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Abstract

This paper contains a study of stochastic stability of the development trap in a model
of economic growth when the production function is subject to externalities and, as
a result, the development trap steady state is indeterminate. In the presence of inde-
terminacy, sunspot equilibria can exist. I study the stability of the trap, subject to
continuous-time sunspot shocks, modeled as a Wiener process. Global dynamics of
the deterministic and stochastic versions of the model are completely characterized.
Numerical simulations of the process of escape from the poverty trap caused by the
presence of sunspot fluctuations are conducted. Escape time and probabilities are esti-
mated analytically and numerically as a function of initial conditions and the model’s
parameters.

Abstrakt

Clének studuje stochastickou stabilitu ristové pasti v modelu ekonomického ristu, ve
kterém vyrobni funkce zdvisi na externatitdch. V dusledku externalit je staciondrnf
stav odpovidajici ristové pasti nedeterministicky, coz vede k existenci staciondrnich
stavii podminénych “skvrnami na Slunci” (tzv. “sunspot equilibria”). Clanek se
zabyva analyzou stability ristové pasti vzhledem k ¢asové spojitym “skvrnam na
Slunci” (ndhodnym $okfim) modelovanym jako Wienertv proces. Poté co kompletné
charakterizujeme globdlni dynamiku deterministické i stochastické verze modelu, simu-
lujeme numericky unik z rastové pasti zapii¢inény nshodnymi Soky. Stfedni doba
tniku a pravdépodobnost tniku jsou vycisleny jak analyticky, tak numericky v zdvis-
losti na pocate¢nich podminkdach a parametrech modelu.
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1 Introduction

1.1 Development Traps and Indeterminacy

There are several types of models that produce “development traps” or “poverty
traps”. One group, best represented by Azariadis and Drazen (1990), relies
on “thresholds” to generate poverty traps. In this model, investing a non-zero
amount of effort into accumulating human capital can lead to a balanced growth
path with unlimited growth of all per capita quantities. Due to the presence of
externalities, however, it is not optimal to invest in human capital accumulation
until the average stock of it in the economy reaches some threshold value. Any
economy that starts below threshold remains there forever. If, due to errors,
some human capital is accumulated, it does not depreciate. The time of crossing
the threshold is, therefore, a function of the magnitude of errors, but the crossing
is inevitable if the magnitude is bounded above zero'.

Other papers with similar dynamics include Lee (1996), where financial in-
termediaries accumulate information about investment opportunities by making
loans. In a low information equilibrium, nobody lends. The paper proposes
credit subsidies or inflow of relatively cheap foreign capital to overcome the
trap. In Ciccone and Matsuyama (1996), an insufficient number of intermediate
inputs hinders adoption of modern technologies. High start-up costs required
to establish the production of necessary inputs mean that reallocating scarce
resources from traditional production is inefficient, locking the economy in the
poverty trap. It is sometimes possible for a large number of entrepreneurs ex-
pecting future growth to enter the specialized inputs markets, escaping from
the poverty trap due to self-fulfilling prophecy, but for other parameter values
the trap is inescapable. In another application of the same idea, Burguet and
Fernandez-Ruiz (1998) construct a development trap in an economy with pub-
licly provided goods and public capital; a sufficiently low world interest rate

might be needed for escape.

! Arifovic, Bullard, and Duffy (1997) use a revised version of the model. Instead of errors,
it is random mutations forming part of the genetic algorithm learning mechanism that lead
to the accumulation of human capital. Eventually, the threshold is passed.



A general characteristics of the papers cited above is the existence of a
certain threshold that separates poverty-trap-locked economies from developing
ones. For an economy in the trap, there is no way out other than some change
in parameters: consistent non-optimal accumulation of human capital, credit
subsidy, or supply of external funds at low world interest rates.

The other strand of models with poverty traps has some kind of dynamic
coordination failure or pessimistic expectations built in. Examples of such mod-
els include Matsuyama (1991), Gali and Zilibotti (1995), Gans (1998), Baland
and Francois (1996), and Skiba (1978). In this type of models, non-convexity
in production function due to increasing returns, externalities, and/or market
power leads to a possibility of multiple steady states. In these models, inde-
terminacy exists — for given values of stock variables like capital there are
different choices of control variables like consumption, work effort, etc., such
that a perfect foresight equilibrium trajectory converges to a steady state. Dif-
ferent choices of control variables might imply convergence to different steady
states, and initial conditions do not necessarily determine to which steady state
the economy converges. Omne can say that in the above models the economy
might be consigned to a poverty trap by the failure of economic agents to agree
on the control variable value leading to the best equilibrium. The distinction
between the two groups is not strict, though, as a majority of models in the
second group allow parameter values leading to a threshold-type poverty trap.

The major goal of the current paper is to discuss an additional mechanism
for overcoming coordination failures or pessimistic expectations in the models
of the second type. As noted above, these models exhibit indeterminacy. There
are two types of indeterminacy. One situation is when there are two (or more)
saddle path stable steady states, and there are corresponding unique trajectories
converging to them. This case is sometimes referred to as global indeterminacy.
In this case, pessimistic or optimistic expectations simply select one trajectory
out of two or other small number. This happens for some parameter values

in Gali and Zilibotti (1995), for example. On the other hand, it may happen



that for one or more steady states the linearization of the law of motion has
fewer unstable roots than “free” or control variables. In this case, the stable
manifold of the steady state has fewer dimensions than the number of control
variables, and there exists a continuum of values of control variables that put
the system onto the stable manifold. Therefore, there exists a continuum of
perfect foresight trajectories satisfying all the conditions for being an equilibrium
trajectory, including the transversality condition. This case is referred to as local
indeterminacy, and it is the subject of the current paper.

What happens if the system exhibits local indeterminacy? Suppose that I
have a decentralized economy. Agents are free to choose initial values of the
control variable(s) from some large set. Once the initial conditions are agreed
upon and the dynamics of the system unfolds, none of the agents has an incentive
to deviate from the optimal trajectory, which depends on the initial conditions?.
However, the trajectory chosen can be a very bad one: it could include a very low
level of, say, work effort, and a low growth rate as a result. Choosing a different
initial condition with higher level of work effort could increase the growth rate
and provide higher utility to every agent and thus be Pareto improving®. A
different starting point can even imply convergence to a much better steady
state with unbounded growth of all per capita variables, as in endogenous growth
models. A classic case of coordination failure can exist in situations with local
indeterminacy of the steady state.

Imagine the situation where a low growth state is locally indeterminate. The

decentralized economy develops along one of the trajectories leading to the low

21f agents are small compared to the size of the economy, their deviation will not signifi-
cantly change variables that are arguments of their decision rules - interest rate and wage rate,
for example. Thus, individual deviation from the optimal trajectory will reduce an agent’s
payoft.

