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Abstract

We assess the performance of selected machine learning algorithms (lasso, ran-
dom forest, gradient boosting, and long short-term memory) in forecasting the
daily realized volatility of returns of selected top stocks in the Russian stock mar-
ket in comparison with a heterogeneous autoregressive realized volatility bench-
mark in 2018-2020. We seek to improve the predictive power of the models by in-
cluding various economic indicators that carry information about future volatility.
We find that lasso delivers a good combination of easy implementation and fore-
cast precision. The other algorithms require fine-tuning and frequent re-training,
otherwise they are likely to fail to outperform the benchmark often enough. Only
the basic lagged log-RV values are significant explanatory variables in terms of
the benchmark in-sample quality. Many economic indicators of mixed frequencies
improve the predictive power of lasso though, including calendar and overnight
effects, financial spillovers from local and global markets, and various macroeco-
nomics indicators.
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1 Introduction

Stock market volatility is known to be a measure of the dispersion of stock returns,

and it is commonly used to assess the riskiness of an asset. For the majority of asset

and investment risk management problems, volatility is one of the most important and

irreplaceable characteristics of assets. Hence, forecasting stock returns volatility has

been popular among financial market researchers.

Measuring volatility of returns is performed in various ways, with the realized volatil-

ity (RV) approach popular among practitioners and researchers. It has proven to be

a preferred volatility evaluation technique due to its natural use of more information

from high-frequent market data. Andersen and Bollerslev (1997) were the first to show

that realized volatility forecasts outperform the predictions of numerous alternative

approaches.

The concept of realized volatility was first introduced by Andersen and Bollerslev

(1998) and is defined as the sum of squared intraday stock returns. An important

advantage of the RV approach is that this volatility measure is observed directly from

data, unlike the definitions of market volatility based on latent volatility models such

as stochastic volatility (SV) or generalized autoregressive conditionally heteroskedastic

models (GARCH).

Modeling and forecasting realized volatility can be done via several approaches,

such as the heterogeneous autoregressive realized volatility (HAR-RV) model or multi-

plicative error model (MEM). Alternative approaches to modeling volatility are often

compared. Andersen et al. (2003) show that HAR-RV is superior to SV models and

GARCH. Hence, we use HAR-RV as the benchmark in our research.

In the literature, it is common to apply various modifications to the models to

improve the quality of the forecasts. The method most commonly used and one that

has proven relatively reliable is inclusion of exogenous variables that contain valuable

information about the dynamics of volatility, the asset at hand or even the market or
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the economy in general. Based on the literature, the most commonly used variables to

explain the dynamics of volatility and to improve the predictive power of the models

can be divided into the following groups.

Financial market variables are one of the most extensive and prominent sets of

indicators in the literature. Lagged equity market returns are often shown to predict

volatility. For example, a well known stylized fact on most markets is that, if market

returns are negative, volatility increases (Christiansen et al., 2012; Nonejad, 2017).

Earning-price ratio is an important indicator of a firm’s wellbeing and value, so changes

in the ratio potentially predict the stock returns volatility. When the earning-price ratio

decreases, it is likely to indicate poor current and future performance of the firm, and

hence a higher level of stock returns volatility in the future (Christiansen et al., 2012;

Nonejad, 2017). Similarly, the dividend-price ratio can capture changes in stock returns

volatility through the channel of investment productivity. When this ratio decreases,

stock returns volatility is expected to increase (Christiansen et al., 2012; Nonejad, 2017).

Long-term bond returns are considered to carry higher risks than short-term ones, and

thus have higher interest rates. Variations of these quantities can be used to proxy

investor attitude towards risk (Nonejad, 2017; Audrino et al., 2020).

Market liquidity is another important indicator that provides information about

stocks returns and their volatility. An increase in liquidity is expected to indicate an

increase in the level of market participants activity in the market. A significant change

in activity typically leads to changes in price levels, returns, and volatility. As liquid-

ity is not directly observable, a variety of indicators have been developed to capture

it (such as Amihud, Roll, and High-Low). According to Będowska-Sójka and Kliber

(2019), there is a significant relationship between volatility and liquidity, but the sign

of the correlation can differ depending on the liquidity proxy. The authors conclude

that the most relevant approximation of liquidity is High-Low, as this measure unilat-

erally influences volatility. Xu et al. (2019) show that there is a non-linear dependence
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between liquidity and volatility with persistent influence of the former on the latter.

This research also exhibits that High-Low liquidity proxies are the most influential in

realized volatility forecasting.

Further, the number of daily transactions may carry significant information for

movements of stock volatility. Some studies confirm this effect, while others state that

it does not exist. For example, Shahzad et al. (2014) show that the number of trades in

a day is a more significant predictor of volatility than average daily volume. Moreover,

they demonstrate that the number of individual trades is a more important predictor

than the number of trades by institutional market participants. A possible explanation

is that individuals’ actions represent a noise term (because they possess less reliable

information about the market than organizations), which, in certain time periods, can

lead to abnormally high volatility. Wang et al. (2015) also confirm the existence of

the trading volume effect and point out that, the longer the forecasting horizon is, the

lower the influence is. As for a contrary view of this effect, Todorova and Souček (2014)

show that, for the German market, the trading volume of stock does not include any

significant information for explaining realized volatility. It is worth noting that this

result was achieved both in-sample and out-of-sample.

