), from which the parameters of the copula alone are estimated.

One way to proceed with estimation of copula parameters would be, again, the

method of maximum likelihood. The estimation routine in this case is called maximum

pseudo-likelihood estimation (MPLE). The method is based on maximization of the

traditional conditional likelihood function, so it disregards the fact that the pseudo-

observations (2.12) are never i.i.d. (because they are constructed from the estimates of

marginal distributions F̂i, each constructed from the whole univariate sample Xi). Still,

there is evidence that together with efficient univariate estimation of the marginals, the

two-stage procedure as a whole delivers estimates that are very close to and barely

worse than the full maximum likelihood (Demarta and McNeil, 2005).

The MPLE is universal among the copula classes, and with its resulting estimates

being close to the FMLE, it is often a preferred method of copula estimation. On the

other hand, the optimization problem is quite demanding in high dimensions for ellipti-

cal and other copulas with high-dimensional parameters. There is another approach to

estimating parameters of the dependence structure relevant for the elliptical copulas.

It is based on method-of-moments type of estimates for large matrix parameters, and
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allows one to separate estimation of the large matrix parameters from the rest of the

copula function.

In the case of Gaussian and t copulas, the properties (2.8) and (2.6) are used to

estimate the matrix parameter P . Given sample data {Xi}i=1,...,p and corresponding

pseudo-observations {Ui}i=1,...,p, the matrix parameter P of either Gaussian or t copula

can be estimated as

P̂ smpl = {P̂ smpl
ij }i,j=1,...,p =

{
ĉorr(Ui, Uj)

}
i,j=1,...,p

, (2.13)

and

P̂ i-τ = {P̂ i-τ
ij }i,j=1,...,p =

{
sin
(π

2
τ̂ij

)}
i,j=1,...,p

, (2.14)

where ĉorr(Ui, Uj) and τ̂ij are the sample analogs of the correlation coefficients and

Kendall’s rank correlations for the pseudo-observations {Ui}i=1,...,p.

The most important drawback of Kendall’s i-τ estimator (2.14) is that the resulting

estimates of correlation matrices are not guaranteed to be positive definite, and this

issue naturally escalates under high data dimensionality (Demarta and McNeil, 2005).

As for estimators of the type (2.13) based on the sample correlation, they are also

sensitive to data dimensionality, as the sample correlation matrix is positive definite if

and only if the sample size strictly exceeds data dimensionality.

For the same reason, the estimator based on the exact relation (2.7) is preferred

in bivariate case, otherwise there is no guarantee the resulting estimate of the matrix

parameter of higher dimensionality will be well-conditioned. The numerical errors of

the approximation (2.8) are relatively small, both for Gaussian and t copulas, and the

estimator (2.13) turns out precise enough and better-conditioned.

However, these traditional estimators are expected to lose quality under high data

dimensionality, which brings forward the main point of this paper. The next subsection

briefly covers the basics of shrinkage estimators of large covariance matrices and explains
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how they can be used to estimate copula matrix parameters.

2.3.2 Shrinkage estimation of copula matrix parameters

Over the years, researchers have come up with a variety of estimators of large covariance

matrices to restore the properties of the sample covariance under high dimensionality

(Fan et al., 2008; Ledoit and Wolf, 2004b, 2017b). In this paper, to estimate the

large matrix parameters of Gaussian and t copulas, we use the shrinkage estimators

of Ledoit and Wolf (2004b, 2017b). These estimators have proved to perform well in

general settings of large covariance matrices estimation, and they allow one to take the

analysis to the highest data dimensionality achieved so far (Ledoit and Wolf, 2017b; ?).

The idea behind the shrinkage estimators is the following. Given a p-dimensional

random vector X from some distribution F characterized by zero mean (without loss

of generality) and some non-random positive-definite covariance matrix Σ = E[XX ′] =

cov(X), and an i.i.d. sample of size n from that distribution recorded into n×p matrix

Xn = {Xti}t=1,...,n;i=1,...,p, the population covariance matrix Σ can be estimated by the

sample covariance matrix

Sn =
X ′nXn

n
. (2.15)

The estimator Sn is consistent and well-conditioned under standard asymptotics when

p is fixed and n→∞. However, in high dimensions the sample covariance matrix is not

well-conditioned when p is non-negligible compared to n, and even non-invertible for p

larger than n. Ledoit and Wolf (2004b) follow the work of Haff (1980) and construct

the linear shrinkage estimator as a linear combination of a structural covariance matrix

estimator (an equivariate diagonal covariance matrix) and the sample covariance matrix

(2.15):

Σ∗ = ρ1Ip + ρ2Sn. (2.16)

However, unlike in the work of Haff (1980), Ledoit and Wolf (2004b) managed to derive
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the optimal estimator Σ∗∗ that minimizes the Frobenius norm of the deviation from the

population covariance matrix Σ, ||Σ∗∗ − Σ||2 = p−1trace
[
(Σ∗∗ − Σ)(Σ∗∗ − Σ)′

]
. Next,

since the estimator Σ∗∗ is not feasible as it depends on the unknown Σ, it itself needs

to be estimated. The feasible estimator that can be calculated directly from the data

takes the form

S∗ = ϑ̂µ̂Ip + (1− ϑ̂)Sn, (2.17)

where the coefficients ϑ̂ and µ̂ depend on the data Xn, see the definitions in Lemmas

3.2–3.4 in Ledoit and Wolf (2004b). This estimator is positive definite and consistent

for the population covariance matrix Σ under dimension asymptotics, that is, under

p→∞, n→∞, and c ≡ p/n→ c̄ ∈ (0,∞). The value ϑ̂ is called shrinkage intensity.

The less accurate the sample covariance matrix Sn is, the more it will be shrunk, i.e.,

more weight in (2.17) is put on the structural estimator (Ledoit and Wolf, 2017b).