3Note that in the presence of increasing returns and/or externalities, the initial trajectory
not necessary was Pareto optimal. In the process of solving such models, one usually assumes
that every agent takes the current level of externality as exogenously given; every agent then
faces a concave production function, and this decision problem is easily solved. Alternatively,
increasing returns to scale can be supported by monopolistic competition. In any case, every
agent makes a decision under incomplete information and/or some market failures. Therefore,
the solution is not required to be Pareto optimal to begin with.



growth state, that is, the economy is in the development trap. Assume that
there exists a high growth steady state which can also be locally indeterminate
or saddle path stable. In any case, agents need some device to help them

coordinate on a trajectory converging to the high growth steady state.

1.2 Sunspots as a Coordinating Mechanism

“Sunspot equilibria” are “rational expectations equilibria in which purely ex-
trinsic uncertainty affects equilibrium prices and allocations”, Woodford (1990).
“Purely extrinsic uncertainty” denotes some random variable which has no effect
on preferences, endowments, or production possibilities. If this random variable
and the resulting allocations and prices are stationary, one speaks about station-
ary sunspot equilibria, or SSE. In discrete time, one of the ways in which SSE
are constructed is the randomization between different non-sunspot equilibria;
alternatively, SSE can be a randomization over different trajectories converging
to a non-sunspot steady state. This procedure can be performed when a non-
sunspot steady state is indeterminate. Indeed, in a simple OLG economy with
a constant supply of money, as in Azariadis (1981), a necessary condition for
the existence of a particular kind of SSE is exactly the condition for the inde-
terminacy of the non-sunspot rational expectations equilibrium; see Woodford
(1990). This connection between indeterminacy of a rational expectations equi-
librium and the existence of some SSE (known as “Woodford’s Conjecture”) was
established for a broad class of discrete time models, for example in Woodford
(1986), Grandmont (1986), and Spear, Srivastava, and Woodford (1990).
Existence of sunspots is by no means limited to OLG or OLG-like discrete
time models. Spear (1991) showed the existence of sunspot equilibria in a pure
capital accumulation model where production is subject to externality. Switch-
ing to continuous time models allows complete understanding of the model’s
global dynamics, especially when the model reduces to a two-dimensional sys-
tem of differential equations. In Drugeon and Wigniolle (1996) a continuous-

time endogenous growth model was studied. It was shown that when a balanced



growth path is locally stable (indeterminate), a sunspot equilibrium with a Pois-
son process as a sunspot variable exists. Finally, Shigoka (1994) constructed a
continuous time SSE in a variety of growth models (including the one used here),
where a sunspot variable is a continuous-time Markov process with finitely many
states. Woodford’s Conjecture holds in all three cases.

Stability under the equilibrium learning dynamics was proposed in Lucas
(1986) as a criterion in deciding which of the many equilibria in the OLG should
be considered as more likely to occur. Lucas’s conjecture was that only a lim-
ited number of equilibria, and in particular locally determinate steady states,
will survive such a test. If this conjecture were always true, sunspot equilibria
could be considered esoteric theoretical constructs having no practical impor-
tance. Using a simple adaptive learning rule, Duffy (1994) has shown that an
indeterminate monetary steady state can be selected over a determinate one in
an OLG economy with fiat money, thus rejecting Lucas’s conjecture. Further-
more, as was shown in Woodford (1990), Evans and Honkapohja (1999), and
Evans and Honkapohja (2001), adaptive learning can converge to determinate,
indeterminate, and SSE equilbria. Indeterminate and SSE equilibria are more
than a theoretical curiosity; one can observe them?.

In this paper, I postulate the existence of SSE in a continuous-time model
in which the sunspot variable is a sample-path continuous stochastic process®.
Production technology in the model is subject to externality. It is also pos-
tulated that the learning mechanism, like that described in Woodford (1990),
has taken place and has converged to a sunspot equilibrium. Agents simply
add the sunspot variable to their optimal decision, and this is the SSES. As a

result, instead of simply moving along a particular trajectory, and, according

4Extracting information on belief shocks from financial markets data, Salyer and Sheffrin
(1998) show that a model with self-fulfilling beliefs has incremental predictive power for key
US economic time series.

5Taking into account Shigoka (1994), this assumption does not seem to be too over-
stretched.

6 A more detailed description of the construction of a sunspot equilibrium is given in Section
3.



to the assumptions about the agents being uninformed about the nature of the
externality, choosing actions based on incomplete information about the state
space outside of that trajectory, agents coordinate on the sunspot and get to
explore new regions of the state space.

Suppose the economy starts in the perfect foresight development trap. In the
model used here, it means that consumption (and the work effort) are chosen
to be too low because of the pessimistic expectations of the future wages and
interest rates. It is possible to select a level of initial consumption which will
push the system out of the trap and into the region of attraction of the posi-
tive steady state. However, no individual agent has an incentive to experiment,
and everyone is coordinating on a trajectory leading to the origin. This coor-
dination failure could be fixed if agents could form expectations corresponding
to a trajectory converging to the positive steady state. Agents are unaware of
the existence of such a trajectory because the externality is unknown and they
cannot calculate the whole phase portrait of the system. If a sunspot variable,
modeled as a Wiener process, is included in the model, agents could take it
into account when making their decisions. Coordinating on a sunspot white
noise allows exploring new regions of the state space and can eventually move
the trajectory of the system out of the trap. As soon as the economy leaves the
trap, agents become aware of the existence of a new non-stochastic steady state.
It is assumed that in this case a regime change takes place and the agents stop
taking the sunspot variable into account. Therefore the further dynamics of the
system reduces to convergence to the positive steady state’. This will happen

if a zero steady state is stochastically unstable under sunspot fluctuations or an

"Why didn’t the agents choose this trajectory earlier? They could only have learned to
predict the perfect foresight trajectory starting from today’s initial conditions, but not from
other points, because of the externality. Alternatively, they could have learned only the
optimal decision rule (the Euler equation), as in Flam and Mirman (1998), but suppose there
is an outside body, a government, capable of calculating perfect foresight trajectories and
announcing them. The government’s announcement of a perfect foresight path starting from
today’s initial conditions and leading to the superior steady state generates the regime change.
If the government knows the whole phase portrait, its announcements could still be useless
while inside the trap, because choosing a ”good” path involves a discontinuous jump and is
prevented by coordination problems. Only the actual escape makes the announced perfect
foresight path feasible.



initial condition lies outside the region of stochastic stability that might not co-
incide with the development trap of the deterministic system. In the case when
the economy eventually leaves the trap, it is possible to calculate expected first
exit times from the region of attraction of a zero steady state depending on the
initial conditions and magnitude of the sunspot process.