Stock volatility is also known to be significantly time-dependent. Hence, incorpora-

tion of day-of-the-week, weekend, and holiday effects is of great importance for precise

forecasting of stock volatility. Many authors focus specifically on the effects of non-

trading days. Martens et al. (2009) claim that stock volatility is usually higher after

holidays, and on Christmas, half of its regular level. As shown by Wang and Hsiao

(2010), weekday holidays increase the volatility of the S&P 100 and FTSE 100, while

half-day trading periods decrease it. Diaz-Mendoza and Pardo (2020) find that volatil-

ity significantly decreases on the first day after a holiday or weekend, but after a long

holiday, volatility either rises or remains the same.

Similarly, overnight and lunch-break periods are relevant for forecasting returns
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volatility, because during these periods important information on trade or macroeco-

nomic news may arrive. According to Wang et al. (2015), these non-trading periods

significantly influence volatility. Moreover, they state that the leverage effect is cap-

tured, as the volatility rises higher after negative shocks to returns. The same results

are achieved by Todorova and Souček (2014) and Zhu et al. (2017), who claim that the

effects of overnight returns are higher than those of lunch-break returns.

In addition to the calendar effects, expiration-day effects of related derivatives have

been thoroughly investigated. These effects measure how futures or option contract

trading close to an expiration day may influence the underlying stock returns and

volatility. This has been studied for stock markets in various countries, and the results

are drastically different. Bollen andWhaley (1999) use Chinese data and do not discover

statistically significant difference in stock volatility on expiration and non-expiration

days of the derivatives. A similar result is achieved by Xu (2014) using Swedish data.

However, Arago and Fernandez (2002) conclude that, for the Spanish market, volatility

is significantly higher during a week with an expiration day. Chou et al. (2006) arrive

at the same conclusion in the case of the Taiwanese market.

The inclusion of a variety of macroeconomic indicators is justified, because the over-

all economic environment influences the well-being of the corporate sector and thus the

volatility in the market. The most frequently used proxies are CPI, industrial produc-

tion growth, and GDP growth (Wongbangpo and Sharma, 2002; Christiansen et al.,

2012; Paye, 2012; Nonejad, 2017; Audrino et al., 2020; Fang et al., 2020; Thampanya

et al., 2020). It is important to note that, when macroeconomic variables are used

in combination with financial indicators, most of the time, the former appear to be

insignificant. Housing starts is one of the few indicators that has proven to influence

volatility (Audrino et al., 2020; Fang et al., 2020). A possible mechanism behind this

effect is that the more new houses are built, the more the credit market expands Fang

et al. (2020). T-bill rates are often used as predictors of market volatility. If the econ-
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omy is unstable, then T-bill rates generally tend to decrease, while volatility commonly

increases. These variables are used to proxy the steadiness of the current economic

situation (Christiansen et al., 2012; Nonejad, 2017; Audrino et al., 2020).

Not only does the domestic market affect stock volatility, but so do spillover effects

from adjacent or global financial markets. These spillover effects represent the influence

of foreign or adjacent markets on a local market. Balli et al. (2015) show that one of the

important representations of the spillover effect is the trading volume of goods between

developed and emerging markets. They also demonstrate that spillovers from the US

are higher than those from Europe or Japan. Martens et al. (2009) illustrate that RV

is higher on news announcement dates. Similarly, Wang and Hsiao (2010) demonstrate

that for the Taiwanese market, weekend days raise the volatility of stocks, because,

typically, a considerable amount of macroeconomic news is issued on Fridays in the US.

Further, the oil market appears to be closely connected to stock prices, which is a

manifestation of spillover between adjacent markets. According to Kang et al. (2015)

negative shocks in oil production lead to positive shocks in stock returns volatility.

Similarly, an increase in demand for oil translates into a decrease in volatility. Luo and

Qin (2017) state that oil price shocks positively influence returns on the Chinese stock

market, as a rise in the oil price is a sign of an upturn in the economy.

Changing the functional form of the regression is another approach that is often

used to improve both the explanatory power, and the predictive performance of the

models. On the one hand, models like HAR-RV or MEM are commonly said to exhibit

a relevant level of interpretability. On the other hand, they are not guaranteed to deliver

reasonable forecasting power for either short or long time horizons, due to their limited

ability to capture effects that are more complicated than the linear correlations between

the volatility dynamics and the explanatory variables. However, machine learning (ML)

algorithms are specifically known for highly accurate predictions, due to their ability to

capture various non-linear patterns in the relationships between the variables. Recently,
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much attention has been focused on investigating the applicability of ML in forecasting

returns and their volatility.

Ingle and Deshmukh (2021) implement several types of models to predict closing

prices of stocks: Generalized Linear Model (GLM), Gradient Boosting Model (GBM),

and several types of neural networks in combination with machine learning methods.

The results show that GLM displays the highest level of forecasting accuracy, followed

by ensemble models and deep learning networks.

Hamid and Iqbal (2004) use a three-layered neural network to forecast the volatility

of S&P 500 futures and show that the predictions significantly outperform the bench-

mark. Further, Parisi et al. (2008) research changes in the market price of gold and

find that the best performance, in-sample and out-of-sample, is delivered by a rolling

neural network. Ding et al. (2015) investigate potential improvements in predictions

for S&P 500, and show that forecasts from a deep convolutional neural network appear

6% better than those from the baseline model.