An important characterization of the linear shrinkage estimator is in terms of eigen-

values of the covariance matrix. Given that Σ is characterized by its eigenvalues

λ1, ..., λp (let without the loss of generality λi ≤ λj ∀i < j), and if l1, ..., lp are the

eigenvalues of the sample covariance matrix Sn, it is proved that the population and

sample eigenvalues share the same grand mean (Ledoit and Wolf, 2004b):

µ = E

[
1

p

p∑
i=1

li

]
=

1

p

p∑
i=1

λi. (2.18)

Also, Ledoit and Wolf (2004b) show that

1

p
E

[
p∑
i=1

(li − µ)2
]

=
1

p

p∑
i=1

(λi − µ)2 + E||Sn − Σ||2. (2.19)

Thus, the sample eigenvalues are relatively more dispersed than the population ones,

and the excess dispersion exactly equals the expected loss of the sample covariance

matrix. Further, as there is particular over-dispersion around the same mean, the
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higher eigenvalues are biased upward, while the lower ones are biased downward.

Essentially, the shrinkage estimator (2.17) reduces the bias of the sample covariance

matrix eigenvalues by shifting them towards their grand mean (2.18) shrinking the

distribution of the sample eigenvalues. The shrunk eigenvalues corresponding to the

optimal linear shrinkage estimator (2.17) are

λ∗i = ϑµ+ (1− ϑ)li, (2.20)

where the coefficients ϑ and µ are probability limits, under dimension asymptotics, of

ϑ̂ and µ̂ in (2.17), and so the shrunk eigenvalues can then be estimated from the data

similarly to how the estimator (2.17) estimates (2.16):

l∗i = ϑ̂µ̂+ (1− ϑ̂)li, (2.21)

and the shrinkage estimator then can be rewritten as a rotation equivariant estimator:

S∗ = Γndiag{l∗i }i=1,...,pΓ
′
n, (2.22)

where Γn = [γn,1, ..., γn,p] is the matrix of sample covariance matrix eigenvectors {γn,i}i=1,...,p.

Later, Ledoit and Wolf (2012) studied the performance of their linear shrinkage

estimator and found that it often results in under-shrinkage, i.e. the resulting distribu-

tion of sample eigenvalues of the estimator (2.22) is still considerably over-dispersed as

compared to the population distribution of eigenvalues of Σ. In their study, Ledoit and

Wolf (2012) use the same approach to upgrade to the nonlinear shrinkage by applying

different shrinkage intensities to eigenvalues of different magnitude. They build on the

work Ledoit and Péché (2011) and show how a feasible estimator can be constructed,

in a way similarly to how the optimal linear shrinkage estimator (2.17) estimates the

non-feasible estimator (2.16). The non-linear shrinkage estimator preserves the form of

the rotation equivariant estimator (2.22), with the linearly shrunk eigenvalues l∗s (2.21)
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replaced by the non-linearly shrunk versions:

l∗∗i =
li

|1− p
n
− p

n
lim̆

∗
F (li)|2

. (2.23)

Here, m̆∗F (l) is the shrinkage intensity term that depends on sample eigenvalue l. The

construction of this term is presented in detail in Section 5 of Ledoit and Wolf (2012).

The intuition behind the estimator is the following. The linear shrinkage performs

well when the sample eigenvalues are not too dispersed so that the constant shrinkage

intensity is sufficient to shift the distribution of the sample eigenvalues closer to the

population analog. However, with a higher dimensionality p/n and sample eigenvalues

far from the grand mean appearing more frequently, treating the sample eigenvalues

differently is likely to pay off. The estimator of nonlinear shrinkage intensity m̆∗F (li)

aims to make the estimator of the asymptotic distribution of eigenvalues as close to

the actual limiting distribution of the sample eigenvalues as possible (Ledoit and Wolf,

2012). The resulting estimator is proved to be asymptotically equivalent to the optimal

one in terms of Frobenius loss in the class of rotation equivalent estimators of Ledoit

and Péché (2011), and thus can outperform the linear shrinkage estimator (Ledoit and

Wolf, 2012). However, implementation of the estimator requires numerical inversion of

a particular multivariate nonrandom function, which was later efficiently implemented

by Ledoit and Wolf (2017b).

We employ these shrinkage estimators in estimation of the high dimensional correla-

tion matrices of Gaussian and t copulas. The shrinkage estimators are to substitute the

sample correlation-based estimator (2.13). However, certain adaptations are in order.

First, since the shrinkage estimators estimate the population covariance matrix,

they need to be transformed to estimates of the correlation matrix. Alternatively, the

shrinkage estimators can be applied to standardized pseudo-observations. Given that

the univariate means and variances of the pseudo-observations are known constants

(respectively, 1/2 and 1/12, coming from ui ∼ U [0, 1] ∀i), preliminary standardization
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of pseudo-observations is preferred to avoid extra noise and computational time of

converting covariance matrices into correlations.

Second, the shrinkage estimators and their properties rely on i.i.d. data samples,

while in copula estimation the pseudo-observations (2.12) are not independent. Still,

the same issue arises when implementing the MPLE, yet the resulting estimates are

shown to be relevant and insignificantly different from the FMLE. Hence, we expect

that disregarding the actual “non-iidness” of pseudo-observations and applying the

shrinkage estimators will perform sufficiently better than the traditional estimators

(2.13) and (2.14).

3 Simulation study

In this section we present the results of our simulation study. We consider a variety

of Gaussian and t copulas with different values of matrix parameters. We vary both

the number of variables in the data and its ratio to the sample size in order to track

the performance of the estimators under low and high dimensionality. The estimation

quality is evaluated both in terms of closeness of matrix parameter estimates to the

true matrix parameter values and closeness of estimates of copula functions to their

true counterpart.

