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Abstract 

We report the results of two experiments (one field, one laboratory) through which we 

examine the impact of general information and specific information on the quality of self-

assessment (“calibration”) in various tasks and feedback conditions. We find a strong 

positive effect of naturally available information (both general and specific) on 

calibration in the field experiment. We also identify a positive effect of specific 

information separately in the laboratory experiment. Maybe unsurprisingly, in both 

experiments it is the unskilled who improve their calibration most. Our results suggest 

that the unskilled may not be doomed to be unaware (if indeed they are). 
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1. Introduction 

 

The so-called unskilled-and-unaware problem was first identified by psychologists 

Kruger and Dunning (1999). The authors conducted, with students, several experiments 

in which subjects were asked to estimate their relative standing (ranking) and absolute 

performance (score) in various tasks. The authors identified, both for reported rankings 

and scores estimates, three regularities: (i) people ranked at the bottom of the skills 

distribution overestimated their ranking/score; (ii) those ranked at the top of the skills 

distribution underestimated their ranking/score; (iii) these miscalibrations were typically 

highly asymmetric in that many more unskilled overestimated their ranking/score and 

often did so quite dramatically. Kruger and Dunning (1999) argued that the unskilled also 

lack the metacognitive ability to realize their incompetence and were thus afflicted by a 

double-curse. The term unskilled-and-unaware problem typically refers to the large 

miscalibration (overconfidence) of the unskilled, and implicitly to the asymmetry in 

miscalibration between the unskilled and the skilled.4 

The claim drew significant attention. Not surprisingly, a number of follow-up 

studies were subsequently conducted and various explanations provided (e.g., Krueger 

and Mueller 2002; Burson, Larrick, and Klayman 2006; Krajč and Ortmann 2008). In a 

recent article, Ehrlinger, Johnson, Banner, Kruger, and Dunning (2008) addressed the 

concerns of some of the critics and asserted that the unskilled-and-unaware problem 

remains alive and well.  

The problem of miscalibration, or biased self-assessments, is also of interest to 

economists. Camerer and Lovallo (1999), for example, showed that people are largely 

overconfident when entering laboratory markets with payoffs depending on their relative 

skills. Their paper, too, has garnered significant attention.     

 In the current manuscript, we report the results of an experimental investigation of 

the impact of various types of information on miscalibration in situations – such as in 

Kruger and Dunning (1999) and Camerer and Lovallo (1999) – where subjects, for 

reasons that are in dispute (e.g., Krajč and Ortmann 2008), may start out with biased self-

                                                 
4 We follow the terminology used by Kruger and Dunning (1999). One can reasonably question the 
meaning of the word “unskilled” in some of the treatments they, and we, did. A better, yet less succinct 
label would be “less skilled”.   
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assessments. As noted by Camerer and Lovallo, Krajc and Ortmann, and others, the 

question of how fast and far, and under what circumstances, the frequency of anomalies 

decays has become “an important focus of research in behavioral and experimental 

economics” (Bruni and Sugden 2007, p. 168).  Our study – a field experiment in which 

we embedded a laboratory experiment – contributes to a better understanding of the 

circumstances under which biased self-assessments might occur, and how they can be 

undone.  

Subjects in our two experiments demonstrate, on average, initially overconfident 

behavior. We show, however, that information improves calibration, especially of the 

unskilled. This reduces the unskilled-and-unaware problem over time, as conjectured in 

Krajč and Ortmann (2008). We also identify an interesting design problem that seems 

inherent in overconfidence studies and that neither our study nor other studies so far have 

successfully addressed.  

The present paper is organized as follows. In the next section, we briefly review 

the literature concerned with the unskilled-and-unaware problem and related issues. In 

the third section, we motivate and detail our research objectives and research strategy. In 

the fourth section, we discuss the design and implementation of the experiments. In the 

fifth section, we present our results. In the last section we discuss the results and their 

implications. 

 

2. The unskilled-and-unaware problem and related issues – a brief literature review 

 

As mentioned, the results and conclusions of Kruger and Dunning (1999) did not go 

unchallenged. For example, Krueger and Mueller (2002) contested those results when 

they showed that the use of the unreliable measures5 causes the measured ability to 

regress toward the mean, which induces overestimation (underestimation) in the lower 

(upper) part of the distribution.6 In addition, to explain the asymmetry, the authors used 

                                                 
5 “Unreliability” of a measure denotes the imperfect correlation between a predictor variable and a criterion 
variable. In this case, estimated percentiles are not a perfectly reliable measure of real percentiles. Lack of 
reliability in a test makes the highest (poorest) performers look less (more) able than they are.  
6 Several authors have proposed models of miscalibration based on subjects making random errors in 
judgment. For example, Erev, Wallsten, and Budescu (1994) created a general model that assumed that 
subjects’ confidence was a function of true judgment and error.  
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the presence of the better-than-average effect (the belief by a majority of people that they 

are better than the average). This strikes us as a less than persuasive argument since it 

makes the explanandum into the explanans. 

Burson, Larrick, and Klayman (2006) introduced task difficulty into the unskilled-

and-unaware problem. Specifically, they demonstrated that the degree of over- and 

underconfidence depends on the task difficulty. Indeed, their results were similar to those 

in Kruger and Dunning (1999) for easier tasks (with asymmetry in over- and 

underestimation). For harder tasks, Burson and her colleagues found, in contrast, less 

overestimation of the unskilled and more underestimation of the skilled. In fact, 

asymmetry in over- and underconfidence disappeared (or even was reversed – more 

underestimation among the skilled than underestimation among the unskilled) in 

experiments with harder tasks.  

 Ehrlinger, Johnson, Banner, Kruger, and Dunning (2008) addressed some of the 

questions about the earlier work of Kruger and Dunning (1999) by using financial and 

social incentives and real-world situations; they also controlled for the unreliability of 

measures. Despite these changes in experimental implementation, they replicated the 

pattern observed in Kruger and Dunning (1999) of overestimation of their skills by the 

unskilled and underestimation of their skills by the skilled, with miscalibration much 

more dramatic for the unskilled than the skilled in all treatments. Ehrlinger et al. (2008) 

also searched for the cause of the identified miscalibration in percentile ranking. Using 

counterfactual regression analysis, they explored how more accurate information on own 

scores and the scores of others would have improved calibration in rankings. It was found 

that, overall, knowing their own score would have helped subjects more than knowing 

others’ scores, but the two types of information would have had approximately the same 

effect on the skilled. Thus, it was shown that the skilled and the unskilled are 

differentially affected by information. 