Long Short-Term Memory (LSTM) is another machine learning method that has

been gaining popularity among researchers and practitioners. Xiong et al. (2015) com-

pare the S&P 500 returns volatility forecasts from GARCH, Lasso regression, Ridge

regression, and LSTM. The results show that the LSTM forecasts significantly outper-

form its competitors. Another notable study is Liu (2019), which shows that a combi-

nation of recurrent neural networks with LSTM significantly outperforms GARCH in

forecasting the returns volatility of S&P 500 and AAPL.

Combining multiple models into one appears to be an effective and, hence, popu-

lar approach to applying deep learning algorithms. For example, Kristjanpoller and

Minutolo (2015) use artificial neural networks to combine GARCH-based forecasts of

the gold price returns variance, and achieve a sound reduction in the mean average

percentage error. Vidal and Kristjanpoller (2020) combine LSTM and convolutional

neural networks for gold price returns volatility forecasting, achieving a significantly
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better predictions than GARCH or LSTM alone.

An important feature of the current literature on volatility forecasting, using either

traditional approaches or ML, is the scope of the markets under analysis. Overall,

most research focuses on the US, Chinese and European markets. Few studies consider

emerging markets, and even fewer consider Russia (Aganin et al., 2017; Nagapetyan

et al., 2019; Fantazzini and Shangina, 2019; Fantazzini, Fantazzini; Bazhenov and Fan-

tazzini, 2019; Aganin, 2020). To the best of our knowledge, no research on the Russian

stock market has gone beyond GARCH-type or HAR-RV-type of methodology in the

analysis of returns volatility. Hence, our main goal is to contribute to the existing liter-

ature by performing a comparative analysis of several approaches to forecasting RV in

the context of the Russian stock market, including the HAR-RV and ML approaches.

We first aim to identify the extent to which ML is more suitable for RV forecasting

than the benchmark HAR-RV on the Russian stock market. Secondly, we seek to learn,

what information is significant for the Russian stock market RV forecasting, and how it

is different from the situation on international markets. To achieve these goals, we ex-

tract an extensive dataset for the Russian stock market and compare the out-of-sample

performance of the HAR-RV and 4 ML algorithms (Lasso, Random Forest, Gradient

Boosting, and Long Short-Term Memory) in returns RV forecasting for selected top

stocks in the market. We find that both the HAR-RV and ML approaches provide

us with reasonable predictive power in terms of RMSE of RV in a rolling forecasting

scheme, with the ML generally outperforming the benchmark when a reasonable set of

exogenous features are included. In particular, Lasso regression appears to deliver a

convenient combination of easy implementation and forecasts precision. More compli-

cated algorithms (Random Forest, Gradient Boosting, Long Short-Term Memory) are

very promising, but we show that, to benefit from them, they require fine-tuning and

frequent re-training, which is a computationally demanding task.

The rest of the paper is organized as follows. Section 2 introduces the methodology
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of the benchmark HAR-RV model and ML algorithms used in this research, and the

data splitting and forecasting schemes we choose. In Section 3, we describe the dataset

and proceed to our exploratory data analysis in Section 3.2. In Section 4, we describe

the modeling technique and analyze the results in Section 5. Section 6 offers a dis-

cussion of our main findings and limitations of the research, and Section 7 concludes.

Supplementary aids on the data and results are collected in an online appendix.

2 Methodology

2.1 The Benchmark Model

The benchmark model in our study is HAR-RV of Corsi (2009). The main idea of the

approach is to use high-frequency data to obtain more accurate forecasts of volatility

based on daily, weekly, and monthly RV. The notation of the model is:

RV
(d)
t+1d = α + β(d) ·RV (d)

t + β(w) ·RV (w)
t + β(m) ·RV (m)

t + ωt+1d, (2.1)

where weekly realized volatility, for example, is given by

RV
(w)
t =

1

5
· (RV (d)

t +RV
(d)
t−1d + ...+RV

(d)
t−4d). (2.2)

Inclusion of additional regressors to the model is straightforward:

RV
(d)
t+1d = α + β(d) ·RV (d)

t + β(w) ·RV (w)
t + β(m) ·RV (m)

t +
∑
i

βi · xit + ωt+1d, (2.3)

where xit is an additional explanatory variable i at moment t.

Estimation of the model is typically performed via OLS. Newey-West robust stan-

dard errors are used to retain consistency of estimates with heteroskedicity and auto-

correlation of the error term. When the extended version (2.3) of the model is used,
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a model selection technique is required for an in-sample based selection of the optimal

combination of explanatory variables. We estimate several specifications of the model

with differing additional explanatory variables and select the one that minimizes AIC

from those without significant residual autocorrelation.

2.2 Machine Learning Algorithms

Here, we briefly describe the ML algorithms we use and compare to the benchmark

HAR-RV. These are: Lasso regression (Lasso), Gradient Boosting (GB), Random Forest

(RF), and Long Short-Term Memory (LSTM). Below, we cover distinct features of

each algorithm, with a fuller description and explanations of the mechanisms given in

Appendix A1, page 33.

The main feature of Lasso is regularization on weights of linear regression with

zeroing of extreme-value coefficients. This algorithm is typically good at dealing with

overfitting that may occur as a result of either a relatively small sample size or too

many collinear regressors. Lasso uses the only hyperparameter, which is the penalty

for the degree of collinearity. Hence, training this algorithm is fast.

