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Abstract

The paper deals with the application of Minimum Weighted Residual Methods (MWR)

in intertemporal optimizing models of endogenous economic growth. In the first part of

the paper the basics of the MWR method are described. Attention is mainly concen-

trated on one special class of MWR methods: the orthogonal collocation method with

the Chebyshev polynomial basis. The second part of the paper is devoted to the setup of a

model of endogenous growth with human capital accumulation and the government sector

and to the derivation of first order conditions which form a Two-Point-Boundary-Value

problem. A transformation of the problem which eliminates the growth in variables is then

presented and the MWR method is used to solve the model for some policy experiments.



1 Introduction

Much of the current research in macroeconomics and mainly in neoclassical growth mod-

els is based on the intertemporal optimizing infinite-lived representative agent model.

Solving these models via derivation of the first order necessary conditions by means of

the Pontryagin Maximum Principle or the Bellman dynamical programming approach, we

face the so called two point boundary value (TPBV) problem which is much more difficult

to solve than the Cauchy initial value (CIV) problem. It is well known that analytical

solutions exist only for a very special class of nonlinear problems and for LQ problems or

linearized ones.

In situations when we cannot/do not want to limit ourselves to the above special cases,

we have to use general numerical methods such as the shooting method or the relaxation

method to obtain a solution of the model. Fortunately, a favourable feature of the infinite

optimizing problems is the fact that if both the criterion function and the dynamic con-

straints are autonomous (and equilibrium is saddle path stable), the control variables can

be characterized as static (t-invariant) policy functions (or feedback rules) of the state

variables. This property is critical for the possibility of using the following methods to

aproximate the policy functions: the perturbation method, the time elimination method

and minimum weighted residual (or projection) methods. The time elimination method

converts the TPBV problem to the CIV problem and, by applying numerical integration

starting at a steady state, yields the approximation of policy functions (Mulligan and

Sala-i-Martin [1993]). Thus, the approximation is given in the form of ”trajectories” of

the control variables as functions of the state variables. On the other hand, the perturba-

tion and MWR methods provide a solution in the form of a polynomial approximation.

The advantage of such a solution is its analytical form. More specifically, the perturbation

method makes use of the Taylor series or the Pade approximations of policy functions in
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a steady state. MWR (or projection) methods (Fletcher [1988] and Judd [1992]1) ap-

proximate the policy functions at some predetermined interval which makes them a good

approximation not only at the steady state, as it is in the case of the perturbation method,

but in the whole interval.

2 Minimum Weighted Residual Methods

To explain the basic idea of MWR methods, suppose that the model is represented by

a system of differential equations. First, we have to transform the problem to the form

N (p) = 0 where N is an operator and the function p is a zero of operator N which

means that p solves the given system of differential equations. For initial value problems,

a zero p of operator N is a vector function of time; for boundary value problems (which

are characteristic for growth models) with n states and m control variables, a zero p of

operator N is a vector of policy functions which are functions of state variables only,

p : Rn → Rm.

To determine a specific type of the MWR method, we have to choose the polynomial

basis approximating vector function p and the weighted residual inner product approx-

imating operator N . In this paper I will restrict myself to the simplest MWR method,

the orthogonal collocation method with the Chebyshev polynomial basis.

Thus, the solution of a steady TPBV problem with n state variables and m control

variables expressed in the form of m policy functions of n state variables can be approxi-

mated by the formula

p(x) ≈ p̂(x;A) = Aψ(x) =
q∑

i=1

aT
i ψi(x), (1)

where (m × q) parameter matrix A = (aT
1 , a

T
2 , . . . , a

T
m)T is a m-dimensional column of

q-dimensional rows of coefficients aT
i = (ai1, ai2, . . . , aiq). The multidimensional Cheby-

1See also an excellent book on numerical methods in economics, Judd (1998).
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shev basis of q polynomials ψ(x) = (ψ1(x), ψ2(x), . . . , ψq(x))T for our (n,m) problem is

obtained by the n-fold tensor product ψ(x) = φ1(x1) ⊗ φ2(x2) ⊗ · · · ⊗ φn(xn)) of the n

one-dimensional Chebyshev bases φi(xi) of degree qi in variable xi where i = 1, 2, . . . , n

and q =
∏n

i=1 qi.