When working with the t copula, the degrees of freedom parameter ν needs to

be estimated as well. We avoid describing technical details of this estimation; it is a

basic uni-dimensional estimation performed via MPLE treating the matrix parameter

fixed at its estimated (via one of the moments-like estimators) level. Neither do we

report the estimation results of these parameters; the estimates ν̂ are generally very

close to the true values and do not cause any problems. Similarly, we do not focus on

details or results of estimating the marginal distributions. We use univariate empirical

distributions (EDF) to construct the pseudo-observations (2.12) from the original data.
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Next, we present the choice of copula parameters and estimation quality criteria.

Then we present simulation design and report the results.

3.1 Simulation design

3.1.1 True copula specifications

The following specifications of the copulas are used in the simulations:

• The true copulas are either Gaussian or t.

• The data dimensionality p takes one of three values

p ∈ {10, 100, 1000}. (3.1)

• The sample size is set via fixing particular values of the p-to-n ratios to compare

the cases of different dimensionality. Generally, we consider the range of the

dimensionality ratio from 1/20 to 20 except the cases with a small number of

variables (p = 10) and dimensionality higher than 2 (as they imply the sample

size of n < 5), and the cases with a large number of variables (p = 1000) and

dimensionality lower than 1/2 (as they imply sample sizes higher than 2000 which

is too computationally demanding). To summarize, the dimensionality varies in

the following way:

p

n
∈


{1/20, 1/10, 1/2, 1, 2} , p = 10,

{1/10, 1/2, 1, 2, 5, 10} , p = 100,

{1/2, 1, 2, 5, 10, 20} , p = 1000.

(3.2)

• For each copula and all pairs of dimensionality and sample size we consider two

versions of the true matrix parameter P . First, we use the identity structure
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P = Ip as an important benchmark case. Second, for each p we construct an

arbitrary and randomly generated matrix parameter P , which is a legit correlation

matrix as it is positive definite, far from being degenerate, and has a full range of

values for correlation coefficients. The three non-identity matrices are visualized

in Figure 1.

• For the t copulas, the degrees of freedom parameter value is always fixed at

ν = 8 so that the copulas are sufficiently far from being Gaussian, but also are

sufficiently distant from the value of 2 when variance does not exist.

• The marginal distributions are set to univariate standard skewed-t distribution

with randomly and independently assigned degrees-of-freedom and skewness pa-

rameters. The degrees-of-freedom parameter is drawn from a discrete uniform on

{6, 7, 8, 9, 10}, and the skewness parameter is drawn from U [−1, 1].

3.1.2 Measures of estimation accuracy

Given some true model CP (u) with the p × p matrix parameter P and its estimate P̂

we evaluate estimation quality using the following three measures:

• Positive-definiteness. As all true matrix parameters P are legit correlation matri-

ces, it is a desirable property of the estimates P̂ to be such, too. By construction,

all estimators we consider deliver P̂ that are symmetric with unit diagonal ele-

ments and correlation coefficients off the diagonal. Positive-definiteness, however,

is not guaranteed for some of the estimators; hence, for every P̂ we check whether

they satisfy this property. The shrinkage-based estimators deliver positive-definite

matrices by construction; still, we assess their positive-definiteness as a sanity

check for numerical routines.

• Closeness of matrix estimate to true values. Given that the matrix parameters

are symmetric, there is a wide choice of measures of closeness of estimates to
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true values. However, since the matrices at hand are correlation matrices, it is

sufficient to measure the closeness of elements off the main diagonal. We use the

Euclidean norm of the difference between the half-vectorized true and estimated

matrices:

LE(P, P̂ ) = ||vech(P − P̂ )||. (3.3)

Note that the use of Frobenius matrix norm would deliver the same rankings

because the diagonal elements in both matrices are fixed.

• Closeness of estimated copula function to true one. Finally, as the main object of

modeling is the copula function (2.1) itself, we measure the closeness of the esti-

mated one to the true one via the Kullback-Leibler information criterion (KLIC):

KLICP |P̂ = ECP

[
log

(
cP (u)

cP̂ (u)

)]
=

∫
· · ·
∫

1p

Op

cP (u) log
cP (u)

cP̂ (u)
dpu. (3.4)

While the first two criteria are computationally practical even when p is large,

calculating KLICa for large p is computationally demanding. To make it operational,

we do two simplifications. First, we use the property that Gaussian and t copulas of

larger vectors remain the same for their sub-vectors (see Section 2.2), so for any data

dimensionality p we only consider KLICa for 3-dimensional subsets of the data. For

p = 10, we compute the KLIC for only one triplet; for p = 100, we average KLICa

over randomly chosen 30 triplets, and for p = 1000 the number of triplets we average

over is 100. Second, we estimate the expectation in (3.4) via simulations. For each

true copula function CP̃ (u) (where P̃ is a 3 × 3 matrix parameter corresponding to

a chosen triplet and the initial true matrix P ), we generate a collection of M = 106

3-dimensional vectors {ũm}m=1,...,M from the true copula function CP̃ , and estimate the

expectation in (3.4) using the expressions for log-densities of Gaussian and t copulas
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(2.10) and (2.11):

KLIC
P̃ | ˜̂P = M−1

M∑
m=1

(
log cP̃ (ũm)− log c ˜̂

P
(ũm)

)
. (3.5)

3.1.3 Simulation design

For a particular combination of number of variables p, true matrix parameter P ,

marginal distributions {Fi}pi=1, true copula function CP (u), and sample size n, a single

simulation is run as follows.

1. We generate the dataX ∈ Rn×p from CP (F1(u1), ..., Fp(up)), estimate the marginals

via EDFs, and transform them to pseudo-observations, U = {F̂i(xi)}pi=1 ∈ [0, 1]p.

2. We estimate corr(U) via each of the four estimators and obtain estimates P̂ smpl,

P̂ i-τ , P̂ LSh and P̂NLSh.

3. For each estimate, we calculate the following accuracy measures:

• a binary indicator of positive-definiteness of P̂ ;

• the Euclidean loss, LE(P, P̂ ), via (3.3),

• KLIC, via (3.5) and averaged over randomized triplets of variables;

* for t copulas, KLICa are estimated twice: once treating the degrees-of-

freedom parameter as known, and then with that estimated by MPLE.