GB is an ensemble algorithm with a consequent learning of regression trees, while

RF is another ensemble algorithm that uses parallel learning of regression trees. Due

to the consequent structure, GB is capable of accurate capturing of dependencies in the

data, but is prone to overfitting. RF, on the other hand, is more robust to overfitting.

However, both algorithms are considered well suited for feature selection and coping

with multicollinearity. When some features appear highly collinear, the trees will avoid

using them together for the sake of greater information gain. These algorithms classify

some variables as the most/least significant, depending on their inputs to information

gain.

As for neural networks, LSTM is a type of RNN that works with sequences of

variables. Due to its recurrent structure, the algorithm can capture autoregressive
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dependencies, which makes it particularly useful in the tasks of time series forecasting.

In contrast with other networks, LSTM is designed to work better with longer sequences

of data. The architecture of LSTM is tunable, which makes the algorithm flexible for

different data types and tasks. The quality of this algorithm also depends on the

learning approach. Hence, such hyperparameters as batch size, learning rate, number

of epochs, and type of the optimizer should also be tuned. LSTM, thus, is the most

complicated and computationally challenging algorithm among those used in our study.

2.3 Partitioning the Data and Training the Models

To train and evaluate our models, we perform a rolling scheme with out-of-sample

validation and testing. We sequentially divide our dataset into training, validation, and

test sub-samples. Each training sample includes information over a two-year period,

and the validation and test samples are the following two quarters (one each). We roll

forward by one quarter at a time. We use RMSE to measure the quality of our forecasts.

The validation parts are used to select the hyperparameters of the models (when

there are any). The choice of the hyperparameters is made via grid search over excessive

sets of possible values of the parameters. The optimal combinations are chosen to

minimize the validation RMSE.

3 Data

3.1 Groups of Variables

We extract historical data on the stock prices of the top 9 companies of Moscow Ex-

change index from the 1st of January 2016 to the 31st of December 2020 at 5-minute

frequency1. We use the data to calculate daily, weekly and monthly stock realized
1The data is open and can be obtained directly from the stock exchange website or another service;

we obtain the data using the stock prices historical data exports feature of FINAM, www.finam.ru
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volatility for each company.

Following the results of previous studies, we add a variety of explanatory variables

to our dataset.

• To give an alternative for the T-bill rate, daily values of the Russian Government

Bond Index (RGBI) are included. Because returns on market portfolios cannot be

reported directly, daily log-returns on the stock market index RTSI were taken as

a proxy. An important characteristic for this proxy is high level of diversification;

RTSI is a composite index with the most liquid Russian stocks2.

• To control for changes in the economic environment and macroeconomic circum-

stances, we added the dynamics of GDP (quarterly), CPI (monthly), and dwellings

commenced (monthly)3. From the same source, we obtained a few financial per-

formance indicators, specifically, the dynamics of dividend price ratio and earning

price ratio for each of the 9 companies (monthly). It is important to note that

for POLYUS (www.polyus.com), the major part of these variables do not appear

to be available; hence, we omit them from the specifications for POLYUS.

• We included exports and imports to/from the USA from/to Russia, using the

data from the census.gov WebSite. In the literature, the exports and imports

to/from the USA are classified as the spillover effect. However, in our research,

we include them into the group of macroeconomic indicators. This is due to the

frequency of these variables, and the fact that the mechanism of the spillovers is

typically explained in terms of macroeconomic theory, for example, Balli et al.

(2015).

• We calculate several market liquidity indicators: High-Low, Amihud, and Roll,

following the approach of Będowska-Sójka and Kliber (2019). However, we end
2The data on RGBI and RTSI are available at www.finam.ru
3These data can be obtained from the Refinitiv Eikon (Thompson Reuters) https://eikon.

thomsonreuters.com
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up including only the High-Low metrics into our models, since it showed the most

effect on stock volatility in the literature.

• We accounte for the holiday effect, the weekend effect, and the Friday effect by

including the respective dummy variables. To try to capture an eponymous effect,

we add the overnight returns to the sets of variables, following the approach of

Wang et al. (2015).

• Finally, we included the realized volatility of S&P 500 and Brent oil price to reflect

spillover effects from the global stock and crude oil markets.

It is worth noting that the companies in our study represent various sectors of the

economy: banking, mining, retail, and oil and gas. Literature shows that spillovers

between sectors are of great importance. As presented by Hammoudeh et al. (2009),

three main sectors (industrial, service, and banking) of GCC economies demonstrate

volatility spillovers. Chen et al. (2019) confirmed results of the previous paper and

showed that consumer discretionary, industrial, and health sectors generate the largest

spillovers. The US stock market also features cross-volatility between sectors, as shown

by Mensi et al. (2020). They demonstrated that consumer services and goods sectors

produces the largest amount of volatility, while material sectors produce the least.

Due to the industrial specificity of the Russian economy, it happens that most

companies chosen for our research belong to the oil and gas sector. Hence, we do not

expect to see much evidence of volatility spillovers between sectors. However, this is a

field for future research.