The rest of the paper is organized as follows. In Section 2, a brief summary
of the model described in Benhabib and Farmer (1994) is given, construction
of the phase portrait of the model is performed and existence of the poverty
trap is proven. Properties of the model subject to sunspot fluctuations, in
particular stochastic stability of the development trap, are studied in Section
3. Section 4 provides numerical estimates of escape probabilities and times;
analytical approximations and comparisons to the numerical results are given

in Section 5; and Section 6 concludes.

2 The Model

As a basis for analysis, I use a slightly modified model from Benhabib and
Farmer (1994). This deterministic continuous-time model with infinitely lived
agents is characterized by increasing social returns to scale due to externality
in the production function of which the agents are assumed to be unaware.
There are two steady states. One has zero capital and zero consumption (the
origin), while the other has positive levels of both capital and consumption. For
some parameter values, both steady states are indeterminate, and the whole
state space is separated into two regions of attraction of the steady states. The
region of attraction of the origin is a development trap®.

The economy consists of a large number of identical consumers seeking to

8 For expositional clarity, I have chosen the model reduced to the most simple mathematical
form possible. There are other models with indeterminate interior poverty traps, like Gali
(1994), Gali (1995), and Perli (1998). Those models provide a more realistic description of
economic phenomena leading to the poverty trap. Further work will focus on more realistic
models.

In endogenous growth models, a development trap is a balanced growth path with lower
growth rate. In a model without exogenous or endogenous technological change, such as the
one used in this paper, a steady state with a lower level of contemporaneous utility is studied
instead.
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where C' is consumption, K capital, N work effort, r interest rate, and w the
wage rate. There are a large number of identical firms with the production
function

Y = K'N"K* N, (1)
where a +b=1,a > a, 3> b, and K and N are economywide averages of K
and N per firm, which are taken as given by every individual firm. From the

profit maximization, the interest rate and the wage rate are given by
wN = Y, (2a)
rK = aY. (2b)
Identical consumers take trajectories of wage and interest rates as given
and solve their maximization problem. In a symmetric equilibrium, all firms
employ the same amount of labor and capital, and thus K = K, N = N. In the
perfect foresight equilibrium, consumers know the correct trajectories of r and
w. Solving the problem and switching to logs, one gets the following system of

equations, almost equivalent to the one derived in the original Benhabib and

Farmer (1994) model:

c = [g exp(w — vk + uc) — %], (3a)
ko= [exp(w — vk + uc) — exp(c — k) — 8]. (3b)

where w, v, and u are given by

w — _ Plog()
B+x—1
. B=(1-a)(l-x)
vo= R (4)
U = —Uﬂ
B+x—1



The system (3) is extremely hard to analyze. It is therefore useful to change

the coordinates to

x = exp(w— vk + uc), (5a)

y = exp(c—k). (5b)

After this change of variables, the system transforms into

o+p

B (6a)

o= - Datyrs- 222 (60)

r = m[(gu—v)x—f—vy—i—vé—u
o

By construction, x and y are nonnegative; therefore only the first quadrant of

the (x,y) space should be considered.

2.1 Steady States and Their Stability

The positive steady state of (6) is A= (z*,y*) = (‘5—;’;3, 8tp _ 6. Linearization

a

of (6) around this steady state produces

r*(4u—v) v

J* = *(a * )
v (g-1) v
and

Det (J*) = %x*y*(u—v), trace(J¥) :x*(gu—v)—l—y*.

To get indeterminacy, one needs 2 stable roots, which means Det (J*) > 0,

trace(J*) < 0. Recalling definitions of v and v and simplifying, one gets:

_(-DB+ ()1
P - . (7)

Following the original paper, where a < 1, x < 0, and assuming o is not too
far away from 1 (¢ = 1 means utility logarithmic in consumption), the necessary
condition for indeterminacy is still 34+ x — 1 > 0 as in Benhabib and Farmer

(1994), because the numerator is positive. The trace is given by

5+p,a _b+paf—all—x)
e e v e (8)
§tpaftx—Y-(a-al-x) ,_  S+pla—al—-x
a B+x—1 P a B+x—-1 ~

10



If there is no capital externality ( @« = a), trace equals p and is positive. The

lowest a that makes trace negative is given by a = a(1+ 34’9—_,; B%;—l) Combining

all the conditions together, I see that if

b+x—1 > 0,

p Btx—1
142" A =
o +5+p 1—x )

(-Df+(1-a)(1-x) > 0,

< a<l, (9)

then the positive steady state A is indeterminate. From now on, only parameter
values satisfying conditions (9) will be considered.

There are other steady states of (6), given by

B e ys
B=(0,0), C= (0L ~5), and D= (“2—",0).

For ¢ not too large, ‘5—1'3 — 8 is positive. In the expression for abscissa of D, the

denominator is given by

a _af-f+(1-a)l-x) _af-al-x) ,_ .  a-a
—Uu—v= ﬂ+x—1 = ,6+X—1 l=a-1 /6+X—17

(10)

which is always negative if conditions (9) are true. For the numerator, one gets

0+p)B-0B-(1-)1=x) pb+60—-a)(1—-X)
B+x—1 B+x—1

o+p
u—"r _

vo = , (11)

which is always positive given (9). Therefore, the third equilibrium lies in the
second quadrant and does not interest me?.

Linearizing (6) around the origin, one gets the following Jacobian:

)
J:[Ué U= 0 }

0 §— otp (12)

The first non-zero element was estimated in (11) and is always negative, while
the second is negative for o not too large (and negative for o = 1). Therefore,

the origin is also stable in (6). Finally, for the steady state C, one gets

J_ 6—;3(0 —u) 0
e ) e
9Steady states B and C both represent trajectories diverging to (-co, —o0) in the (¢,k) space
with different asymptotic behavior. The change of variables collapses infinity points from the
lower half of the (¢,k) space onto the vertical half-axis in the (z,y) space. Trajectories with
different asymptotic behavior at minus infinity are mapped onto different points on the axis.

11



Here, the (2,2) element of J is positive, and taking into account (7) I conclude

that the (1,1) element of J is negative. Therefore, C is a saddle.

2.2 Dulac Criterion and Limit Cycles

To characterize the global dynamics of the system it is necessary to know
whether limit cycles exist. The Dulac criterion states that if for the analyti-

cal two-dimensional system

P(x,y),

Q(z,y),

8-
|

< -
I

in a simply connected region G there exists a continuously differentiable function
B(z,y), such that % + B(éLyB) does not change sign in G, then there are
no simple closed curves in G which are unions of paths of the system!?. In
particular, there are no limit cycles, see Andronov, Leontovich, Gordon, and

Maier (1973). For a system of the type (6),

r = x(ax+by+c), (13a)
y = ylagw + boy + c2), (13b)
the Dulac function is B(z,y) = 2~ 1y"~1 where k = bQ(QZ_al), h= al(blA_bQ),

A= albg — CLle 7é 0. Then

I(PB)  0(@B) _  aica(bi —b2)  baci(az —a1)| 1 g
oz y = A A T

(14)

When & = ayca(by — ba) + baci(az —ay) # 0, % + a(BLyB) vanishes only along
the integral curves x = 0 and y = 0. It does not change sign in the interior of any
of the four quadrants. Also, it can be shown that there can be no closed contours
which are unions of paths in this case. After some algebraic transformations, it
can be shown that the condition on £ amounts to ayz* + bay* = trace(J*) =0,
where (z*,y*) denotes the non-trivial steady state. When trace(J*) = 0, all

trajectories of the system are closed orbits.