We repeat each simulation 210 times.5

3.2 Simulation results

The simulation results are presented in Tables SA1 – SA13 in the Supplementary Ap-

pendix. For each evaluation criterion, we report the median, mean and standard devia-

5The format of a power of two is chosen due to technical reasons of multi-core calculation organi-
zation. A higher number of simulations appears very time consuming under large p and n, and the
number 210 resulted in sufficiently precise calculations to make the conclusions.
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tion across the simulations. When calculating KLICa for non-positive-definite P̂ , there

is a great chance that the estimate of the expectation does not converge, resulting in

an “infinite” value of KLIC. In most of these cases, the median can still be computed

(unless KLIC is infinite in all the simulations), but the mean and standard deviation

make no sense due to a high share of infinite values. Next, in some cases either the me-

dian or the mean and standard deviation are numerically indistinguishable from zero,

i.e. they are < 10−23. In measuring the performance in terms of any criterion, we say

that one estimator outperforms another if the median value of the former estimator’s

performance criterion is smaller than that of the latter estimator.

The results of the positive-definiteness check are perfectly predictable and appear

as expected. The shrinkage estimators always deliver positive-definite estimates of the

matrix parameter. The traditional estimators deliver positive-definite estimates only

under low dimensionality (p/n < 1), with P̂ i-τ not necessarily positive-definite even

then (though the fraction of such cases is small).

Regarding the two distance criteria, overall the shrinkage estimators confidently

outperform the traditional ones. First, under low dimensionality, there is no clear

pattern in which type of estimator is the best in terms of the closeness of the estimated

matrix to its true counterpart. However, there are very few cases when one of traditional

estimators outperforms one of the shrinkage estimators in terms of Euclidean distance.

Further, even when the traditional estimators do outperform the shrinkage ones in terms

of Euclidean distance, the KLICa are likely to be smaller for the shrinkage estimators.

Second and most interesting, under high dimensionality, the better performance

of shrinkage estimators is more obvious. Not only are the estimates always positive

definite, but they are also precise enough in terms of both Euclidean distance and KLIC,

and the difference in the performance of the shrinkage estimators and traditional ones

is substantial.

The case of p = 10 is included to show the basic properties of the four estimators and
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to point out that the ratio of the number of dimensions in the data to the sample size

does matter (see Tables SA1–SA5). More importantly, the difference in performance is

well observed for higher dimensions and smaller samples (see Tables SA10–SA13).

Regarding the relative performance of the shrinkage estimators to each other, we

additionally report several selected slices of the joint distributions of their performance

to check how often each of the estimators outperforms the others, and how that changes

with higher dimensionality. This is reflected in Figure 2.

Overall, under high dimensionality (p/n > 1), there is a tendency for nonlinear

shrinkage based estimators of copulas, both Gaussian and t, to outperform linear shrink-

age based either in terms of Euclidean distance between the true and estimated matrix

parameter, or the average Kullback-Leibler distance between the true and estimated

copula function. Further, the higher the dimensionality, the more likely the nonlinear

shrinkage will perform better than the linear one (see, for example, Figures 2a and

2b). However, there are a few exceptions. First, for either copula with rather dispersed

true eigenvalues (e.g., the 100 × 100 arbitrary true matrix P in our simulations), the

linear shrinkage outperforms the nonlinear one under high dimensionality (see Figure

2c). We conjecture that the relatively better performance of nonlinear shrinkage for

the models with less-dispersed true eigenvalues (e.g., the identity P in our simulations)

is explained by the ability of nonlinear shrinkage to shift the right tail (outlier) sample

eigenvalues towards the grand mean. Second, there may be a situation (see, e.g., Fig-

ure 2d) in which the linear shrinkage based estimator dominates all others, with the

nonlinear shrinkage, in this case, only slightly underperforming (see Table SA13c), and

the differences between the two can be neglected.
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4 Empirical illustration: large portfolio allocation

We apply shrinkage based estimators of copula correlation matrices in high dimensions

to allocate large portfolios of stocks and compare their performance with portfolio

choices derived from the plain multivariate normal (MVN) model.

Asset allocation is one of the classical applications of multivariate models of assets

returns. A number of theoretical settings describing investor’s behavior offer analyt-

ical solutions for a portfolio structure. However, the more complicated the investor’s

problem is or the more sophisticated the model for asset returns is, the more likely nu-

merical methods need to be employed for an optimal portfolio choice (DeMiguel et al.,

2007; Michaud and Michaud, 2008; Guidolin and Timmermann, 2008; Kolm et al., 2014;

Ledoit and Wolf, 2017a). Even in the static case, when the portfolio structure is de-

termined only once per portfolio lifetime, it often appears necessary to simulate the

dynamics of asset returns over a portfolio lifetime period to evaluate the performance

of different portfolios and pick the optimal structure corresponding to investor’s utility

function (van Binsbergen and Brandt, 2007; Guidolin and Timmermann, 2008; Harvey

et al., 2010).

We perform a static portfolio allocation exercise, i.e. the structure of the portfolio

is going to be set once per portfolio lifetime. However, the joint distribution model of

asset prices during the portfolio lifetime is based on empirical marginal distributions

of asset returns and copula across assets’ dependence structure. Hence, simulations of

asset price dynamics are required to evaluate the value of portfolios during and at the

end its lifetime.

We use historical data from the database FIZ©2019.6 From the CRSP dataset we

extract daily close prices of the securities listed in the Wilshire 5000 index for the last

9 months of 2017. There are 4982 assets at our disposal. We randomly choose subsets

of size 3600 assets to model the predictive joint distribution of their prices. Based on

6Center for Research in Security Prices (CRSP), University of Chicago Booth School of Business.
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this model, we simulate future prices and select portfolios with the best Sharpe ratio.