The approximation of operator N in the case of the collocation method is given by

the calculation of the q-dimensional polynomial approximation of the m vector policy

function p̂ at q important points {zk}q
k=1 where zk ∈ Rn. Typically, these points are zeros

of the q-dimensional polynomial basis ψ(x), i.e. ψk(zk) = 0 where k = 1, . . . , q. Thus, our

modification of the MWR method yields the following (m× q) matrix residual function

R(x;A) ≡ (N̂ (p̂))(x) = ((N (p̂))(z1), . . . , (N (p̂(zq)) = 0, (2)

where p̂(zk) = Aψ(zk) and k = 1, . . . , q.

In this way, solving the (n,m) TPBV problem with the degrees of approximation

(qi)
n
i=1 can be transformed into a problem of solving m× q nonlinear algebraic equations

in m× q unknown coefficients with q =
∏n

i=1 qi.

3 Application of the MWR Method in An Endoge-

nous Growth Model

For demonstration of the application of the MWR method in economics I will set up an

aggregate macroeconomic endogenous growth model with human capital accumulation

(Lucas (1988)) and extend it to include the government sector (Kejak (1995)). The

economy is populated by identical workers endowed with the same skill levelH and infinite

lifetime. They devote a fraction l of their (non-leisure) time to current production, and

the remaining 1 − l to human capital accumulation. Thus, the effective labor input in

production is L = lH. The economy also consists of a large number of identical firms,
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therefore, we assume that the firms behave competitively with the following production

function Y = F (K,H) = KβL1−βHγ
a = Kβ(lH)1−βHγ

a , where Y is the output of the firm,

K is physical capital, and the term Hγ
a introduces an ”external effect” which is related

to the average level of human capital in the economy and 0 < β < 1 and γ ≥ 0. Because

the workers are identical, the average skills in equilibrium coincide with individual skills

(H = Ha). There are two factor markets, one for labor and one for capital services. The

price of labor is the wage wt and the interest rate rt is the price of capital.

Each agent in the economy wants to maximize his lifetime utility or welfare V0 =
∞∫
0
u(Ct)e

−ρtdt which is the discounted sum of instantaneous utilities u(Ct). Therefore, if

the constant relative risk aversion utility function is assumed, i.e. u(C) = C1−θ/(1 − θ),

the whole model of the two sector economy can be set up as a dynamic optimization

problem with two control variables - consumption Ct and the time devoted to production

lt in the following form:

max
Ct,lt

V0 =

∞∫
0

(
C1−θ

t

1− θ

)
e−ρtdt (3)

s.t. K̇t = (1− τK)rtKt + (1− τL)wtltHt + τwt(1− lt)Ht − Tt − Ct, K0 > 0 (4)

Ḣt = φ(1− lt)Ht, H0 > 0, (5)

where τL is the labor income tax rate, τK the capital income tax rate, τ the education

subsidy rate, and Tt the lump-sum tax. Government expenditure (per capita) is given

by the constant fraction of output Gt = κYt and is financed by the net collected taxes

Gt = τKrtKt +τLwtltHt−τwt(1− lt)Ht +Tt. Equations (4) and (5) describe the process of

physical and human capital accumulation respectively. A linear Uzawa-Rosen type pro-

duction function for human capital with the parameter of the effectiveness of investment

in human capital φ is used in the latter equation. Physical capital is depreciated by rate

δ and human capital does not depreciate.