10Note that Bendixson’s criterion is a special case of Dulac’s with B(z,y) = 1.
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It is possible to have Det (J*) > 0 and trace(J*) = 0 with two complex
conjugate eigenvalues having zero real part. However, the system does not

undergo Hopf bifurcation because there are no limit cycles when ¢race(J*) # 0.

2.3 Global Behavior

The phase portrait of (6) is presented in Figure 1. The whole first quadrant

11, The only trajectories that diverge to

is divided into 2 regions of attraction
infinity are those that start on the vertical axis above C. The stable manifold
of C serves as a separatrix between the regions of attraction. In logged con-
sumption and capital, the phase portrait is given by Figure 2. All trajectories
that start above the transformed stable manifold of C converge to the positive
steady state corresponding to A. Trajectories with the initial conditions below
it diverge to minus infinity. In the original (C, K) variables (Figure 3), the
phase portrait looks very similar to that of (6), the only difference being that
now the separatrix of the two regions of attraction starts at the origin rather
than on the vertical axis. The stable manifold approaches the origin as a ray of
constant positive tangent. Any other trajectory of the system which approaches
the origin behaves asymptotically as C' ~ K exp(—pt). The distance between
the stable manifold and any such trajectory expressed as a percentage of actual
consumption level grows exponentially with time.

To obtain a point on the vertical axis {(x,y) : z = 0, y > 0} of Figure 1, the
following should be true: uc—vk = u(c—k)+(u—v)k — —o0, ¢—k = const. This
means that K — —oo,c — —o0o, but ¢ — k is finite. This corresponds to going to
the origin in the non-logged (C, K) space along a ray with finite tangent. In the
(e, k) space any trajectory asymptotically linearly diverging to minus infinity
satisfies the condition. A point on the horizontal axis {(z,y) : ¢ > 0, y = 0} is
obtained when uc — vk = u(c — k) + (u — v)k = const, c — k — —oo. This is

possible only when k — oo, and c is arbitrary, but ¢ goes to infinity slower than

I1There were previous attempts to obtain the region of stability of the positive steady
state in this model; see, for example, Russell and Zecevic (1998) for the Lyapunov function
approach. The approach used here is much broader. I am able to study the global dynamics
of the model instead of the compact neighborhood of the steady state, as in the reference.

13



Figure 1: Phase portrait of the transformed system in (x,y) variables
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k or converges to a nonzero constant.

What does the origin in the (z,y) space correspond to? Writing the change
of coordinates (5) as © = (%)v cvv Yy = %, it is easy to see that the origin
corresponds to C' < oo, % = 0. Any trajectory in the (C, K) space such that
C = o(K), C — 0 corresponds to a trajectory converging to the origin in the
(z,y) space. The trivial solution of (6) corresponds to a poverty trap, or

imploding economy.

3 Stochastic Dynamics

3.1 Constructing SDE

From the previous section, I know that the system (6) has two stable steady
states, there are no limit cycles, and no trajectory starting in the interior of the

first quadrant escapes to infinity in the (z,y) space. A trajectory of (6) that

14



Figure 2: Phase portrait in log capital and log consumption
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starts on the vertical axis above C escapes to infinity; however, in the (C,K)
space this corresponds to a trajectory going to the origin with ever increasing
slope. Now I introduce a stochastic process into the system - the sunspot process.
A key behavioral assumption is that agents observe a sunspot variable, a Wiener
process. They simply add a “derivative” of the process to their decision rule. To
justify such an approach, one has to remember that an It6 stochastic differential
equation can be obtained as a limit in probability of difference equations if the

driving noise is a Markov process with independent increments'?. Existence of

12 Construction of the SDE is very similar to that reported in Shigoka (1994). Introducing a
sunspot disturbance in this way has a simple justification. Adding odWs to the equation for
log(C) is approximately equivalent to adding CodW; to the equation for C. C' is the share
of the net present wealth (future wages and interest income) agents choose to consume at
time ¢. If agents consider increments of the sunspot variable as fluctuations in their present
discounted wealth, CodW; is simply an adjustment of this share due to the fact that the
perceived wealth has changed.



Figure 3: Dynamics of the system in original, nonlogged variables
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the SSE of this form was shown in the current model by Shigoka (1994) for a
continuous time Markov process with finitely many states. A Wiener process is
a continuous time Markov process with infinitely many states. For a formal and
rigorous introduction to the concept of stochastic differential equation (SDE),
see, for example, Karatzas and Shreve (1991). Description of the limiting ar-
gument that allows going from the difference equation with Markov variable to
SDE can be found in Khasminskii (1980).

I start with a deterministic differential equation (3) and formally add a
“differential” of the Wiener process to the RHS of the equation for consumption.

The result is

de = [g exp(w — vk + uc) — H—p]dt—i—&th, (15a)
o o

dk = [exp(w — vk + uc) —exp(c — k) — 8]dt. (15b)

16



Doing the same change of variables as in the previous section and applying

the It6 theorem as described in Appendix A, one arrives at the following system

of SDEs:
a b+p 1.9 5 ~
dr = [z((mu—v)z+vy+vé—u + 50 u )]dt + uxadWy, (16a)
o
5 1. -
dy = [y((g ~Dr+y+6- —i i 50dt + yodWi. (16b)

3.2 Global Stochastic Dynamics

It is necessary to specify the behavior of the stochastic process defined by (16).
As was mentioned above, in the present paper I assume that the economy is
evolving according to (16) for as long as it is located in the deterministic devel-
opment trap, the area below the stable manifold in Figure 1. If the trajectory
hits the trap boundary, it is assumed that the sunspot process dies out. Eco-
nomic justification of this assumption is rather simple. Agents in an economy
that has spent all its history inside the development trap were unable to see a
perfect foresight deterministic trajectory converging to anything but the origin,
point B. After hitting the boundary, however, they immediately observe another
steady state A with much better welfare properties. A reasonable assumption
would be that a regime change occurs in this situation. I model this change
of regime by assuming that the agents stop following the sunspot process and
coordinate on some trajectory converging to the positive steady state A3, It is
possible to drop the assumption of the regime change and study the invariant
measure, dependent on the initial condition, that arises in this case. However,
this extension is beyond the scope of the present paper.