 Krajč and Ortmann (2008) offered an alternative explanation of the unskilled-and-

unaware problem: They constructed a simple model that shows that the unskilled, rather 

than being more unaware than the skilled, face a tougher inference problem which, at 

least partially, explains the alleged lack of metacognitive ability of the unskilled. Their 
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model is based on two assumptions. First, they claim that students’ skills7 – at least in the 

studies of Kruger and Dunning (1999) and Ehrlinger et al. (2008) – have a bounded J-

distribution.8 Second, the authors assume that the self-assessment process involves 

unsystematic noise.9 Thus Krajč and Ortmann (2008) use computational simulations to 

generate patterns of miscalibration similar to those reported by Kruger, Dunning, and 

their collaborators. The results suggest that the unskilled may indeed be unaware but that 

it is not necessarily for a (relative) lack of metacognitive skills.  

 Krajč and Ortmann (2008) also discuss the conditions under which they expect 

the unskilled-and-unaware problem to disappear. They conjecture, as do Camerer and 

Lovallo (1999), that feedback is likely to ameliorate the miscalibration problem.  

Camerer and Lovallo (1999) introduced skill-dependent rankings and rank-

dependent payoffs into a market entry experiment and showed that people enter 

excessively into laboratory markets, suggesting overconfidence. This result has been 

contested by Elston, Harrison, and Rutstroem (2006) who showed that neither non-

entrepreneurs nor entrepreneurs were overconfident about their skills in market entry 

games. In contrast, the wannabe-entrepreneurs in their sample were.  

The contradictory results of Camerer and Lovallo (1999) and Elston et al. (2006) 

suggest that Camerer and Lovallo (1999) may not have had enough relevant control 

variables such as measures of risk aversion and desire to win which Elston et al. (2006) 

used; they also suggest that the specifics of the subject pool matter. Of particular interest 

is the finding that entrepreneurs seem to have been calibrated reasonably well. This 

finding is in line with results on the performance of experts in domains as diverse as 

weather forecasting (e.g., Murphy and Winkler, 1984), horse race betting (e.g., Johnson 

and Bruce, 2001), and games of skill and chance such as bridge (e.g., Keren, 1997). 
                                                 
7 Students are typically used in studies of the unskilled-and-unaware problem. 
8 A J-distribution is a distribution with a monotonically decreasing convex pdf describing a relatively large 
number of the unskilled and a decaying upper tail for the skilled. Krajč and Ortmann (2008) argue that the 
samples used in earlier studies quite likely satisfied this assumption; they also show that this assumption 
can to some extent be weakened and that it is easy to account in their framework for legacy cases (i.e., 
applicants who happen to be children of alumni and therefore might be admitted even when their grades 
might not warrant it), etc. 
9 This assumption is often used in the literature (e.g., Erev, Wallsten, and Budescu, 1994). Krajč and 
Ortmann (2008) argue that noise is likely to be correlated with familiarity (and hence feedback about one’s 
own standing) with a particular domain. “If one does not know one’s relative standing in a particular 
context, one is likely to use one’s self-assessment from other domains as a proxy, which adds to the error.” 
(Krajč and Ortmann, 2008) 



 6

In our view, the issue of calibration is also fundamentally linked to the issue of 

representativeness of stimuli in experiments (e.g., Gigerenzer, Hoffrage, and 

Kleinbolting, 1991; Dhami, Hertwig, and Hoffrage, 2004). Juslin, Winman, and Olsson 

(2000) showed, with a meta-study based on 130 data sets, that the so-called hard-easy 

effect (overconfidence more common for samples with hard questions and 

underconfidence more common for samples with easy questions) in general-knowledge 

tasks appears typically only in studies that use non-representative stimuli (e.g., selected 

alternatives for comparison), as does overconfidence. Usage of non-representative stimuli 

offers an interesting explanation of the results – the dependence of calibration on task 

difficulty – in Burson, Larrick, and Klayman (2006). However, this explanation is not 

uncontroversial, as Klayman, Soll, Gonzáles-Vallejo, and Barlas (1999) showed that the 

degree of overconfidence varied across domains, yet was not a function of domain 

difficulty. 

 

3. Motivation and research hypotheses 

 

It is our main goal to study the impact of various types of information on miscalibration 

(the unskilled-and-unaware problem). Krajč and Ortmann (2008) have conjectured that 

(lack of) information about own ability and abilities of others plays an important role in 

miscalibration; indeed there is some evidence from related judgment and decision tasks 

that supports this conjecture (e.g., Duffy and Hopkins, 2005; Engelmann and Strobel, 

2000). 

We distinguish two kinds of information, general information and specific 

information. General information is here understood as all the natural information that is 

generally accessible to all participants. In our experiments, this includes gossip, 

inferences from study group impressions, or in-class contributions of others. This 

information can be thought of as noisy, less reliable or “soft.” In contrast, specific 

information is here understood as the information that is given to participants directly and 

privately. In our experiments, it is the information about the students’ past performance 

(both absolute and relative), which can be thought of as “hard” information, or explicit 

“feedback.” 
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 Our research hypotheses regard the impact of the two types of information on 

miscalibration: 

Hypothesis 1: General (soft) information decreases miscalibration. 

Hypothesis 2: Specific (hard) information decreases miscalibration even more. 

 To test these hypotheses, we conducted two experiments (Experiments 1 and 2). 

Experiment 1 was a field experiment: we compared midterm and final exam predictions 

of a newly constituted class in a real-world setting. This experiment addressed primarily 

the general information hypothesis. Although specific information was also present in 

Experiment 1, it was impossible, due to the nature of the field situation under study, to 

disentangle its impact from that of general information.10 In turn, Experiment 2, a 

laboratory experiment that was embedded in the field experiment, addressed both 

hypotheses. 