To evaluate these portfolios, we compare their actual performance over the period of

simulation with the performance of the equally weighted portfolio, or the portfolios

based on other models, in terms of cumulative return in the end of portfolio lifetime.

Prior to estimating predictive multivariate distribution, we filter out univariate con-

ditional means and conditional variances of each log-return via ARMA-EGARCH mod-

eling, and extract serially uncorrelated standardized residual terms. Then, one of the

following multivariate distribution models is applied to these residual terms across the

assets:

• MVN,

• t copula, with the marginals estimated as EDFs.

We use either linear or nonlinear shrinkage estimators to estimate the matrix parameter

of both the MVN and the t copula models. The d.f. parameter of the t copula is

estimated via MPLE. In this exercise we drop the sample correlation estimator of the

matrix parameter of either MVN or t copula due to the high dimensional context

(p/n = 30), and the i-τ estimator for the copula is dropped due to its poor performance

shown in simulation results earlier. We use only the t copula as it includes the Gaussian

copula as a special case.

Thus, for each set of 3600 assets we obtain 4 different model-based portfolios, each

of which is the optimal portfolio in terms of Sharpe ratio corresponding to one of the

4 estimates. To account for differences among randomly chosen subsets of assets, we

measure the performance of these portfolios relative to each other or to the return of

the equally-weighted portfolio.

The detailed description of the modeling technique and simulation design are rele-

gated to Appendix B. We use historical data over the period of the last 9 months of

2017, with the first 6 months used to fit the models, and the last 3 months used as an
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out-of-sample period, over which the simulations are run and the performance of the

portfolios is evaluated. The distributions of relative performance of portfolios suggested

by different models and estimates across the randomly chosen sets of assets are shown

in Figure 4. Figure 3 gives examples of dynamics of different model-based portfolio

cumulative return in comparison with the one for equally-weighted portfolios.

The intuition behind this approach is the following. The performance of model-

based portfolio choices crucially depends on whether the model is capable of capturing

the properties of returns properly. In the case of MVN, not only does the model

disregard heavy tails and asymmetry in return marginal distributions, but also it ignores

possible tail dependence. The resulting portfolios are likely to be vulnerable to the

shocks that are rare, but occur simultaneously in the returns of many assets included

in the portfolio. Although the t copula based model is also rather limited in capturing

the desired properties (only symmetric tail dependence can be captured), it still is

able to improve the quality of the portfolios exactly because the assets that are likely

to be tail dependent will not be included in the same portfolio with high weights.

Further, given the results presented earlier, we expect that under high dimensionality

(p/n = 3600/120 = 30 in this case), the shrinkage-based estimates of the t copula based

models are to deliver more relevant portfolio choices.

The results do confirm this. Overall, from our 135 randomly chosen sets of assets we

find that in over 74% of cases the best portfolio is suggested by either of the t copula

based models, in about 13% the best portfolio is the model-free equally weighted one,

and the rest are the MVN-based choices. Further, when a portfolio is suggested by

either MVN or t copula model, it is more often the one based on the nonlinear shrinkage

estimator of the matrix parameter. However, in case of the t copula estimates, in over

63% of cases the performance of the two portfolios is indistinguishable in terms of the

cumulative return in the end of portfolio lifetime. In terms of relative performance of

the models, for t copula based portfolios there is a considerable chance that the resulting
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return at the end of portfolio’s lifetime is going to be higher than the corresponding

return of any other portfolio (see Figure 4).

We have intentionally designed this example so that it over-simplifies the dynamic

component of the returns modeling, but instead reveals and stresses the potential ben-

efits in the high-dimensional context. First, we took the number of assets to what, to

our knowledge, is the highest dimensionality of portfolios analyzed via copulas. Second,

the model is estimated on a (relatively) extremely small sample, which justifies using

a very simple dynamic model for asset returns. We believe that this approach can be

further developed for the task of dynamic re-balancing of large portfolios.

5 Discussion and concluding remarks

We employ large covariance matrix shrinkage estimators in the task of Gaussian and t

copulas estimation in high dimensions. This technique allows us to precisely estimate

the copulas in (ultra-)high dimensions with up to 1000 variables in a dataset and sample

sizes up to 20 times smaller. While it is accepted that the copulas we study cannot

capture all of data properties in all empirical applications (e.g., asymmetric dependence,

including that in the tail), they remain favored in numerous applications either as a main

dependence model or at least as important benchmark models and building blocks for

more flexible settings. Many applications that employ the Gaussian and t copulas can

benefit from higher dimensionality either by including more variables into the datasets,

or by making use of smaller samples.

Our main results show that large covariance shrinkage estimators can effectively

be used for copula matrix parameter estimation in (ultra-)high dimensions. Not only

are the resulting estimates of the correlation matrices of the pseudo-observations well-

conditioned and close to their true values, but also the whole copula function esti-

mates are close to their actual counterparts, including t copulas, for which the scalar
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degrees-of-freedom parameter controlling for tail dependence is additionally estimated

by MPLE. In addition, we show that the non-linear shrinkage estimator generally out-

performs the linear one, except when the true matrix parameter is rather sparse, in

which case the performance of the two shrinkage estimators is indistinguishable.

Obviously, it is potentially very beneficial in future research to extend the approach

we have proposed to other copula-based settings, such as skewed versions of Gaussian

and t copulas that are known to be able to capture asymmetric dependence. In this

paper, we heavily exploit the symmetry to be able to connect the correlation matrix

of the pseudo-observations with the actual parameters of the copula function. This

makes estimation of the actual copula parameters practical. However, we conjecture

that there is no obstacle in extending the approach to the estimation of correlation

matrices of pseudo-observations for other copulas, including skewed ones. However,

it is not operational since for copulas other than Gaussian or t the parameters of

copula functions cannot be easily connected with moments of pseudo-observations. One

possible way to overcome this is to use the idea of simulated method of moments for

copula estimation of Oh and Patton (2013) combined with shrinkage estimation of

the covariance matrix of pseudo-observations. Again, currently the approach is rather

computationally impractical in high dimensions. Another way to approach it would be

to introduce a two-step-like estimation, when on the first step one estimates the lower-

dimensional parameters of the copula so that to transform the pseudo-observations

according to the quantile functions of the underlying distribution of the copula and

use its properties to estimate, on the second stage, the matrix parameter via shrinkage

estimators. We see this idea potentially very beneficial, yet it requires substantial

further investigation.