The process that solves (16) and starts in the development trap either stays
in the trap forever or exits through the upper trap boundary, crossing the deter-

ministic stable manifold of C. In the former case it exists from ¢ = t to infinity;

13Strictly speaking, if the sunspot process stops immediately at the boundary, then the
economy converges to the steady state C in Figure 1 which has, again, zero consumption and
capital. To avoid this, I have to assume that the sunspot stops at the distance of € above the
boundary. Then, after the sunspot dies out, I have the deterministic dynamics, and there is
only one possibility left: convergence to the steady state A in Figure 1.
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in the latter it becomes deterministic at some finite time and then converges to
the steady state A, thus also being defined up to t = co. If the process stays
forever in the trap then it converges to the origin with probability one. Neither
of the axes can be attained by the process in a finite time. Therefore, only two
possibilities remain in the limit ¢ — oo : convergence to the origin or to the
positive steady state A. A sketch of the argument can be found in Appendix B.

The introduction of self-fulfilling fluctuations does not change the long term
properties of the model. The same two outcomes observed in the deterministic
case (without sunspots) are achieved. My interest, however, lies in studying
the probability with which an unfavorable outcome can be transformed into a

better one.

3.3 Stochastic Stability of the Origin

A very special structure of the transformed system (16) allows me to derive
some analytical results on the stability of the origin under self-fulfilling beliefs
driven fluctuations. To prove the asymptotic stability of the origin I will use

the stability in first approximation.

Definition 1 The solution x(t) = 0 is said to be stable in probability if, for
every € > 0 and every t > to,

limOP{sup|m(t,w,t0,x0)\ > e} = 0. It is said to be asymptotically stable in
0—=0  Ti>t

probability if it is stable in probability and moreover lim P{ lim x(t,w,ty, xo) =

xo—0 t—oo

0} =1.

In plain English, according to the definition, the origin is asymptotically
stochastically stable if one can choose the é-neighborhood of the origin such
that all trajectories starting in it will remain inside a given e-neighborhood of
the origin with probability going to 1 as § goes to 0. This definition is analogous
to the definition of stability in the deterministic case. Moreover, one wants all
such trajectories to converge to the origin as ¢ goes to 0, which has a close

counterpart in the asymptotic stability in the deterministic case.
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Consider two systems of SDEs, one linear, another nonlinear:

dX;

BXdt + o XdW,, (17a)

dX,

b(t, X)dt + o (t, X )dW,. (17b)

Suppose that coefficients b(t, z) and o(¢,x) are “close” to B and 0. Can one
deduce the stability or instability of the origin for the nonlinear system from the
stability of the origin for (17a)? It turns out that if the system (17a) is obtained
from (17b) by linearization around the origin, and the origin is asymptotically
stochastically stable in (17a), then it is asymptotically stable in (17b) as well.
This result is known as stability in the first (linear) approximation.

The trivial solution of the system (16) is asymptotically stable in probability
in a sufficiently small neighborhood of the origin. Appendix C contains relevant
theorems and calculations.

Note the difference between the last result and stability in the large discussed
in Appendix B. Stability in the large was restricted to the set of events such that
sample paths never left the trap. The last result does not use this restriction
and is in this sense a broader one.

Such a result means that for the economy that started very close to the
origin, probability of escape from the trap is low and goes to zero as the ini-
tial point approaches the origin. There is no way out if expectations are very
pessimistic. The sunspot variable cannot fix expectations if they are too low to
begin with. The result should not come as a surprise considering the specifi-
cation of the process that governs expectations. An addition to the derivative
of consumption due to the sunspot variable is proportional to the current level
of consumption itself. In the model, low expectations mean low consumption.
Therefore, in a pessimistic state the sunspot variable exercises very little influ-
ence in absolute terms. As stated previously, for the economy converging to the
origin the distance to the boundary of the poverty trap becomes very large as
a percentage of the current level of consumption. The influence of the sunspot

variable gets smaller as the level of consumption gets small. The only realistic
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chance of escape comes when the distance to the boundary is not exponentially
large and the sunspot influence is not negligible. Both requirements are satisfied
when the consumption level is not too low, which means expectations are not
too pessimistic.

Now I have to make a distinction between the stability of the origin in the
deterministic system (6) and the stochastic system (16). The basin of attraction
of the origin in the former system is a set in (z,y) space that for some values
of y is unbounded in . The solution of (16) is guaranteed to converge to the
origin only as the initial condition converges to zero. For any non-zero initial
condition, there is a positive probability that the trajectory will not converge
to the origin. A solution of (16) that started outside the “sufficiently small
neighborhood” of the origin is not guaranteed to converge to it or to remain
near it at all. Therefore, following a sunspot variable leaves the possibility that

the economy will escape the poverty trap.

4 How Good is the Chance?

To understand how important sunspot-driven fluctuations could be for the econ-
omy’s escape from the poverty trap, some numerical simulations of stochastic
differential equation (15) were performed. First, to obtain a “realistic” noise
magnitude, batches of 100 trajectories each with different noise intensities start-
ing from the positive steady state A of the deterministic system were run for
300 time units (years). A noise intensity that resulted in approximately 14%
standard deviation of the log consumption was chosen. This number is close to
the average reported for several developing countries by Mendoza (1995). The
second step was to calculate the separatrix of the two regions of attraction. This
separatrix is the stable manifold of the steady state C of the transformed system
(6). A standard procedure was employed: calculate the eigenvector correspond-
ing to the stable eigenvalue at C and run the system of differential equations
(6) backwards in time from a point close to C in the direction of the eigenvec-

tor. Matlab5 procedure ode45 was used to calculate the trajectory. Using the
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transformation inverse to (5), this trajectory was transformed into (c, k) space
in which further simulations were made. The separatrix is the thick solid line
in Figures 1-3.

Numerical simulations of SDE are based on a stochastic Taylor expansion.
For a brief exposition of the numerical solution of SDEs based on Kloeden,
Platen, and Schurz (1994) the reader is referred to Appendix D. I run batches
of 100 trajectories with initial points inside the deterministic poverty trap. The
share of trajectories crossing the trap boundary is interpreted as a probability
that sunspot-driven fluctuations of a given magnitude will lead to the escape
from the trap. For the purposes of the simulations, the time interval from 0
to 300 was chosen. All trajectories either crossed the boundary or moved very
close to the origin in the (C, K) space during this time intervall*.