Note that both experiments were not marred by subject selection problems as our 

participants were “pseudo-volunteers” (see Eckel and Grossman, 2000).11 A possible 

disadvantage with pseudo-volunteers is that the subjects may simply not be interested in 

participating in the experiment (Harrison and Rutstroem, 2007, especially fn. 79). In light 

of the time our experiments took and the substantial financial incentives we provided, as 

well as our observation of our pseudo-volunteers’ conduct, we do not believe that we 

have to worry much about this possible disadvantage. 

 

4. Experimental design and implementation 

 

4.1. Experiment 1 (the field experiment) 

 

Each year, CERGE-EI in Prague (Czech Republic) invites selected students from Central 

European countries, and countries further East, to the preparatory semester (prep), and 

                                                 
10 Strictly speaking there was no treatment other than the baseline condition, hence our use of the term 
“experiment” might be considered inappropriate. We acknowledge that concern but use the term to  
simplify our discussion.   
11 We hasten to admit that, although our subjects were pseudo-volunteers, they were highly selected along 
some dimensions, and the selection process that brought them to the experiment (wanting to become a 
Ph.D. student at CERGE-EI) was related to experimental tasks (writing micro exams and adding numbers). 
Studying the effects of that selection was, of course, part of what we were interested in (e.g., Krajč and 
Ortmann 2008). More on this below.  
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then admits the best of them for graduate studies based on their results in the prep. Prep 

students are likely to have been among the best in their college classes in their home 

countries. When students arrive at CERGE-EI, they have minimal information about the 

abilities of others (although they might anticipate what kind of people has been invited to 

the prep semester and although they might understand that the quality of the education 

systems from which the class is recruited differs widely). Prep students represent a 

suitable subject pool for investigating the issue of self-assessment under incomplete 

information (as regards composition of the sample) as well as increasingly more complete 

information (acquired over time).12  

During the prep semester, students typically take four courses: microeconomics, 

macroeconomics, mathematics, and English (academic writing). In each of the four 

courses, they have a midterm exam, a final exam, and regular homework. For our field 

experiment, we have used students’ self-assessments and performance in the 

microeconomics course.  

Specifically, in Experiment 1 we asked students of the microeconomics course to 

predict their performance13 both on an absolute (score) and relative (percentile) scale, in 

the midterm and final exams. Students made these predictions twice for the midterm 

exam (in week 1 of the preparatory semester, and in week 5 right before the midterm 

exam), and once for the final exam (in week 9 right before the exam).14 

A total of 49 (respectively, 52) students made their predictions about midterm 

performance in week 1 (in week 5), and 45 (51) of these students participated in the 

midterm exam.15 A total of 46 students made their predictions about the final 

performance in week 9, and 45 of them wrote the final exam.16 For each question, the 

                                                 
12 We did a pilot experiment with prep students in 2004. We identified the unskilled-and-unaware problem 
in the data. The magnitude of the effect decreased toward the end of the semester in the pilot study, too. 
13 Ferraro (2005) used in-class exams to study the relationship between incompetence and overconfidence. 
He concluded that overconfidence in inversely proportional to competence (performance). Thus, he 
essentially confirms the results of Krueger and Dunning (1999).  
14 Complete instructions to Experiment 1 are available at http://home.cerge-ei.cz/krajc 
15 Altogether 53 students wrote the midterm exam but 2 people came to the exam after the questionnaires 
with predictions had been collected.  
16 Altogether 46 students wrote the final exam. One student came to the exam after the questionnaires with 
predictions had been collected. One student did not submit the final exam booklet. There was one student 
who wrote the final but did not write the midterm exam. 
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participant with the best prediction was paid 500 CZK.17 All participants were told that 

their predictions would not affect their grades and that no one but the researchers would 

see the data. 

Since Experiment 1 was realized at three different points in time (weeks 1, 5, and 

9), it allows us to observe the evolution of the level of miscalibration over time under the 

influence of general information alone (weeks 1-5) and general and specific information 

jointly (weeks 5-9). At each point in time we measured calibration in each subject’s own 

score (“What is your prediction of your own score on the midterm [final] exam in 

microeconomics?” – henceforth referred to as “score”) and percentile rank (“What do you 

think is the percentage of people in the group who will perform better than you on the 

midterm [final] exam in microeconomics?” – henceforth referred to as “percentile”). 

Over time, students could be assumed to acquire general information about their absolute 

and relative standing in the microeconomics course and other courses. Additionally, they 

received specific information about their relative and absolute standings after the 

midterm exam. 

The first question allowed us to measure over- and underestimation of subjects’ 

own ability. With the second question we measured, like Kruger and Dunning (1999), 

percentile ranking. Experiment 1 featured a real-world setting with high stakes (at least 

for prospective Ph.D. students coming from Central Europe and further East) and natural 

information (both of the general and specific kind). We did not give our subjects any 

artificial feedback; they only received the natural information communicated during such 

a course: homework grades, midterm results, distribution of midterm scores, etc. They 

also received indirect feedback from other classes and communication with their peers.  

 

4.2. Experiment 2 (the lab experiment embedded in the field experiment) 

 

Experiment 2 was a laboratory experiment conducted in two stages. In each stage, we 

used the following two tasks:18 

                                                 
17 At the time 20.50 CZK was equal to $1 and the average hourly wage was approximately 100CZK. Thus, 
payments were clearly non-trivial. 
18 Complete instructions are available at http://home.cerge-ei.cz/krajc. 
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Task 1: Participants had to sum, within a 3-minute time limit, sets of five 2-digit numbers 

without the use of calculators (see also Niederle and Vesterlund, 2007, and Brueggen and 

Strobel, 2007). This task is a skill-oriented task (mathematical skill). 

Task 2: Participants had to answer, within a 2-minute time limit, a quiz containing 20 

two-alternative general knowledge questions (widely investigated in psychology).19 In 

Stage 1, we asked for a comparison of the population of pairs of European Union 

countries (“Which of the following two countries has a larger population?”) while in 

Stage 2, in order to avoid learning, we asked for a comparison of the population of pairs 

of the 50 most populated countries in the world.20 This task is a general-knowledge task 

(knowledge of geography). 

A total of 49 (respectively, 45) students participated in Stage 1 (Stage 2) of this 

experiment. Stage 1 (Stage 2) lasted 25 (20) minutes. All participants were paid using a 

linear compensation scheme according to their performance in the experiment. The 

average payoff was 177 CZK (313 CZK) in Stage 1 (Stage 2). 