We now describe the specificity of the data, necessary transformations of the vari-

ables, and creation of additional indicators, when required. To avoid negative forecasts

of realized volatility, we apply the natural logarithm to the dependent variable and its

lagged values. We shift to the growth rates of the low-frequent variables to introduce

more variation in our data and achieve stationarity. We include the lagged series of the
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main variables into our datasets. As a result, we divide all our variables into 5 groups

(see Table 1) to investigate additional predictive power that each group of variables

brings to a certain model.

Table 1: Groups of explanatory variables included into models

Group Variables

Basic log RV, log RV weekly, log RV monthly

Overnight and calendar effects is after weekend, is after holiday, is Friday, overnight returns

Financial effects growth rate of dividend price ratio†, growth rate of earning price ratio†,

High-Low, log-returns of RTSI, RGBI

Spillovers log RV of S&P, log RV of Brent

Macro indicators growth rate of import/exports from/to the USA†, growth rate of CPI†,

growth rate of housing starts†, growth rate of GDP†

† - low frequency variable

We then construct 5 specifications of all implemented models with the consecutive

addition of these groups of variables and 5 specifications with lags of variables. We

have some missing values in the data. To keep the datasets as complete as possible, for

each particular company we omit variables which are missing at rates 30% or more in

the training samples. Less frequent missing values are replaced with the latest known

values of the same variable.

3.2 Exploratory Data Analysis

We conduct a preliminary data analysis to identify general patterns within the data,

to detect possible effects of extreme events, and to evaluate the overall relationships

between the variables.

Firstly, we consider the dynamics of the logarithm of realized volatility to investigate

changes throughout the period; see Figure 1 for an example (the rest of the figures

are in Appendix A2.1, page 37). Overall, our dependent variable is a typical time
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series of this kind: a volatile and possibly heteroskedastic series, yet most likely with a

stable longer run average level and range. Visually, there are specific differences across

companies, and some common patterns. For example, all the series show significant

short-run increases in volatility in the first half of 2018, and in the first half of 2020,

there is an obvious and very sound change in the average volatility level. The shifts in

2018 are likely to be the result of GDP growth deceleration due to sanctions policies

of foreign countries, and depreciation of the national currency. The shifts in 2020 are

obvious consequences of the COVID-19 crisis, and of the oil market shocks. We address

sampling around those periods with caution, yet we expect loss in the predictive power

of the models anyway.

Figure 1: Dynamics of logarithm of realized volatility of returns, SBERBANK

Secondly, as we aim to capture changes in mean of our dependent variables that oc-

cur over time, we consider the distribution of the average level of the dependent variable

across weekdays (see Appendix A2.2, page 40). For all companies, Thursdays feature

the highest average volatility level. We also observe that, for all companies, except

GAZPROM and POLYUS, RV is the lowest on Mondays on average. For GAZPROM

and POLYUS, Friday features the lowest RV. These findings line up with the literature.

We include the corresponding dummies into our datasets.
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Next, we select variables that are company-specific according to the information

that we want to account for in our models. We present and analyze the descriptive

statistics, including sample averages, standard deviations, and autocorrelations (see

Appendix A2.3, page 43). For all companies, RV and High-Low proxy of liquidity

exhibit persistent significant autocorrelation. Growth rates of dividend price ratio and

earning price ratio show only a few significant autocorrelation terms, and this order

appears to be company-specific.

Finally, to examine correlations between the dependent variable and some poten-

tial explanatory variables, we examine correlation-scatterplot diagrams (see Appendix

A2.4, page 46). For each company, we select the following indicators: logarithm of stock

realized volatility (the dependent variable), logarithm of realized volatility of S&P 500

(captures potential spillovers from the global market), High-Low liquidity proxy (liq-

uidity spillovers), RGBI (proxy of the economy steadiness), and the log-returns of RTSI

(the local market spillovers). The results are rather similar across the companies. The

log-RV is significantly correlated with the other variables; it approves the inclusion of

these indicators in the models. However, the there are obvious non-linear dependencies

present, hence, machine learning algorithms are naturally expected to perform well.

Overall, the RV on the Russian stock market features properties typically outlined in

the literature. Also, this measure appears to be relatively similar across the companies

with drastic changes of values early in 2018 and 2020. We also find weekday effects in

the average level of RV. Further, we observe sound correlation between RV and various

indicators that we intend to use in the models as explanatory features. However, these

dependencies are ambiguous. We need to conduct a thorough search for the optimal

forecasting specification in the case of each particular asset and over a particular period

of time.
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4 Modeling Technique

We aim to forecast realized volatility on the Russian stock market as precisely as pos-

sible, and to identify the effects of potentially informative variables on the volatility

dynamics. We perform our analysis iteratively, going over different predictive algorithms

combined with different groups of explanatory variables. Each such combination is es-

timated for each of the assets in our datasets on rolling samples. The performance of

the different models is then compared across time, across sets of explanatory variables,

across algorithms, and across assets.

For each dataset we perform the following sequence of steps.

1. We split the data across time into 11 samples, using the rolling window scheme,

rolling forward by one quarter at a time. Each sub-sample consists of 10 consec-

utive quarters.

(a) The first two years (8 quarters) are used to train the models.

(b) The next one quarter is a validation sample, used to tune the hyperparam-

eters of the models.

(c) The succeeding one quarter is the testing sample, used to assess the models’

performance via comparing the RMSE of the forecasts of log-RV.

2. We construct 40 different model specifications, combining different model types

with sets of explanatory variables.