The basic result of this section can be stated as follows: for the chosen level
of noise intensity, the probability of escaping the trap is not negligible only
when the initial condition is very close to the trap boundary. The initial level of
consumption, C, should not be less than 80% of the boundary level in order to
see at least a couple of escapes in a batch of 100 trajectories. The probability
is not very sensitive to the initial level of capital. Figure 4 plots the probability
of escape averaged over initial capital level versus the difference between the
initial and borderline levels of consumption. As expected, it increases as ex-
pectations become more optimistic (the difference becomes smaller). Figure 5
presents similarly averaged mean and median escape times for trajectories that
eventually leave the trap. For very optimistic expectations (initial consumption
very close to the boundary) an absolute majority of escapes happen within the
first year. For the few trajectories that escape from pessimistic initial conditions

(consumption far from the boundary) the time is much longer, 30 years or more.

14 Conditional on not crossing the boundary, the origin is stochastically stable in the large.
A trajectory was considered as having converged to the origin in the (z,y) space and cor-
respondingly in the (C, K) space if log(K) fell below 0. For the positive steady state A,
log(K)=7.32. Initial points for simulation purposes varied from log(K)=4 to log(K)=8. In
practice, after approximately 100 years the non-escaped solutions would become numerically
indistinguishable from the origin in the (C,K) space.
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Figure 4: Probability of escape as a function of the distance to the poverty trap
boundary
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The answer to the question posted at the beginning of the section then is
— “Not very good”. It is possible to miss the target level of consumption (and
work effort) and still avoid falling into the poverty trap, but the gap should not
be large. Expected escape time and escape probability are inversely related, and
the prognosis for chronically trapped economies is not good. Highly probable
escape happens very fast; if there is no escape, the imploding economies will

probably continue the downward spiral.
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Figure 5: Mean and median escape time as a function of the distance to the
poverty trap boundary

Time

35

—— mean
— — median

30

25

20

15

10

0 1 1 1 1
0 0.05 0.1 0.15 0.2

log(C )-log(C)

boundary

Analytical Estimates of the Escape Probabil-
ity

In this section I will exploit the specific geometric structure of the model (15)

to derive some very approximate estimates of the escape probabilities. For

values of the initial capital that are not larger than in the positive steady state,

consumption values that put the system into the development trap generate a

very low value of z, usually less than 0.0005, which is significantly lower than the

value of y, which is approximately 0.025. For a trajectory in the development

trap, « can only decrease.

Consider again the system of SDE (15). Formally subtract the second equa-
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tion from the first to obtain the following relationship:
a o+p ~
d(c—k) =[(= — 1) exp(w — vk + uc) + exp(c — k) + § — ——]dt + cdW,. (18)
o o

Notice that the same result could be derived by changing to the variables (¢ —

k, k) and keeping only the first equation. Using the fact that © = exp(w—vk+uc)

is much less than min(y = exp(c — k) ,6 — M) I can derive the following

approximate SDE:

o0+p

A7, ~ [exp(Z;) + 6 — —L)dt + GdW,. (19)

This is a one-dimensional equation in Z = ¢ — k. Initial condition Zj is given by

(c— k), — d, where d denotes initial distance to the boundary. The boundary

g9

is almost horizontal for small x = exp(w — vk + uc) and is given by (c — k), =

log(=~ 9tp _§). Another approximation would be to substitute exp(Zg) for exp(Z;)
in the right-hand side of (19). After the substitution I arrive at the following

approximate SDE:

1 — e~ d)(§ — o2
d%%[ c ]é =) at 4+ aw,. (20)

Consider a typical trajectory that starts in the development trap in Figure

1. Initial x is very small, and y is almost unchanged on the stable manifold for

€ [0, zo], y = y* —B 6. A trajectory escapes the trap if its y component

increases by the amount given by the difference between y* and yy. Also note

that Z = ¢ —k is simply a monotonic transformation of y, Z = In(y). Therefore,

the trajectory leaves the trap if Z; achieves some fixed value. The process
[1—e"?)(5-2E2)

Zy is a well-known Brownian motion with drift b = —————=—=. T want to

know the probability with which % increases by

SUIS

over its initial value, just
hitting the boundary of the trap. Denoting the first passage time to % by
Ty=inf{t >0: 7, — Zy = g}, one can write the probability of hitting % in a
finite time, P[Ty < oo] = exp } ; see Karatzas and Shreve (1991, p.197).

Finally, substituting the value of b, I derive the probability of escape as

b+p 5)d(1 —e )
=)

o o

P[T; < 00| = exp |—2( (21)
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The expression just derived demonstrates that the escape probability should be
decreasing in the distance to the boundary and increasing in the magnitude of
the sunspot noise, as expected. Quadratic dependence on the noise guarantees
that even the most pessimistic initial conditions do not preclude an escape given
high enough noise magnitude. In short, it pays to behave non-optimally.

It is very likely that (21) is not a very accurate description of the escape
probability. One source of the discrepancy is that for large d, when the sample
path starts climbing towards the boundary, it enters the region where drift b is
less in absolute value than at the initial point. True probability of escape will be
higher than given by the formula. For small d, on the other hand, it is possible
to have a sample path initially move away from the boundary and then come
back. Such a path spends some time in the region with drift b higher than the
one given by initial conditions, and the true escape probability will probably be
smaller than predicted by (21).

Figure 6 plots log(P) vs d(1 — e~). The agreement is surprisingly good
given the number of assumptions I had to make to arrive at the expression for
the escape probability. The difference between numerical results and (21) has

expected sign — positive for large d and negative for small ones.

6 Conclusion

Poverty traps and indeterminacy in macroeconomic models may be caused
by the same set of reasons, like externalities or increasing returns to scale.
Wooford’s conjecture, proven to hold in a broad set of discrete-time and continuous-
time models, allows one to expect the presence of sunspot fluctuations when-
ever indeterminacy of the steady state is present. However, the traditional
approach to sunspot fluctuations is strictly local: the sunspot variable is as-
sumed to behave in such a way that the economy subject to self-fulfilling beliefs
shocks does not leave the region of the state space where the dynamics without
sunspots takes place. This is usually achieved by choosing a random variable

with bounded support as the sunspot variable. Considering a two-dimensional
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Figure 6: Probability of escape as a function of the distance to the trap boundary
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continuous-time model allows one to describe fully both deterministic and sto-
chastic dynamics of the system. Ability to discuss global properties of the
stochastic process allowed me to raise a new question, that of the connection
between the sunspot driven fluctuations and escape from the poverty trap.
Taking a simple model that exhibits indeterminacy of both the positive
steady state and zero steady state I was able to prove that the development
trap is asymptotically stochastically stable under the chosen specification of the
sunspot variable, which can be interpreted as a change in perceived present
discounted wealth. Therefore the economy that starts with a very low initial
capital and very pessimistic expectations of future interest rates and wages
gets trapped. However, this analytical result is valid only asymptotically and

economies starting with finite levels of capital and consumption have nonzero
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probability of escape. To estimate numerically this probability as a function
of initial conditions, I assumed that the economies of several developing coun-
tries operated around the positive steady state with business cycle fluctuations
caused by the sunspots described in the model. Allowing the sunspots of similar
magnitude to act in the economy with initial conditions in the poverty trap, I
was able to map the trap for initial conditions providing non-negligible prob-
ability of escape. The set of those initial conditions is not very large and is
restricted to an initial level of consumption within 20% of the level necessary to
put the system right on the boundary between the poverty trap and the region
of attraction of the positive steady state. At every finite level of the capital
stock, there exists a level of consumption (and, accordingly, of the work effort)
that withdraws the system from the poverty trap. However, for very low lev-
els of capital the change from a “pessimistic” optimal level of consumption to
the “optimistic” one may constitute hundreds and thousands of percent of the
“pessimistic” level. Analytical approximations showed good agreement with the
numerical results.