Stage 1 was conducted during week 1 of the preparatory semester and Stage 2 at 

the end (week 9) when students could be assumed to have more information about their 

relative standing in the group (Hypothesis 1: general information). We did not tell our 

subjects during Stage 1 that Stage 2 would follow. All instructions were read aloud. 

 In Stage 1, after providing a brief general introduction to the experiment, we 

asked our subjects to fill in a short questionnaire (age, gender, and background – 

mathematician or economist). Then we continued with the instructions. We explained the 

first task – summing 5 two-digit numbers – and gave an example. The subjects were 

informed that for each correctly solved problem they would be paid 5 CZK. Afterwards, 

we distributed sheets with 22 summing problems and gave our subjects 3 minutes to 

solve as many of these problems as possible. Then, we asked subjects to provide 

estimates of their own score (“How many summing problems do you think you solved 

correctly?”), and of their percentile ranking (“What do you think is the percentage of 

people in the group who performed better than you?”). Subjects providing the most 

                                                 
19 E.g., for review see Juslin, Winman, and Olsson (2000). 
20 By learning we mean that some people, motivated by Stage 1 of the experiment, could learn the 
population of the EU countries and thus we would artificially change the knowledge and might get non-
representative data.  
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accurate estimates to each of these questions were paid 500 CZK. Subjects were informed 

about this earnings possibility beforehand.21  

We then explained the second task: comparing population sizes of pairs of 

European Union countries. The subjects were rewarded with 5 CZK for each correct 

comparison of 20 pairs of countries they did within 2 minutes. Subsequently, we asked 

them again to provide estimates of their absolute and relative performance. These 

questions allowed us, in analogy to the questions in experiment 1, to measure over- and 

underestimation of subjects’ ability and percentile ranking.  

Stage 2 was similar to Stage 1, with the following changes. First, we increased the 

incentives to 10 CZK for each correctly solved summing problem in Task 1.22 Second, 

we changed the so-called reference class in Task 2 by using the 50 most populated world 

countries instead of the countries of the European Union. Third, in Task 2 we gave our 

subjects 40 general knowledge questions keeping the reward for correct answer constant 

(5 CZK), thus effectively doubling the incentives similarly to Task 1. Fourth, in Stage 2, 

one half of the participants received for each task feedback about their absolute and 

relative performance at Stage 1 (own score, percentile, and the group average score). 

Subjects for the feedback treatment had been randomly selected (in a stratified manner)23 

just before each task. Therefore, in addition to some indirect (natural) feedback acquired 

from the midterm exams and homework, some subjects received specific feedback. The 

specific feedback allowed us to investigate how the strength of the feedback influences 

calibration (Hypothesis 2).24  

In Experiment 2, unlike in Experiment 1 where stimuli materials were given by 

the instructor of the class, we used tasks that allowed us to better control for the 

                                                 
21 We understand that students could intentionally underperform to improve their predictions. To minimize 
this effect, we told students that ties in predictions will be broken according to performance. We did not 
see, or find in the data, any evidence of intentional underperformance. 
22 Because the time gets scarcer towards the end of the semester we decided to increase the incentives for 
our subjects. We doubled the reward for correct answers in Stage 2 of Experiment 2. The analysis of the 
high and very high payoff treatments in Rydval and Ortmann (2004) suggests that this increase does not  
matter in any significant way. 
23 In line with their performance in Stage 1, we sorted subjects into four quartiles and randomly selected 
half of the subjects in each quartile for the feedback treatment.  
24 In addition, we asked our subject to provide, together with the score and percentile estimates, also 
predictions/estimates of the average score in each stage of each experiment. Finally, we asked participants 
of Stage 2 of Experiment 2 to provide additional predictions for minimum and maximum scores achieved 
in each task.  
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representativeness of stimuli. First, we clearly specified the classes of questions 

(reference classes – all two-digit numbers, all countries in the European Union, the 50 

most populated countries in the world). Second, we randomly chose the numbers and 

country pairs from the corresponding reference class. Thus, we presented our subjects 

with representative samples of problems as suggested by previous research (e.g., 

Gigerenzer, Hoffrage, and Kleinbolting, 1991; Dhami, Hertwig, and Hoffrage, 2004; 

Juslin, Winman, and Olsson, 2000). 

Incentives play an important role in various types of studies (see, e.g., Camerer 

and Hogarth, 1999; Rydval and Ortmann, 2004). In Experiment 2, we used tasks that are 

responsive to higher effort (e.g., for general knowledge employing more cues, as 

suggested by Gigerenzer, Hoffrage, and Kleinbolting, 1991) and therefore we expect that 

monetary incentives will increase the accuracy of given answers and thus also the 

measured ability. To motivate the subjects to give answers as precise as possible, we used 

a linear incentives scheme.  

Because of the number of participants, we had to make a choice between using 

two feedback treatments or two incentives treatments. The evidence in Cesarini, 

Sandewall, and Johannesson (2006) suggests strongly that, at least in the present context, 

incentives are of lesser importance than feedback. We therefore decided to use two 

feedback conditions, which is not ideal but was the best we could do given the natural 

constraints we were dealt. 

 

6. Results 

 

In this section we report, and discuss, summary statistics and hypotheses tests for 

Experiments 1 and 2. Tables and figures referred to in this section can be found in 

Appendix A and Appendix B, respectively. 

  

6.1. Experiment 1 

 

To recall, Experiment 1 involved subjects making three predictions about their absolute 

and relative performance in two exams. Midterm prediction 1 (M1) was collected in week 
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1 of the preparatory semester; midterm prediction 2 (M2) was collected in week 5 right 

before the midterm exam; final prediction (F) was collected in week 9 right before the 

final exam. 

Table 1 shows the summary statistics for the subjects’ actual performance 

(“Actual Score”) and predictions (“Predictions”). All scores have been rescaled to the 0-

100 range for comparability. Subjects made predictions for their own score (“Score”) and 

the percentage of subjects with a score higher than theirs (“Percentile”). As seen from 

Table 1, subjects, on average, exhibit overconfidence: the average predicted percentiles 

are significantly smaller than 0.5. Additionally, subjects are miscalibrated in terms of 

absolute performance (scores) although one could argue that that measure is confounded 

by the fact that it is ultimately the instructor who determines the task difficulty and 

grading, thus in this context this measure is of arguably less value.  