(a) HAR-RV is our benchmark model, and our ML algorithms are: Lasso, RF,

GB, and LSTM.

(b) We split all the explanatory variables into 5 groups (see Table 1 in Section

3), and for every model specification we add groups consecutively.

(c) Each of the algorithms is trained on the sets of variables either including

lagged values or not, except in the case of HAR-RV and LSTM.
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3. All the models are trained in terms of minimization of RMSE. The hyperparam-

eters of the models are tuned via a grid search to minimize RMSE, too, but on

the validation sample.

4. We choose RMSE as the main measure of the predictive power, too.

5. In addition to plain comparison of the RMSE of different models, we consider

relative win-rates of different specifications by algorithm and by set of variables.

We track the velocity of the accumulation of the squared sum of forecast errors

on the testing samples, to gather insights about which models and which sets of

variables should be preferred, and how they can be further improved.

5 Results

5.1 HAR-RV and the Explanatory Power of the Variables

The full results of the estimation of the benchmark HAR-RV regressions are available

in Appendix A3, page 55. Overall, the most commonly selected statistically significant

variables are the lagged daily, weekly, and monthly log-RV, the liquidity proxy High-

Low, and the log-RV of S&P 500. Regarding the other variables, growth rate of exports

and log-returns of RTSI appear to be significant for some firms (3 of 9). The variables

that are not significant in any of the regressions are from the group of calendar effects.

The signs of the significant coefficients coincide with those found in other studies which

considered similar effects.

Regarding the global market effects, the result is that, the higher the S&P 500 RV

is, the higher the stock realized volatility of a Russian company tends to be. This

confirms the existence of spillover effect from the global market. The liquidity proxy

High-Low also has a reasonable sign: the higher the liquidity of a stock is, the lower

is its volatility. As for the basic variables, their signs make sense as well, because the

18



higher the weekly or monthly volatility is, the higher the value of the dependent variable

is. The log-returns on RTSI (the local market effect) show a negative effect, similarly

to the findings of Christiansen et al. (2012).

Though the calendar effects are not significant, the signs of their coefficients also

coincide with those typically found in the literature. Similarly, for example, to the

results of Diaz-Mendoza and Pardo (2020) and Todorova and Souček (2014), we find

that, in the Russian market, too, volatility decreases after a holiday or a weekend, and

due to high overnight returns.

We run Breusch-Godfrey LM tests for residual autocorrelation, and find that the

results vary across the firms. There are companies for which there is significant resid-

ual autocorrelation in all the specifications (ROSNEFT, NORNICKEL, POLYUS, and

MAGNIT). For the other firms, the residual correlation vanishes with inclusion of rather

few additional variables (GAZPROM, LUKOIL and NOVATEK). Finally, for SBER-

BANK and POLYMETAL there are no signs of residual autocorrelation in all specifi-

cations of HAR-RV.

We compare the AICa of the specifications, and find that for most companies the

specification of HAR-RV that includes spillover effects appears to be the best. This

pattern is violated only for LUKOIL, for which regression with inclusion of all variables

should be chosen. In general, this result has proven that the selected explanatory

variables contain valuable information for explanation of stock realized volatility.

5.2 ML and Predictive Power of the Models

To report results of machine learning algorithms, we select top-1 models of each type in

terms of average RMSE, and put them on one graph for each company (see Appendix

A4.1, page 64). The most distinct features for all figures are peaks in RMSE early in

2020 and in different quarters of 2018 and 2019. The most reliable explanation, in our

opinion, is the market shock from COVID-19 early in 2020, and the oil market shock in
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the same time. For the 2018-2019 shocks, there could be multiple reasons, most likely

including deceleration in growth of GDP due to sanctions policies of foreign countries,

pension reform, and depreciation of the national currency in 2018 and 2019. However,

in the quarter after those peaks, the RMSE lowers significantly, which indicates that

the proposed models adjust to the new information, process it, and can regain their

predictive power.

Further, for most of the companies, GB and RF algorithms appear to be the weakest.

GB appears to be the worst overall in most cases (across time, across specifications,

and across assets). This suggests that consequent learning of regression trees might

not be the best for forecasting stock realized volatility. However, unlike the others, RF

models have the lowest RMSE for all test periods for POLYUS. In turn, Lasso and

HAR-RV appear to be the best models, replacing each other in the leading position in

different test quarters. The benchmark model is chosen in its basic specification most

of the time, while Lasso performs better with inclusion of all types of variables into

the model. The model specifications without lags of variables are chosen more often,

meaning that lags do not lend much forecasting power into the algorithms.

To understand the predictive capabilities of different models better, we considered

top-3 specifications for each class of ML algorithms for each dataset (and the top-1

benchmark model specification for comparison). The predictive performance measures

and description of the specifications are in Appendix A4.2, page 69. As in the previous

step, Lasso and HAR-RV deliver the lowest average RMSE on the testing samples,

followed by RF and GB. For LSTM, most notably, with the inclusion of extra variables,

an increase in RMSE is much higher than for the other models. We believe that the poor

performance of LSTM is a sign of overfitting. Nevertheless, it should be noticed that any

model can deliver the lowest RMSE in a particular quarter. Thus, it is important that

the majority of top-3 specifications of each model are based on variables without lags.