The pessimistic outcome is brought about by the sunspot with magnitude
proportional to the current level of consumption. A different specification of
the sunspot variable might lead to more optimistic results in this model. Even
a sunspot variable that is proportional to the current consumption can be more
effective in models where a poverty trap is not the origin. Then the magnitude
of the sunspot does not converge to zero as time goes to infinity, and the escape
can be inevitable given enough time.

There are several obvious extensions of the work presented here. Work is
in progress on the models with interior poverty traps, like the ones described
in Matsuyama (1991), Gali and Zilibotti (1995), Gans (1998), or Baland and
Francois (1996). Another interesting question is whether the sunspot equilib-
rium described here can be learned as a result of some learning process. At
present it is unclear how to extend the work done in Evans and Honkapohja

(1999) to continuous time. However, after this is done, one could study the
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learnability of indeterminate Pareto inferior steady states and of sunspot-driven
equilibrium dynamics that exists in the poverty trap. It might be possible to
start with a discrete time approximation to the model and ask the question on
learnability. Going to the limit as time period converges to zero will allow one
to demonstrate which continuous-time equilibria can be thought to be stable
under the learning and which cannot. Finally, a test of the escape mechanism
presented here might be possible if one could demonstrate the existence of, and
measure the importance of, sunspots in the developing economies. However,
current methods of testing for sunspots require either high frequency economic
data, as in Farmer and Guo (1995), or the existence of highly developed finan-
cial markets and the corresponding time series, as in Salyer and Sheffrin (1998).
Both conditions are unlikely to be met in the economies for which the question

of escape from the poverty trap is relevant.
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A Derivation of the Stochastic Differential Equa-
tion

The It6 theorem, found in any standard textbook on stochastic calculus like

Karatzas and Shreve (1991), states the following:

Theorem 1 Let stochastic process X; be written as a d-dimensional stochastic
differential,
dX; = bydt + FdW,.

Let U : [0,T] x RY — R have continuous partial derivatives %[tj, gﬂ, 6”8% for

k,i=1,2...d, and define a scalar process {Y;,0 <t < T} by
Y, =U(t, Xy)

with probability 1. Then the stochastic differential for Y; is given by
U 1<
ay, = bk FjFf dt
= S S e b

K2

d
,OU
> Fj—dw;
: Ox;
=1
As is easy to see, the only diﬁerence between a usual chain rule and the It6
formula is the presence of the term 1 Z FiF}F 52 zaz Taking © = exp(w + uc—
L k=1
vk) and y = exp(c — k) as Y; in the formula, I obtain the system of equations

presented in (16).

B Global Stochastic Dynamics

First, it is necessary to demonstrate that the stochastic process is unique and
exists for all ¢ > ty. Then I will show that a particular trajectory that started in
the development trap and evolved subject to the sunspot fluctuations according
o (16) can evolve in one of two possible ways. One is convergence to the
positive steady state A and another, convergence to the origin B, exactly like

in the deterministic version of the model. All the theorems and definitions cited

29



here are taken from Khasminskii (1980), where all the proofs can be found, and
are presented here only to generate a relatively self-contained account.

Write a general multidimensional SDE in the integral form,

t t
Xt =Xy, + /b(s,Xs)ds + /G(S,XS)dVVS. (22)

to to

Define Lipschitz continuity and linear growth conditions as follows:

[b(s, ) = b(s,y)[ +[o(s,2) —o(s,y)| < Blz—yl, (23a)
|b(s,z)| + |o(s, )] < B(l1+ |z|). (23Db)
Let Cs be the class of functions on I x R — R which are twice continuously

differentiable with respect to x;...x, and continuously differentiable with respect

to t. Let V' € Cs. For the process given by (22) LV (s, x) is defined as

OV (s, x) al oV (s,x) 1 a 0%V (s,x)
b _2r\ed . Vet - . . i S0
V(s,x) T ;bz(s, D T %;U’(s’ 7505 0)
Consider the following restrictions on the function V':
LV < ¢V, (24a)
Ve = inf V(t,z) - 00 as R — oc. (24b)

|z|>R
The following theorem considers the existence, uniqueness, and certain prop-

erties of the solution to (22).

Theorem 2 (Theorem 3.4.1) Suppose that conditions (23) are valid in every
cylinder I x Ur and, moreover, that there exists a nonnegative function V € Cy
on the domain R™ such that for some constant ¢ > 0 conditions (24) hold.
Then:
i) For every random variable X, independent of the process Wy — Wy, there
exists a solution X;, unique up to equivalence'®, of equation (22) which is an
almost surely continuous stochastic process and is unique up to equivalence.

it) This solution is a Markov process.

15 Two solutions X} and X? are said to be equivalent if P{X} = X2 for all t € [to,T] = 1.
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Conclusions iii), iv), and v) of the Theorem do not concern me here and are

omitted.

The process satisfying all the conditions of the Theorem is a regular process'.

A regular process is almost surely defined for all ¢ > t,.

In the following discussion, I will restrict attention to the set of trajectories
that start in the development trap and never leave it. More formally, denote
Tq4(s,x) time of the first exit through the upper boundary (stable manifold of
C) for the trajectory that started at (s,z) in the trap. Consider only the set of
events U such that 74(s,z) = co. A trivial application of all the arguments in
Khasminskii (1980) then demonstrates that all the results proved there for R™
hold for U.

For the system of equations (16) a simple energy function will suffice. Set

V(t,xz) = 2% + y%. Then

O+p

LV = 22 {(%u —v)x 4+ vy +v6 — u—— + 52u2] +

6 ~
+2y2 [(%—1)m+y+6—¥+02)]

V' is obviously nonnegative and LV is negative everywhere but at the origin and
in the neighborhood of the steady state C. Take 257 as the constant ¢ in (24).
I have just shown that the process defined by (16) exists for all ¢ > ¢y and is
unique if it does not leave the trap. If it does leave the trap, by assumption the
sample path becomes a solution to the deterministic equation (6) and converges
to the positive steady state A.