Solving the dynamic optimization problem given in (3)-(5) by using the Pontryagin

maximum principle, we can write the current-value HamiltonianH(Kt, Ht, Hat;Ct, lt;λt, µt) =
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Ct
1−θ−1
1−θ

+ λtK̇t + µtḢt, where λt and µt denote the shadow prices (or costate variables)

of physical and human capital, respectively. By eliminating the shadow prices λt nd µt in

the first order conditions, the TPBV problem can be expressed in the form:

K̇t = (1− κ)Yt − Ct − δKt (6)

Ḣt = φ(1− lt)Ht (7)

Ċt = σ

[
(1− τK)(

Yt

βKt

− δ)− ρ

]
Ct (8)

l̇t =

{
(τK − κ)

Yt

Kt

+
δ(1− τK)

β
− δ − Ct

Kt

+
φ

β

[
(γ − β)(1− lt) + lt +

1− τL
1− τL − τ

]}
lt

(9)

K0 > 0, H0 > 0 (10)

lim
t→∞

e−ρtλtKt = 0, lim
t→∞

e−ρtµtHt = 0, (11)

where equation (10) specifies the initial values and equation (11) the transversality con-

ditions.

When we want to use the projection method in growth models, and, in principle,

any of the methods based on the polynomial approximation of policy functions, i.e. the

perturbation method or the time-elimination method, we face the problem that many of

the variables of the model exhibit balanced growth rates which exclude the possibility

of finding a limited region (a point or even an interval) to which we want to relate our

approximation. Therefore, we have to find the transformation that enables us to express

the model in transformed variables: control-like and state-like variables (Mulligan and

Sala-i-Martin (1993)) which have no growth in steady state. Typically, the transformation

reduces the dimensionality of the model which is favourable for the presentation of the

dynamic behaviour as well.

Based on the relation between the steady state growth of physical and human cap-

ital given by ( Ḣt

Ht
)ss = 1−β

1−β+γ
( K̇t

Kt
)ss and the relation between the steady state growth of

physical capital and that of consumption ( K̇t

Kt
)ss = ( Ċt

Ct
)ss, we can suggest the follow-
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ing transformations2 kt ≡ KtH
−(1+ γ

1−β )
t and ct ≡ CtK

−1
t which yield the reduced model

equations with zero growth rate in steady state:

k̇t

kt

= (1− κ)
FK(kt, lt)

β
− δ − ct −

(
1 +

γ

1− β

)
φ(1− lt) (12)

ċt
ct

=

(
σ(1− τK)− 1− κ

β

)
FK(kt, lt)− σ(δ + ρ) + δ(1 + στK) + ct (13)

l̇t
lt

=
(τK − κ)

β
βFK(kt, lt) +

δ(1− τK)

β
+
φ

β

1− τL
1− τL − τ

− δ − ct + φ

(
γ

β
− 1

)
(1− lt),

(14)

where the marginal product of physical capital FK can be expressed as FK = βkβ−1l1−β.

To solve our problem (3)-(5) with the two control-like variables ct, lt and the one

state-like variable kt, we have to specify two policy functions c = p(k) and l = q(k),

where the functions p and q depend monotonically3 on variable k. Using the following

identities p′(kt) = dp(kt)
dkt

= ċt

k̇t
and q′(kt) = dq(kt)

dkt
= l̇t

k̇t
, we can define operator N suitable

for the application of the MWR method as

(N1(p)) (k) = p′(k)k̇ − ċ = 0 (15)

(N2(q)) (k) = q′(k)k̇ − l̇ = 0, (16)

where equations (12)-(14) should be used for expressing k̇t, ċt and l̇t, respectively.

After the specification of the domain for the approximation [k1, k2] which should in-

clude the steady state value of the state-like variable, our approximations of p and q will

be parametrically given by

p̂(k; a1) =
q∑

i=1

a1iφi(k̃) (17)

q̂(k; a2) =
q∑

i=1

a2iφi(k̃), (18)

2In general, it is not certain whether such a transformation leads to the existence of a reduced form of

the model, i.e. whether the model can be expressed only by means of the transformed variables or not.
3This monotony follows from the properties of a stable saddle path.
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where φi is ith Chebyshev polynom, k̃ is linear transformation of the interval [k1, k2] into

[−1, 1], and q is the degree of approximation (the number of terms used). From equations

(15)–(16) and approximations (17) and (18), the residual functions become

R1(k; a1, a2) = p̂′(k; a1)

(1− κ)

(
q̂(k; a2)

k

)1−β

− δ − p̂(k; a1)−
(

1 +
γ

1− β

)
φ(1− l)

 k
−

(σβ(1− τK) + κ− 1)