What may be a beneficial and computationally practical extension of the current

approach is to use the most recent advances in non-linear shrinkage estimation of large

covariance matrices. In particular, the recently suggested analytical non-linear shrink-
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age of Ledoit et al. (2020) makes the non-linear shrinkage estimator easier and faster to

implement. Similarly, the quadratic shrinkage of Ledoit and Wolf (2019) is potentially

beneficial for practical application. According to the authors, it is unlikely that either of

these estimators will improve the quality of estimation as compared to earlier numerical

implementation of the non-linear shrinkage. We ran a separate short simulation study

of this issue confirming that the gain of the analytical non-linear shrinkage is only in

terms of computational time.

Another result of our research is an empirical application of the proposed copula es-

timators to a large portfolio allocation problem. We use the high-dimensional t copula

to model the joint distribution of returns of (ultra-)many assets over a short period and

construct large portfolios. With the number of assets in the portfolio of 3600 and the

sample length for model estimation of 120 observations, the problem is ultra-high di-

mensional and, to our knowledge, the highest dimensional portfolio allocation problem

in the literature. Hence, precise estimation of the model requires shrinkage estimation of

matrix parameters. The results show that although the t copula is symmetric, the sug-

gested portfolios significantly outperform those coming from the multivariate normality

or the copula model estimated by traditional estimators. Not only do the portfolios

deliver higher returns by the end of the lifetime, but also they persistently avoid sub-

stantial downfalls during the lifetime due to accounting for and proper estimation of

tail dependence. The results of the empirical exercise also suggest that the proposed

approach can be beneficial for constructing more sophisticated multivariate dynamic

models for financial asset returns, particularly if one succeeds in practically applying

it to the case of skewed copulas. Alternatively, these results can be used to update

some of the existing approaches to modeling the joint dynamics of many assets’ returns

that yet disregard the the dependence between the variables beyond correlations. For

example, Engle et al. (2019) use non-linear shrinkage to bring the dynamic conditional

correlation model of assets’ returns into high dimensions and use it to construct large
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portfolios, and De Nard et al. (2020) bring the analysis to even higher dimensions and

intra-day data frequency. Yet the standardized innovations follow simple multivariate

normal distribution. Our empirical example suggests that a copula-based setting in the

part of standardized innovations distribution modeling can be beneficial for the emerg-

ing portfolios, and shrinkage estimation is a practical way to keep the whole setting

high-dimensional.

Finally, yet another potentially beneficial application that we leave for future re-

search is construction of linear forecast combinations under many alternative predictors.

Technically, the forecast combination problem is similar to the portfolio allocation prob-

lem. When the number of alternative predictors is large and especially if they belong

to one family of predictive models, there is normally a great chance that the forecast

errors will be strongly and positively correlated and, importantly, with a certain degree

of tail dependence. Accounting for the interdependence of forecast errors from many

alternative predictors can crucially improve the quality of combined forecasts. However,

the validation samples to train the combined forecasts need to be rather short so that

there is no too much noise from outdated information in predictions. This limits the

number of alternative predictors to be used when traditional estimators are applied.

Thus, using high dimensionality robust estimators will allow one to use more predictors

and construct more accurate combined forecasts.
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Tables

Table 1: Mean (s.d.) time of evaluation of P̂ estimators, milliseconds

p p/n
identity true P arbitrary true P

smpl i-τ LSh NLSh smpl i-τ LSh NLSh

10

1
2

0.032 0.333 0.127 263.653 0.031 0.331 0.125 3565.683

(0.008) (0.039) (0.023) (14.560) (0.007) (0.039) (0.021) (109.259)

1
0.031 0.306 0.101 1178.981 0.031 0.327 0.101 3506.683

(0.008) (0.034) (0.017) (29.304) (0.008) (0.156) (0.018) (118.759)

2
0.039 0.310 0.099 3229.914 0.031 0.423 0.096 558.311

(0.083) (0.113) (0.117) (120.781) (0.009) (0.348) (0.091) (16.000)

100

1
2

0.979 49.784 7.263 132.892 0.972 47.311 7.443 1488.073

(0.089) (3.579) (0.428) (8.497) (0.070) (2.642) (0.748) (76.432)

1
0.515 31.403 3.988 224.496 0.511 30.161 3.928 8047.918

(0.048) (3.725) (0.591) (11.136) (0.043) (2.959) (0.602) (76.432)

2
0.277 22.668 2.220 7733.754 0.272 21.976 2.068 1550.691

(0.028) (2.480) (0.534) (108.521) (0.018) (2.916) (0.289) (71.998)

1000

1
2

1116.264 50367.650 15802.090 46094.440 1151.178 45576.730 16735.310 444714.600

(150.527) (667.872) (2515.403) (6107.378) (144.601) (469.405) (2206.170) (16521.080)

1
570.525 24408.820 9265.924 98169.430 584.639 23739.780 8951.203 289481.000

(64.136) (412.646) (1153.461) (6241.310) (96.366) (2549.029) (1407.731) (43049.690)

2
260.719 12471.040 4569.003 104647.500 252.870 11564.420 3843.262 84845.240

(23.468) (287.130) (510.589) (2857.122) (22.259) (290.511) (431.792) (1691.892)
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Figures