We describe miscalibration by two measures: (i) overestimation, defined as the 

difference between the predicted and the real value of the corresponding score,25 and vice 

versa for percentiles;26 and (ii) absolute deviation, defined as the absolute value of the 

difference between the predicted and the real value.   

Overestimation in scores describes subjects’ overconfidence regarding their 

absolute performance, while overestimation in percentiles describes overconfidence in 

relative standings. The absolute deviation measure describes miscalibration more 

generally: even in the absence of significant overestimation, absolute deviation may 

capture considerable miscalibration since over- and underconfidence might cancel each 

other out. 

Table 2 summarizes overestimation and absolute deviation for predictions M1, 

M2, and F. We formed overestimation and absolute deviation variables for each subject 

and tested the hypotheses of mean overestimation and mean absolute deviation (MAD) 

being equal to zero. The resulting means and p-values for the overestimation and absolute 

deviation variables are given in Table 2. Positive and significant mean overestimation 

                                                 
25 For example, if one’s own score is 14 and one’s estimate of one’s own score is 16, then we observe a 
positive number (2) which means overestimation of one’s own score.  
26 In the case of percentiles, a positive number means overestimation of own relative ranking 
(underestimation of number of percentage of better performing people). E.g., if one’s real percentile 
ranking is 0.2 and one predicted that 0.1 of people will perform better – that person would have a positive 
number here. 
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and absolute deviation are observed in all predictions, implying, on average, 

overconfidence and general miscalibration in absolute and relative performance.  

However, as seen from Table 2, overestimation in scores decreases over time 

from 33.41 (M1) to 29.22 (M2) to 14.28 (F). Similarly, overestimation in percentiles 

decreases from 0.23 (M1) to 0.20 (M2) to 0.11 (F).  The MAD in scores and percentiles 

also decreases over time, with a less significant change from M1 to M2, and a more 

significant one from M2 to F. Thus, both overconfidence and general miscalibration are 

affected by information as predicted. The change from M1 to M2 is due to the general 

information students obtained from course work and communication with their peers, 

while the (more substantial) change from M2 to F is due to both general and specific 

information obtained after the midterm scores and relative standings have been revealed. 

Table 3 presents the results of statistical pairwise comparisons of miscalibration 

in scores and percentiles between M1 and M2, M1 and F, and M2 and F. For each pair of 

predictions, we compare both the average overestimation and absolute deviation 

measures of miscalibration using the paired t-test and Cohen’s d effect size statistics. The 

cells where the comparison yields a significant difference are shaded gray.  

Between predictions M1 and M2, overestimation in scores decreased at a 

relatively weak significance level, and the effect size is small (p=0.139, d=0.17). At the 

same time, mean absolute deviation decreased significantly, with a small to medium 

effect size (p=0.027, d=0.28). As for miscalibration in percentiles, the decrease in 

overestimation is small (p=0.247, d=0.096), while the decrease in mean absolute 

deviation is significant, with small effect size (p=0.030, d=0.15). Thus, although the 

general information acquired between M1 and M2 leads to a relatively small and 

insignificant decrease in average overestimation, it does improve overall calibration 

significantly both for absolute performance and relative standings.  

Between predictions M1 and F, there is a large and highly significant decrease in 

overestimation of scores (p=0.001, d=0.88), whereas for percentiles the significance level 

is moderate, and the effect size is medium (p=0.139, d=0.46). The mean absolute 

deviation in scores decreases significantly, with a large size effect (p=0.000, d=1.06); the 

decrease in percentiles is also significant, with a medium to large effect size (p=0.042, 

d=0.61). Predictions M1 and F are separated by the largest time span, so the largest 
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impact of information (both general and specific) on miscalibration is expected in this 

pair of predictions. Calibration in absolute performance improved significantly, with both 

average overestimation and the MAD strongly decreasing. Calibration in relative 

standings improved overall (the MAD decreases strongly), but only moderately in terms 

of overestimation. 

Between predictions M2 and F, overestimation in scores decreases significantly, 

with a large effect size (p=0.001, d=0.75), while overestimation in percentiles decreases 

insignificantly, with a medium effect size (p=0.384, d=0.35). The MAD behaves 

similarly, with a large and significant decrease in scores (p=0.001, d=0.76), and a 

medium and insignificant decrease in percentiles (p=0.286, d=0.42). Between predictions 

M2 and F, subjects acquired both general and specific information (midterm scores) 

about their absolute and relative performance, therefore, as expected, calibration 

improves stronger (in terms of effect size) than between M1 and M2 in all dimensions. 

The prevalence of overconfidence, and the role of information in decreasing 

miscalibration, is illustrated in more detail by Figure 1. Figure 1 shows the predicted 

exam scores and percentiles as functions of real scores and percentiles for each of the 

three predictions. Solid squares (midterm prediction 1), empty squares (midterm 

prediction 2), and crosses (final prediction) are the actual observations, while the lines 

(respectively, solid, dashed, and dotted) are obtained from linear regressions of predicted 

scores on real scores and predicted percentiles on real percentiles (with all regressions 

including intercept). The regression results are shown in Table 4. 

Figure 1 and Table 4 suggest the following observations: 

1. Most of the data points are above the 45 degree line for scores and below the 45 degree 

line for percentiles, indicating overestimation of own scores and overconfidence 

regarding own relative standing. 

2. The slopes of all the estimated lines are smaller than one, indicating that the unskilled 

overestimate their scores more than the skilled, and are more overconfident regarding 

their relative standing than the skilled. 

3. All estimated lines intersect the 45 degree line, indicating that the most skilled are, in 

fact, underestimating their scores, and are underconfident regarding their relative 

standing. 
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4. The intercept of the estimated dependence of predicted scores and percentiles on real 

scores and percentiles decreases with time, and the slope increases with time, indicating 

the role of information. 