Moreover, we conclude that even though top-1 specifications can be based on the basic
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variables only, among the top-3 specifications there is commonly at least one model

with addition of extra variables, which does not perform significantly differently across

the top-3 options. This proves that various groups of variables indeed carry valuable

information about volatility and are important for better forecasting. To confirm this

claim further, we repeat the analysis of the top-3 specifications, excluding the influence

of the 1st and 2nd quarters of 2020. The results are comparable to those from the

previous step.

Since any algorithm can perform best in particular test quarters, we continue analy-

sis of the results and compare the win-rate of the models by class, showing the number

of cases among the firms for which a particular class of models appears to be the best in

each particular quarter and on average overall. See Table 2. The most frequent winner

is Lasso, followed by HAR-RV and RF. Hence, this result overlaps previous findings for

benchmark model and Lasso. However, the result for RF demonstrates that, though

RF does not appear as the top-1 model, it is still a powerful algorithm. LSTM and GB

have the lowest win-rates. However, the two periods when either LSTM or RF show the

highest win-rate are the 3d quarter of 2018, and the 3d quarter of 2020, right after the

periods with abnormally high volatility for most of the companies. This suggests that

these particular algorithms can adjust faster to changes in the patterns and absorb new

arriving information better than the other models. If so, it is worth an attempt to im-

prove their performance by more frequent re-training (more on this in the conclusion).

5.3 Prediction-Based Importance of the Variables

Because Lasso is among the best model classes in terms of prediction across both time

periods and assets, we are able to determine which variables are the most significant.

We point out two groups of relatively significant variables: those that were sustainably

chosen by the algorithm, and those that were impermanently, but frequently chosen.
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Table 2: Total win-rate of models by class and testing sample period

Period Models
HAR-RV Lasso LSTM RF GB

2018Q2 2 4 0 1 3
2018Q3 1 2 1 3 2
2018Q4 2 6 0 1 0
2019Q1 3 2 1 2 1
2019Q2 1 2 2 2 2
2019Q3 4 3 0 2 0
2019Q4 2 6 0 1 0
2020Q1 2 5 0 2 0
2020Q2 4 4 0 1 0
2020Q3 2 1 3 3 0
2020Q4 3 3 0 2 1
Average 2.36 3.45 0.64 1.82 0.82

The groups are presented in tables in Appendix A4.3, page 73, and Table 3 below

summarizes the results across all firms.

Table 3: Best overall variables, chosen by Lasso

Group of variables

Sustainably

chosen
Log RV, log RV weekly, log RV monthly, is after weekend, is Friday

Frequently

chosen

Log-RV of S&P, log-RV of Brent, growth rates of imports, growth rates of exports,

growth rates of GDP, growth rates of CPI, overnight returns, RGBI, earning price ratios,

dividend price ratios, growth rates of housing starts, High-Low

According to these results, the first group includes basic HAR-RV model variables:

logarithms of daily, weekly, and monthly realized volatility. It happens because the

HAR-RV gives an accurate description of the autoregressive process of RV, and with so

few variables the Lasso must be very close to the baseline linear model. Note that, even

though the calendar effects are often insignificant in-sample, they are rather persistently

chosen to improve prediction by Lasso (e.g., the Friday effect).

The second group contains less frequently chosen variables, including indicators

of spillover effects (log-RV of S&P 500 and Brent oil price returns). In many cases,
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macroeconomic factors including growth rates of GDP, CPI, imports and exports, and

housing starts are significant. Moreover, financial indicators including growth rates

of earning price ratios, growth rates of dividend price ratios, growth rates of housing

starts, High-Low proxy of liquidity, and RGBI are important in forecasting realized

volatility for most companies. Lastly, overnight returns were frequently chosen by

Lasso. Similarly to the calendar effects, many of these variables are not detected as

carriers of significant explanatory power in-sample by the benchmark.

Compared to the results obtained by the benchmark model, many more variables

from various groups are chosen by Lasso. However, logs of daily, weekly, and monthly

RV and High-Low are chosen by both algorithms.

Our results demonstrate that linear models are more suitable for RV forecasting

than more complicated machine learning algorithms, at least in our framework. How-

ever, Lasso provides more accurate forecasts than HAR-RV. Importantly, in terms of

predictive power optimization, Lasso tends to choose more variables as being valuable,

while the benchmark model works the best on the basic sets of regressors.

There are multiple reasons for the relative failure of GB, RF, and LSTM in the task

of RV forecasting. We believe that the most crucial source of high prediction numbers of

errors by these algorithms is overfitting. Another possible reason for the failure of these

algorithms is re-training that is not frequent enough. In both cases, the underlying

reason must be the nature of the volatility process itself, as it is essentially noisy. It is

less likely but possible that the tree structure used by GB and RF may be unsuitable for

forecasting time series such as RV. Lastly, LSTM is the closest to HAR-RV and Lasso

in terms of predictive power, but the problem of overfitting is likely to have escalated

for this model.
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6 Discussion

6.1 Applications of the Results

There are several ways the results of this study can be implemented. Firstly, we were

able to identify the most suitable model for forecasting realized volatility on the Rus-

sian stock market, so researchers and investors who want to study this topic or trade

on the market can use the model. Secondly, if researchers or investors want to build

other models for forecasting stock volatility, they can use our findings on the significant

predictors of realized volatility. Thirdly, with help of our results, traders can quantita-

tively assess the future short-run risks of an asset on the Russian stock market. Lastly,

as realized volatility is important for optimal portfolio allocation, our results can be

used by portfolio investors to improve their (re)allocation decisions.