(a) p = 10 (b) p = 100

(c) p = 1000

(d) distribution of correlation coefficients for the p = 1000
matrix

Figure 1: True correlation matrices P of arbitrary structure44



(a) p = 1000, Gaussian copula, arbitrary P (b) p = 1000, t copula, identity P

(c) p = 100, Gaussian copula, arbitrary P (d) p = 1000, t copula, arbitrary P

Figure 2: Shares of simulations in which each estimator returns the best KLIC
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Figure 4: Relative returns of model-based portfolios across the sets of assets

A Quality of approximation of a copula correlation

parameter with pseudo-observations correlation

The results of the study heavily rely on the approximation (2.8). It suggests using simple

correlation of pseudo-observations U from either Gaussian or t copula as a reliable

approximation for the copula correlation matrix parameter P . We demonstrate the

scope of this approximation for these two copulas in the bivariate case, i.e. if the

copula’s matrix parameter

P =

1 ρ

ρ 1

 , (A.1)
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the approximation (2.8) suggests that

cor(u1, u2) ≈ ρ, (A.2)

where (u1, u2)
′ ∼ CP . We run a simulation to evaluate cor(u1, u2) from B = 226

simulated values of (u1, u2)
′ from either Gaussian or t copula (in the case of t copula,

the parameter of degrees of freedom ν varies in {2, 4, 8, 10, 16}) and evaluate the error

of this approximation for different values of ρ. The results are summarized in Figure 5.

Figure 5: Approximation of copula parameter by pseudo-observations correlation

B Portfolio selection and evaluation technique

Assume we have historical data on stock prices (daily, close) for a set of p stocks over

the period of T days, {Sit}i=1,...,p,t=1,...,T . We call a portfolio a p-dimensional vector of

shares, α = (α1, ..., αp), such that ∀i = 1, ..., p αi ≥ 0, and
∑p

i=1 αi = 1. The value of

portfolio α is then the corresponding linear combination of the stock prices:

πt(α) =

p∑
i=1

αiS
i
t . (B.1)
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We use the portion of the historical data for the periods t = 1, ..., n < T to fit a

particular model for the stock price dynamics, based on which a particular portfolio is

selected according to some criteria introduced below. The portfolio is then held for the

rest T − n time periods, t = n+ 1, ..., T . The ratio of the current value of the portfolio

to its initial value is then what we call cumulative return of the portfolio up to that

time period:

Xt(α) =
πt(α)

πn(α)
, t > n. (B.2)

We use the following modeling technique.

1. Since all price series are non-stationary, to model price dynamics we switch to

daily log-returns,

rit = log
(
Sit
)
− log

(
Sit−1

)
.

2. For each of the log-return series, we use the historical data over the period

t = 1, ..., n to estimate a series of ARMA-EGARCH models of order up to (6,6)-

(1,1,1). We run a simple in-sample diagnostics of each specification dropping

those that do not pass the Ljung-Box test for standardized residual autocorrela-

tion or the LM test for autoregressive conditional heteroskedasticity, and from the

remaining specifications we pick the one with the minimal BIC value. For each

asset we then record the estimates of the conditional mean rquation and condi-

tional variance specifications and extract the corresponding standardized residual

series, {eit}i=1,...,p,t=1,...,n.

3. Two different types of models are then used to model the joint distribution of

residuals across all stocks, et = (e1t , ..., e
p
t )
′:

• The multivariate normal (MVN) model:

et ∼ i.i.d. N (Op,Ω), (B.3)
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where Ω is the correlation matrix, which is estimated by either linear or non-

linear shrinkage, Ω̂, of the standardized residuals over the period t = 1, ..., n.

• The t copula model with EDF marginals:

et ∼ i.i.d. Ct
P,ν

(
F̂ 1(e1), ..., F̂ p(ep)

)
, (B.4)

where F̂ i(e) is the EDF of the ith standardized residual series estimated

over the period t = 1, ..., n. The matrix parameter P can be estimated

by any of the method-of-moments-like estimators described earlier in the

paper (Sections 2.3.1 & 2.3.2), and the degrees-of-freedom parameter ν is

estimated via MPLE. We use only the two shrinkage estimators of the matrix

parameter.

4. From each model, we generate B = 210 trajectories of future error terms for the

period t = n + 1, ..., T , {eit(b)}i=1,...,p,t=n+1,...,T,b=1,...,B, and use the fitted ARMA-

EGARCH specifications to calculate the corresponding trajectories of future stock

prices, {Ŝit(b)}.... We use these simulated data to calculate the simulation analogs

of the portfolio value (B.1) and return (B.2) as

π̂t(α, b) =

p∑
i=1

αiŜ
i
t(b), and (B.5)

X̂t(α, b) =
π̂t(α, b)

πn(α)
. (B.6)

5. For each portfolio α, we use as the main performance criterion the simulated sam-

ple Sharpe ratio based on the cumulative returns in the final period T estimated

over the simulations b = 1, ..., B (and assuming zero risk-free return):

ξ(α) =
B−1

∑B
b=1 X̂T (α, b)√

B−1
∑B

b=1

(
X̂t(α, b)−B−1

∑B
b=1 X̂T (α, b)

)2 . (B.7)
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6. We choose the portfolio with the best Sharpe ratio:

α∗ = arg max
α

ξ(α). (B.8)

This results in 4 different model-based portfolio choices: α∗MVN−LSh, α
∗
MVN−NLSh,

α∗tc−LSh, α
∗
tc−NLSh, depending on which model is used to simulate the stock price

trajectories and calculate the simulated portfolio returns (B.6).

7. As a benchmark for a given set of p stocks we use the equally weighted portfolio,

α1/p = (p−1, ..., p−1). To evaluate the actual performance of the portfolios over the

period t = n+ 1, ..., T , we calculate, for each set of assets and the corresponding

choices of α∗, the ratios of the actual return in time period T of the different

model-based portfolios to each other:

R̃(M1,M2) =
XT (α∗M1

)

XT (α∗M2
)
, (B.9)

whereM1 ∈ {tc−LSh, tc−NLSh}, M2 ∈ {1/p,MV N−LSh,MV N−NLSh, tc−

NLSh}/M1.