 Overall, as illustrated in Figure 1, the estimated dependence of predicted scores 

and percentiles on real scores and percentiles becomes closer to the 45 degree line (the 

ideal calibration) with students obtaining more information. Recall that in the case of 

exam predictions, students received direct feedback after the midterm exam. However, 

we observe improved calibration already before this information was revealed – this is 

most likely based on indirect feedback obtained from course work and interactions with 

classmates. 

Yet another representation of the impact of information on calibration is shown in 

Figure 2. Here, students are sorted into quartiles according to their performance in the 

midterm and final exam. For each quartile, Figure 2 shows the evolution of the average 

predicted percentile from M1 to M2 to F. This presentation mode, which can also be 

found in Krueger and Dunning (1999) and much of the literature, adds an interesting 

twist. First, note that while in the top two performance quartiles (1 and 2) there is 

practically no reduction in miscalibration, the reduction is very strong for the bottom two 

quartiles. Thus, the unskilled are affected by information significantly stronger than the 

skilled. Second, although in quartiles 1-3 students become relatively well calibrated by 

week 9, in the lowest performance quartile 4 there appears to be still large residual 

miscalibration. Indeed, as seen from Figure 1, no subjects placed themselves in the 

bottom 20% of the class despite all the general information and feedback they received. 

We conjecture that two phenomena could contribute to this result. First, although subjects 

might well understand that they are at the bottom of their class, they may be hesitant to 

share that insight with the experimenter because they might fear that such an act of self-

assessment – notwithstanding our promise that our data would not be shared with their 

instructor – might be revealed and affect their grade. Second, and drawing on the 

arguments proposed by Koeszegi (2006), subjects might just not be willing to accept the 

fact that they are at the bottom of the class. Our setup and data do not allow us to tease 

apart these two reasons which identify an interesting design problem of overconfidence 

studies that neither our study nor other studies so far have successfully addressed. 
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6.2. Experiment 2 

 

To recall, Experiment 2 was conducted with the same subjects in two stages. Stage 1 (S1) 

was conducted together with prediction M1 of Experiment 1 (week 1), and Stage 2 (S2) 

together with prediction F of Experiment 1 (week 9). At each stage, subjects performed 

two tasks (Task 1 and Task 2), and made predictions regarding their absolute and relative 

performance after each task.  

One key difference between Experiments 1 and 2 is in that in Experiment 1 all 

predictions are made before the corresponding activity takes place, while in Experiment 2 

predictions are made after the fact. We chose this design because the accuracy of 

predictions has been incentivized with significant amounts of money, and we did not 

want subjects to intentionally underperform to match their predictions.27 This problem 

was of no significance in Experiment 1, where we believe subjects had sufficiently strong 

incentives to perform well in the exams. Thus, we expect much better calibration in 

absolute performance in Experiment 2. At the same time, calibration in relative standings 

should be independent of this difference in designs. 

 The other key feature of Experiment 2, compared to Experiment 1, is our ability 

to control specific feedback. During prediction S2, we gave half of the subjects specific 

feedback about their absolute and relative performance in the corresponding task at Stage 

1. The subjects receiving feedback were determined randomly, separately for each task, 

and in a stratified manner. We sorted subjects into quartiles according to their 

performance at Stage 1, and approximately equalized the number of subjects getting 

feedback in each quartile. We expect the subjects who received specific feedback to 

exhibit better calibration at Stage 2 compared to those who did not. 

As before, we start with the summary statistics for performance and predictions. 

Table 5 summarizes the actual scores obtained in each task at Stage 1 and Stage 2 of 

Experiment 2, as well as the predicted scores and percentiles for each task in both stages. 

                                                 
27 To discourage such behavior even further, we told subjects that ties in most accurate predictions would 
be broken according to subjects’ performance in the task.  
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 As seen from Table 5, subjects are overconfident, with average percentile 

predictions well below 0.5. At the same time, subjects are relatively well calibrated in 

terms of absolute performance, as expected due to the design feature discussed above. 

Interestingly, although in Task 1 subjects, on average, exhibit overestimation of absolute 

performance, they exhibit underestimation of absolute performance in Task 2. This may 

be due to the fact that Task 2 is a general knowledge task, while Task 1 is a specific skill 

task, but the difference does not appear to be statistically significant. 

Table 6 summarizes overestimation and absolute deviation for predictions S1 and 

S2 by task. Similarly to Experiment 1, we tested the hypotheses of mean overestimation 

and the MAD being equal to zero. For predictions S2, we summarize miscalibration 

overall and separately for the subjects who did and did not receive specific feedback. 

Interestingly, for Task 1 mean overestimation in scores increases over time from 0.62 

(S1) to 1.45 (S2). Similarly, the MAD in scores increases from 1.34 (S1) to 1.73 (S2). 

However, the subjects receiving feedback experience a smaller increase in miscalibration 

than those without feedback: mean overestimation of 1.00 (S2 with feedback) versus 1.84 

(S2 without feedback) and the MAD of 1.29 (S2 with feedback) versus 2.13 (S2 without 

feedback). The effect of feedback for Task 1 is even more drastic for percentiles. 

Miscalibration in percentiles decreases overall, with mean overestimation dropping from 

0.11 (S1) to 0.094 (S2), and the MAD dropping from 0.26 (S1) to 0.21 (S2), but the 

subjects who received feedback exhibit practically no overconfidence, on average, with 

mean overestimation of 0.018 and insignificant, and much smaller general miscalibration, 

with the MAD of 0.11, while the subjects without feedback are more miscalibrated than 

at Stage 1, with mean overestimation of 0.16 and the MAD of 0.30. 

For Task 2, there is significant underestimation of 2.28 in scores at Stage 1, which 

practically disappears for subjects with feedback at Stage 2 (mean overestimation of -

0.079 and insignificant), while turns into overestimation (mean overestimation of 0.73, 

albeit insignificant) for subjects without feedback. The MAD for scores slightly decreases 

overall, from 2.81 (S1) to 2.63 (S2), and again the effect is stronger with feedback, with 

the MAD of 2.43 (S2 with feedback) and goes in the opposite direction without feedback 

(2.85, S2 without feedback). For overestimation in percentiles, the results are similar to 

those for Task 1. There is a decrease in overconfidence overall, with mean overestimation 
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in percentiles decreasing from 0.15 (S1) to 0.11 (S2), but the decrease is primarily due to 

the subjects who received feedback. With feedback, mean overestimation at Stage 2 is 

0.0018 and insignificant, but without feedback it is 0.20, i.e. larger than in Stage 1. The 

MAD for percentiles increased overall from 0.26 (S1) to 0.30 (S2), but the increase is less 

dramatic for subjects with feedback (0.28 at Stage 2) than for those without feedback 

(0.32 at Stage 2). 