6.2 Limitations of the Study

We encountered the impossibility of acquiring some data. Although we included vari-

ables related to calendar effects, spillover effects, and financial and macroeconomic

effects, many factors that can influence RV could not be taken into account. The most

obvious reason is unavailability of data. For instance, investors sentiment is expected

to be an important predictor of RV, yet we have not yet managed to access suitable

structured or unstructured data that would have been convenient to use in our research.

Another challenge is the computational capacity requirements necessary for appro-

priately fine and frequent tuning of the models, particularly, the computationally heavy

ML algorithms (RF, LSTM). We briefly studied the velocity with which the sum of the

squared prediction error is accumulated by different models within a particular test-

ing quarter. Figure 2 shows the accumulation process for SBERBANK volatility top-1

by-class predictors during the 1st quarter of 2019. The overall winning model for this

firm and this period was Lasso (it shows the lowest accumulated sum at the end of the
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quarter, day 60, see the left panel of Figure 2). However, the superiority of this model

is not stable within the period. Obviously, LSTM and GB have higher values of the

squared error to begin with. This supports our intuition about the overfitting problem.

However, the other three models start off rather close to each other in the beginning of

the quarter, with RF being a sound leader for several days (see the right panel of Figure

2). RF becomes outdated rather quickly (after approximately 6 days), and does not re-

cover throughout the rest of the testing sample. Moreover, the accumulation of the sum

of the squared error occurs, on average, with increasing rates for all the models, with

dramatic increases in some periods, which possibly signal arrivals of new information

not yet accounted for by the trained models. These observations support the idea that

more frequent re-training of the models might significantly improve predictive power.

Even though this seems a rather obvious path to take, we leave it for future research,

as it is too computationally demanding, particularly in the case of the GB, RF, and

LSTM algorithms.

Figure 2: Top-1 predictors cumulative sum of squared errors, SBERBANK, 2019Q1
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7 Conclusion

We aim to employ data on the Russian stock market and to compare the suitability of

the benchmark HAR-RV with several ML algorithms (Lasso, Random Forest, Gradient

Boosting, Long Short-Term Memory) in the task of forecasting daily RV of selected

top stocks on the Russian stock market. We further seek to identify the most valuable

factors for explaining the dynamics and forecasting the future values of the RV.

We collect a novel and extensive dataset for the top-9 Russian companies based on

MICEX, consisting of our variable of interest and various groups of additional variables,

including calendar effects, financial variables, spillover effects and macroeconomic vari-

ables. For each of the models, we constructed a number of specifications based on either

HAR-RV or ML algorithms that are trained on various sets of explanatory variables.

The results show that Gradient Boosting, Random Forest, and LSTM did not ap-

pear to perform well in the forecasting task. The best performing models were Lasso

and HAR-RV. From Lasso, we were able to highlight the most significant factors for

forecasting the RV. The variables that showed the most effect on future RV across all

companies are: logarithm of daily, weekly, and monthly realized volatility, High-Low

proxy of liquidity, calendar effects, and some macroeconomic variables and financial

market and spillover effects, including as, for example, logarithm of realized volatility

of S&P, growth rates of CPI and GDP, growth rates of earning price ratio and dividend

price ratio.

We also find that, once trained, the specifications become outdated rather quickly.

Their predictive performance could be improved by finer tuning and more frequent

re-training. This is a computationally heavy task, which could be addressed in future

research. Furthermore, as most companies in our study are from the oil and gas sector

(because of the industry specificity of the Russian economy), spillovers between sectors

could not be investigated fully, opening another promising direction for further research.
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Abstrakt 

 

U vybraných ML (z anglického machine learning, tj. strojové učení) algoritmů Lasso, Random 
Forest, Gradient Boosting a Long Short-Term Memory vyhodnocujeme kvalitu předpovědí 
denní realizované volatility vybraných nejvýznamnějších akcií na ruském akciovém trhu a 
srovnáváme ji s HAR-RV benchmarkem za léta 2018 až 2020. Snažíme se zlepšit prediktivní 
výkonnost modelů zahrnutím různých ekonomických indikátorů, které nesou informaci o 
budoucí volatilitě. Zjišťujeme, že Lasso je snadno implementovatelné a zároveň poskytuje 
kvalitní předpovědi. Ostatní ML algoritmy vyžadují precizní ladění a časté opětovné trénování, 
jinak obvykle nejsou schopné překonávat benchmark. Pouze klasické zpožděné logaritmické 
realizované volatility jsou významnou proměnnou pro benchmark kvality in-sample 
předpovědí. Naproti tomu, mnoho ekonomických indikátorů s různou frekvencí zlepšuje 
prediktivní výkonnost metody Lasso. Ekonomické indikátory zahrnují kalendářní a noční 
efekty, finanční přelévání mezi lokálními a globálními trhy a řadu makroekonomických 
indikátorů.  

Klíčová slova: heterogenní autoregresivní model, strojové učení, Lasso, Gradient Boosting, 
Random Forest, Long Short-Term Memory, realizovaná volatilita, ruský akciový trh, data se 
smíšenou frekvencí 
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