(
q̂(k; a2)

k

)1−β

− σ(δ + ρ) + δ(1 + στK) + p̂(k; a1)


×p̂(k; a1) = 0 (19)

R2(k; a1, a2) = q̂′(k; a2)

(1− κ)

(
q̂(k; a2)

k

)1−β

− δ − p̂(k; a1)−
(

1 +
γ

1− β

)
φ(1− l)

 k
−

(τK − κ)

(
q̂(k; a2)

k

)1−β

+
δ(1− τK)

β
+
φ

β

1− τL
1− τL − τ

− δ

−p̂(k; a1) + φ

(
γ

β
− 1

)
(1− l)

}
q̂(k; a2) = 0. (20)

Calibration of the model To study the effects of fiscal policies in the model, we have

to calibrate4 the values of the model parameters. We use values for USA which have been

used often in related literature. The capital income share β is specified to be between

0.25 to 1/3 and we choose the value 0.3. Following Mulligan and Sala-i-Martin (1993),

the value of intertemporal elasticity of substitution σ is 0.5 (the degree of risk aversion θ

is 2). The rate of depreciation δ is set to be 10 percent. Since we assume that the before

tax real interest rate is 6 percent we can see5 that the coefficient for the productivity of

human capital φ should also be equal to 0.06 (in the case of an absence of externalities.)

If we assume that the economy grows at 2 percent per year then we can compute the rate

of time preference ρ = r − g/σ as 0.02.

Now we can use any computer implementation of the MWR method to compute a

4The calibration is a methodology useful for aggregate models to be consistent with existing microe-

conomic and macroeconomic evidence (see eg Mehra and Prescott (1985)).
5(FK)ss = δ + φ 1−β+(2−σ)γ

1−β+(1−σ)γ −
γρ

1−β+(1−σ)γ and (FK)ss = δ + φ when γ = 0.
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numerical solution of the problem6. Having prepared the implementation of the problem,

we can suggest and perform several fiscal policy experiments, based on different values of

tax rate parameters and assess their impacts on the development of the economy.

To demonstrate some model results we suggest the following three experiments. All

these experiments have the presence of externality factor γ in common (γ = 0.4). Ex-

periment 1 assumes the benchmark undistorted competitive economy with no taxation

and subsidization. Experiment 2 supposes a command economy, i.e. an economy which

gives social optimum7. Experiment 3 is given by the competitive economy with the

education subsidy rate (τ = 0.1).

To obtain the solution of the model for these experiments we need to follow two steps.

In the first step we use the MWR method to compute an approximation of policy functions

and based on this knowledge we simulate the behaviour of model variables in the second

step. Obtained transitional dynamics of these three experiments are demonstrated in Fig.

1 and 2. Through comparison of these experiments we can see that in an economy with

initially more abundant physical than human capital it is optimal to decrease the level

of physical capital much more rapidly (see Fig. 1b) even at the cost of a big decline in

consumption during some period (Fig. 1c). The long-run growth rates of all variables,

except the working time that has zero growth in the long-run, exhibit higher values (see

Fig. 2) for a command economy. Fig. 1 and 2 also show that education subsidies can

improve the behaviour of the competitive economy and increase the long-run growth rates.

6I used PROJEC which is an implementation of the MWR method in the form of a library module in

GAUSS (Kejak (1999)). See the Appendix.
7Because of the existence of externalities, the social optimum and the decentralized equilibrium do not

coincide. Therefore, we cannot use equations (12)-(14) (more specifically equation (14) must be changed)

to specify the TPBV problem for the social optimum (details can be found in (Kejak (1995)).
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4 Summary

In this paper I discussed the principle of Minimum Weighted Residual Methods. Attention

was mainly devoted to one special class of the MWR methods: the orthogonal collocation

method with the Chebyshev polynomial basis. Then I demonstrated the application

of the MWR methods in a modified Lucas endogenous growth model. Results of the

numerical solution to policy model experiments using toolbox PROJEC in GAUSS are

finally presented.
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