Table 7 shows paired t-test and Cohen’s d effect size statistics for the comparison 

of miscalibration in scores and percentiles between Stage 1 and Stage 2 for each task 

overall, with, and without feedback. Similarly to Table 3, the cells where the comparison 

yields a significant difference are shaded gray. 

In Experiment 2 for both Task 1 and Task 2 we observe a much better calibration 

in scores than in Experiment 1. This is primarily due to the fact that predictions in 

Experiment 2 were made after the tasks have been completed, and also due to the more 

transparent and familiar nature of the tasks. For Task 1, we observe stronger 

miscalibration in scores over time, even for the subjects who received specific feedback. 

We believe this is due to learning, which made the inference problem harder. Task 1 is a 

skill-oriented task, and at Stage 2 subjects used the techniques they learnt at Stage 1 and 

performed better (mean actual score increased from 6.85 to 7.70, see Table 5). At the 

same time, they based their predictions at Stage 2 on the results of Stage 1 and could not 

evaluate their improvement adequately. For percentiles, there is a significant 

improvement of calibration overall and especially for the subjects who received feedback. 

For Task 2, calibration in scores improved, changing from strong underestimation at 

Stage 1 to weak overestimation at Stage 2.   

Figure 3, similarly to Figure 1, illustrates how general information acquired 

between Stage 1 and Stage 2 and specific feedback affected miscalibration in Experiment 

2. The predicted scores and percentiles are shown as functions of real scores and 

percentiles for each task. Solid squares (S1), empty squares (S2 without feedback), and 

crosses (S2 with feedback) are the actual observations, while the lines (respectively, 

solid, dashed, and dotted) are obtained from linear regressions of predicted scores on real 

scores and predicted percentiles on real percentiles (with all regressions including 

intercept). The regression results are shown in Table 8. 
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Figure 3 and Table 8 suggest the following observations: 

1. Subjects are reasonably well calibrated in terms of scores already at Stage 1 in both 

tasks. There is no apparent over- or underestimation in scores. This is primarily a 

consequence of the predictions being made after the task has been completed.  

2. Most observations for percentiles are below the 45 degree line indicating 

overconfidence in relative standings in both tasks. 

3. At Stage 2, subjects are more miscalibrated in terms of scores compared to Stage 1. 

This is primarily due to inadequate assessment of learning in the skill-oriented task, and a 

change in the reference class of problems in the general knowledge task. 

4. For both scores and percentiles, and for both tasks, the subjects who received feedback 

are better calibrated at Stage 2 than those who did not. 

 Overall, general information acquired between Stage 1 and Stage 2 does not 

improve subjects’ calibration in Experiment 2, but the subjects who received specific 

information are calibrated better than those who did not. 

 

7. Discussion and conclusions 

 

We have reported the results of two experiments (one field, one laboratory) through 

which we examined the impact of general information and specific information 

(feedback) on the quality of self-assessment (“calibration”) in various tasks and feedback 

conditions. We find a strong positive effect of general information on calibration in the 

field experiment (Experiment 1). Recall that in the case of exam predictions, students 

received direct feedback after the midterm exam. However, we observe improved 

calibration already before this information was revealed – this is most likely based on 

indirect feedback obtained from course work and interactions with classmates. In the lab 

experiment (Experiment 2) where we could control specific information, the subjects who 

received specific information were calibrated better than those who did not. These results 

bear on the debate about the reality of cognitive illusions, and the question of how fast 

and far, and under what circumstances, the frequency of anomalies decays. At least for 

the allegedly well-established overconfidence phenomenon – one of the bones of 
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contention in this debate, – it seems to take surprisingly little to reduce miscalibration 

quite dramatically. 

 In Experiment 2, subjects were comparatively well calibrated in absolute 

performance at all stages. This is mainly due to the design feature that, unlike in 

Experiment 1, subjects made predictions after performance and thus were familiar with 

the stimuli and could better assess their ability in performing the tasks. Our use of 

representative stimuli may have also contributed to this result. At the same time, 

calibration in percentiles in Experiment 2 is not better than in Experiment 1, indicating 

that, as expected, the timing of predictions does not matter for overconfidence.  

Maybe unsurprisingly, in both experiments it is the unskilled who improve their 

calibration most. Thus, our results suggest that the unskilled may not be doomed to be 

unaware (if indeed they are). 

In none of our experiments we observe anyone with predicted/estimated 

percentile rank in the worst 20% of the group (Figures 1 and 3 in Appendix B have no 

data points with predicted percentile higher than 0.8). This is an interesting design 

problem potentially pertaining to all overconfidence studies that neither our study nor 

other studies so far have successfully addressed. 
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Appendix A 
 

 

Table 1. Summary statistics for actual scores and predictions in Experiment 1. 

Midterm exam Final exam 

Predictions M1 Predictions M2 Predictions F  
Actual score 

Score Percentile Score Percentile
Actual score

Score Percentile

Mean 40.52 74.42 0.25 70.67 0.28 44.28 59.22 0.38 

St. Dev. 27.91 11.46 0.15 19.25 0.19 24.04 21.03 0.23 

 

Table 2. Miscalibration in Experiment 1 (p-value for the hypothesis of the corresponding mean being equal zero in 

parentheses). 

M1 M2 F 
 

Score Percentile Score Percentile Score Percentile 

Mean overestimation 
33.41 

(0.000) 

0.23 

(0.000) 

29.22 

(0.000) 

0.20 

(0.000) 

14.28 

(0.000) 

0.11 

(0.002) 

Mean absolute deviation 
36.60 

(0.000) 

0.29 

(0.000) 

31.00 

(0.000) 

0.26 

(0.000) 

18.54 

(0.000) 

0.18 

(0.000) 

 

Table 3. Paired t-test (p-value) and Cohen’s d (effect size) for pairwise comparisons of mean overestimation and mean 

absolute deviation between predictions in Experiment 1. 