The interpretation of the measures (B.9) is the following. The purpose of this

empirical exercise is to show the potential gains of the combination of copula-based

models and shrinkage-based estimators over traditional techniques. The higher the

relative cumulative return of a model-based portfolio R(M1,M2) is, the better is the

model’s choice M1 over M2, with the preferred range of the criterion being above 1.

Still, the resulting portfolio performance measures (B.9) are single numbers, and

the result is random for a particular set of assets, choice of sample sizes, and dates. We

therefore run another simulation to compare different model-based portfolio choices.

First, we set as a modeling period approximately the last 9 months of the year 2017.

We use n = 120 daily observations to fit and estimate the models. The remaining
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T − n = 60 observations are used to run the simulations, select the portfolios, and

evaluate their performance. The sample sizes are intentionally very low. One reason

to keep them such is that, clearly, the quality of simulations of stock prices crucially

depends on the quality of univariate conditional mean models of the log-return series.

In our example, these models are very simplistic, and one should not expect that their

performance can remain relevant for a long period of time. However, normally, the

shorter the samples are, the lower should be the number of assets in potential portfolios,

exactly due to the curse of dimensionality. In our case, this is another reason to keep the

samples short so that we can make the point that the high-dimensionality adjustment

in estimation techniques can be beneficial even when the sample is very short.

Second, in the interest of not over-complicating asset selection for potential port-

folios, from all securities for which we managed to access the data, we drop the series

whose log-returns fail stationarity tests or for which we could not select an ARMA-

EGARCH specification (for example, if none of the specifications deliver residuals that

pass the Ljung-Box or LM tests). This leaves us with approximately 4980 securities

from over 5000 initially.

From the remaining securities we randomly choose K > 27 subsets7 of size p = 3600,

and for each of them perform steps 1–7 above. Thus, we obtain a distribution of

the overall performance of different strategies of portfolio construction (B.9) over 135

randomly chosen sets of p = 3600 assets.

Finally, under p = 3600 the optimization problem (B.7) is very high-dimensional. To

make its solution computationally practical (in each simulation it needs to be solved up

4 times), we substitute the actual optimization (B.7) with a choice over a number greater

than 106 of portfolios α randomly and uniformly generated from p-dimensional simplex.

The set of alternative αs is pre-generated and remains fixed across all simulations as long

7we ran the simulations for over K = 150 subsets to obtain result for 135 of them, the remain-
ing 15 were dropped due to poor convergence of optimization or numerical errros during paralleled
computations
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as the dimensionality p remains the same. The resulting choices of the portfolios α∗ are

not guaranteed to be optimal, however, given the dimensionality of the optimization

problem, and its simulation nature, the search on a randomly pre-generated set of

alternatives is believed to be the best computationally feasible choice.

C Technical remarks

C.1 Computational software

All the calculations for the simulation study were performed using R language (R Core

Team, 2013). The packages foreach (Weston, 2019b) and doParallel (Weston, 2019a)

were used to perform parallel computations. The package copula (Hofert et al., 2018;

Jun Yan, 2007; Ivan Kojadinovic and Jun Yan, 2010; Marius Hofert and Martin Mächler,

2011) was used to simulate the random variables from the copula-based multivariate

distributions and calculate copula density functions. To perform linear and nonlinear

shrinkage covariance matrix estimators, the package nlshrink (Ramprasad, 2016) was

used. Other packages used in particular calculations include Matrix, matrixcalc, pcaPP,

corrplot (Bates and Maechler, 2019; Novomestky, 2012; Filzmoser et al., 2018; Wei and

Simko, 2017), and others.

The empirical example was evaluated in the Julia programming language (Bezanson

et al., 2017). Particularly, the package ARCHModels (Broda and Paolella, 2020) was

implied to estimate and select ARMA-EGARCH models.

C.2 Evaluation time of estimators

We assess the time required for evaluation of the four estimators of matrix parameters

of the t copula for different true matrix parameter structures (identity or arbitrary)

and under different dimensionality p/n ∈ {1/2, 1, 2}. The results are reported in

Table 1. The assessment of evaluation time was performed on an Intel(R) Core(TM)
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i7-7700K CPU @4.20GHz machine with 16GB of RAM running on Windows 10 Home

edition. For assessing evaluation time, no parallel computing was used. The R package

microbenchmark (Mersmann, 2019) was used to record the running time of the four

estimators evaluation.
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(a)

(b)

(c)

(d)

Figure 3: Examples of model-based portfolio cumulative return dynamics
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Abstrakt 

Kopule představují užitečný rámec pro modelování sdružených rozdělení, obzvlášť v případě 

vysokorozměrných dat. V současnosti jsou kopule aplikovány na problémy s potenciálně až několika 

stovkami proměnných a vyžadují velký výběr, aby odhad byl dostatečně přesný. V tomto článku 

využíváme metodu smrštění pro odhad velkých kovariačních matic Gaussovských a t kopulí, jejichž 

dimenze je výrazně vyšší než obvyklé dimenze v existující literatuře. Konkrétně využíváme smrštění 

kovariační matice dle Ledoita a Wolfa k odhadu vysokorozměrných matic Gaussovských a t kopulí 

s řádově až tisíci proměnnými a až 20násobně menšími výběry, než je běžné. Simulační studie ukazuje, 

že smrštěný odhad významně překonává tradiční odhady v případě nižších i vyšších dimenzí. Tento 

přístup také aplikujeme na problém alokace velkých portfolií.  

Klíčová slova: Gaussovské kopule, t kopule, vysoká dimenze, velké kovariační matice, smrštění, 

alokace portfolia 



The appendix to this working paper is available at https://www.cerge-ei.cz/working-papers/. 
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