M1-M2 M1-F M2-F 
 

Score Percentile Score Percentile Score Percentile

p-value 0.139 0.247 0.001 0.139 0.001 0.384 Mean 

overestimation Cohen’s d 0.17 0.096 0.88 0.46 0.75 0.35 

p-value 0.027 0.030 0.000 0.042 0.001 0.286 Mean absolute 

deviation Cohen’s d 0.28 0.15 1.06 0.61 0.76 0.42 

 

Table 4. The estimated intercepts and slopes of linear regressions of predicted scores on real scores and predicted 

percentiles on real percentiles in Experiment 1 (standard errors in parentheses). 

M1 M2 F 
 

Score Percentile Score Percentile Score Percentile 

Intercept 
69.45 

(3.08) 

0.177 

(0.043) 

53.40 

(3.89) 

0.155 

(0.048) 

30.64 

(4.72) 

0.123 

(0.050) 

Slope 
0.121 

(0.063) 

0.144 

(0.080) 

0.417 

(0.078) 

0.262 

(0.085) 

0.636 

(0.093) 

0.522 

(0.089) 
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Table 5. Summary statistics for actual scores and estimates in Experiment 2. 

Stage 1 Stage 2 

Predictions Predictions Task 1 
Actual score 

Score Percentile 
Actual score

Score Percentile 

Mean 6.85 7.53 0.34 7.70 9.16 0.35 

St. Dev. 3.55 3.54 0.24 3.63 4.10 0.23 

 

Stage 1 Stage 2 

Estimates Estimates Task 2 
Actual score 

Score Percentile 
Actual score

Score Percentile 

Mean 16.41 14.13 0.26 12.71 13.10 0.33 

St. Dev. 1.99 2.92 0.18 2.32 3.09 0.19 

 

Table 6. Miscalibration in Experiment 2 (p-value for the hypothesis of the corresponding mean being equal zero in 

parentheses).  

S1 S2 overall S2 with FB S2 without FB 
Task 1 

Score Percentile Score Percentile Score Percentile Score Percentile

Mean 

overestimation 

0.62 

(0.014) 

0.11 

(0.015) 

1.45 

(0.000)

0.094 

(0.030) 

1.00 

(0.022)

0.018 

(0.575) 

1.87 

(0.002) 

0.16 

(0.034) 

Mean absolute 

deviation 

1.34 

(0.000) 

0.26 

(0.000) 

1.73 

(0.000)

0.21 

(0.000) 

1.29 

(0.002)

0.11 

(0.000) 

2.13 

(0.000) 

0.30 

(0.000) 

 

S1 S2 overall S2 with FB S2 without FB 
Task 2 

Score Percentile Score Percentile Score Percentile Score Percentile

Mean 

overestimation 

-2.28 

(0.000) 

0.15 

(0.002) 

0.39 

(0.417)

0.11 

(0.036) 

-0.079

(0.905)

0.0018 

(0.983) 

0.73 

(0.288) 

0.20 

(0.006) 

Mean absolute 

deviation 

2.81 

(0.000) 

0.26 

(0.000) 

2.63 

(0.000)

0.30 

(0.000) 

2.43 

(0.000)

0.28 

(0.000) 

2.85 

(0.000) 

0.32 

(0.000) 
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Table 7. Paired t-test (p-value) and Cohen’s d (effect size) pairwise comparison of mean overestimation and mean 

absolute deviation between predictions in Experiment 2. 

S1-S2 overall S1-S2 with FB S1-S2 without FB 
Task 1 

Score Percentile Score Percentile Score Percentile

p-value 0.054 0.304 0.184 0.481 0.176 0.470 Mean 

overestimation Cohen’s d -0.43 0.063 -0.22 0.39 -0.59 -0.16 

p-value 0.549 0.012 0.559 0.001 0.301 0.590 Mean absolute 

deviation Cohen’s d -0.23 0.25 0.039 0.96 -0.44 -0.19 

 

S1-S2 overall S1-S2 with FB S1-S2 without FB 
Task 2 

Score Percentile Score Percentile Score Percentile

p-value 0.000 0.443 0.002 0.425 0.001 0.805 
Overestimation 

Cohen’s d -0.91 0.097 -0.80 0.44 -0.98 -0.16 

p-value 0.805 0.537 0.106 0.320 0.290 0.944 Mean absolute 

deviation Cohen’s d 0.088 -0.20 0.25 -0.069 -0.020 -0.30 

 

Table 8. The estimated intercepts and slopes of linear regressions of predicted scores on real scores and predicted 

percentiles on real percentiles in Experiment 2 (standard errors in parentheses). 

S1 S2 with feedback S2 without feedback 
Task 1 

Score Percentile Score Percentile Score Percentile 

Intercept 
1.41 

(0.52) 

0.204 

(0.064) 

0.52 

(1.21) 

0.095 

(0.063) 

2.65 

(1.11) 

0.211 

(0.093) 

Slope 
0.886 

(0.067) 

0.29 

(0.12) 

1.06 

(0.15) 

0.72 

(0.14) 

0.90 

(0.13) 

0.21 

(0.16) 

 

S1 S2 with feedback S2 without feedback 
Task 2 

Score Percentile Score Percentile Score Percentile 

Intercept 
3.04 

(3.15) 

0.194 

(0.044) 

5.76 

(4.17) 

0.359 

(0.083) 

8.17 

(3.27) 

0.313 

(0.063) 

Slope 
0.68 

(0.19) 

0.171 

(0.087) 

0.56 

(0.31) 

0.037 

(0.175) 

0.40 

(0.26) 

-0.036 

(0.112) 
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Appendix B 

 

Figure 1. Predicted own scores versus real scores (left), and percentiles versus real 

percentiles (right) in the midterm predictions 1 and 2, and the final prediction. 

 

 
 

Figure 2. Mean predicted percentiles for subjects binned in performance quartiles in 

Experiment 1 (with lower quartiles corresponding to higher performance). 
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Figure 3. Predicted own scores versus real scores (left), and percentiles versus real 

percentiles (right) in the math skill task (T1) and general knowledge task (T2) at stage 1, 

stage 2 without specific feedback, and stage 2 with specific feedback. 

 