Let us now consider the set of events such that the trajectory never leaves the
region in the (z,y) space where LV < 0'7. This region is the whole development

trap minus a small neighborhood of the steady state C. Denote this set U;.

16Tnformally, a regular process is a process for which the first exit time from a union of
bounded domains (L)JolUn = {]z| < n} is infinite with probability one.
n=

17Tn the next Appendix I will show that the origin is asymptotically stochastically stable,

which means that trajectories that start close enough converge to the origin. Such trajectories
never leave the region where LV < 0 and this subset of U is thus not empty.
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Definition 2 The solution X; = 0 of equation (22) is said to be (asymp-
totically) stable in the large if it is stable in probability and also for all s,z
Pllim X" = 0] = 1.

t—o0o

I want to show that for all events in U; the origin is stable in the large. The

following theorem is used to prove the result.

Theorem 3 (Theorem 5.4.5) The following conditions are sufficient for the
solution X; = 0 of equation (22) to be stable in the large:

i) the process X is reqular;

ii) there exists a nonnegative function Vi(t,x) € C9 such that the function
LV is negative definite;

iii) there exists a positive definite function Va(t,z) € C3, having an infini-

tesimal upper limit, such that LV, < 0.

Class O differs from class Cy by dropping differentiability at z = 0. In-
finitesimal upper limit means 11:1_% 21;18 V(t,z) = 0. If V does not depend on
t explicitly, only iLII%) V(z) = 0 is needed. Using the same Lyapunov function
as above, V(t,x) = 2% + y2, I see that in U; all the conditions of the theorem
are satisfied. Therefore, any trajectory that started in the development trap,
never left it, and never wandered close to the steady state C, will converge to
the origin. The other two possibilities for this trajectory are leaving the trap
through the upper boundary or moving into the neighborhood of the steady
state C where z is very small.

Arguments presented in Section 5 show that a process near C can be approx-
imated by a Brownian motion with drift along the y direction. Therefore, the
process can hit the trap boundary with a probability calculated in that Section.
Alternatively, it can leave the lower boundary of the neighborhood of C and
enter the region where U; is negative. The probability of doing so in a finite
time, conditioned on the fact that the process does not leave through the upper
boundary first, is one. The process cannot hit the y axis in a finite time. A

theorem from Friedman and Pinsky (1973) states that a process that solves (22)
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cannot hit a closed domain € if normal components of both drift and diffusion
vanish on 0f). It is immediately obvious that on the y axis there is no drift or
diffusion component in the = direction for (16). Therefore, the y axis cannot be

attained by our stochastic process'®.

C Asymptotic Stability in the First Approxima-
tion

Theorem 4 (Khasminskii (1980), Theorem 7.1.1) If the linear system with
constant coefficients (17a) is asymptotically stable in probability, and the coeffi-

cients of the system (17b) satisfy an inequality
|b(t, ) — Ba| + |o(t, X) — ox| < 7|zl (25)

in a sufficiently small neighborhood of the point x = 0 and with sufficiently small
constant vy, then the solution X = 0 of the nonlinear system is asymptotically

stable in probability.

Remark 1 In the proof of Theorem 7.1.1, Khasminskii actually shows that if
the origin in (17a) is exponentially p-stable for sufficiently small p and (25)
holds, then the Theorem is true. For linear systems with constant coefficients,
asymptotic stability in probability implies exponential p-stability for sufficiently
small p (Theorem 6.4.1 in Khasminskii 1980).

Definition 3 Exponential p-stability, Khasminskii (1980). The solution X =0
of the system (22) is said to be exponentially p-stable for t > 0, if for some

positive constants A and « the following condition is true:

E|x(t,w,x,,t0)|[" < Alxo|? exp{—a(t —to)}.

Theorem 5 (Khasminskii (1980), Theorem 6.3.1) The solution X = 0 of the

linear system with constant coefficients is exponentially p-stable if and only if

18 Actually, both z and y axes are unattainable in a finite time.
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there exists a function V(t,x), homogeneous of degree p in x, such that for some

constants k; > 0

kile[P < V(¢ @) < kelaf?; LV(t,2) < —kslz/”,
oV 0%V

< kglafPh
G| S el I

| < kalaP72. (26)

Applying Theorem 4, I can see that the stability of the origin in (16) depends

on the stability of the origin in the following linear system:

1
dr = z(vé— u(S e + 552u2)dt + uxzcdW,
1
dy = y(6— @ + 537t + ygawv, 27)

To establish stability of (27), set V (¢, z) = |z|? + |y[P. Then

6 1_ 1.
LV = plzff |vé—u P + =52 + 5% (p—1)| +
o 2 2
6+p 1~2 1~2
Pl 2P L 252 SR -1
walyl o= T2 4 557 St - )
or
6 1_ , 6 1.
LV = p|x|P [vé — u—j Py §Ugu2p] +plyl? {5 - —1— Py 502}7} . (28)

A quick look at (12) assures one that LV (¢,2) < —ksz|z|? for p small enough.
Therefore, by Theorem 5 the solution X = 0 of the system (27) is exponen-
tially p — stable, and by Remark 1, the trivial solution of the system (16) is
asymptotically stable in probability in a sufficiently small neighborhood of the

origin.
D Numerical Approximation Algorithm

Suppose one is given a one-dimensional SDE (22),

t t

X, = X, + / b(X4)ds + / o (Xo)dIW,.

to to

For any twice continuously differentiable function f : R — R, Ito’s formula
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gives

Jf(Xt) (X)) f(Xy))ds +

I
g
ke
+
—
=
s
=
s
_|_
|
Q

+/0(Xs)f’(XS)dWS (29)

f(Xe,) + /Lof(Xs)ds + /Llf(Xs)dWs,

to to

where the two operators introduced are

LOf _ bfl_i_%ojf//’
L'f = of.

Now, if one applies Ito’s formula to the functions f = b and f = o under

integral signs in (29), one gets the following:

X; = X +b(Xy,) /ds—!—aXtO /dW +//L0 2 )dzds +

to to
//Ll des—i—//Lo 2)dzdW, +//L1 2)dW.dW,.
to to to to
The procedure can be repeated, for example by applying Ito’s formula to
f = L'o in the above expression, and so on. At every step, the expansion will

consist of multiple 1to integrals

/ds /dWs, //deW&,

to to
multiplied by some constants, and the remainder term involving higher-order
multiple Ito integrals. Multiple integrals can be approximated numerically.

A usual problem in the numerical simulation of SDEs is to generate approx-
imate values of the process X; at given discretization times inside the interval
[0,T]. For the uniform discretization 7, = nA, n = 1...N with the step size

A= % the simplest approximation will look like
Y1 =Y, +0(Y)A, + o(Y,)AW,, Yy = Xo. (30)
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The random variables AW,, are the Wiener process increments; they are inde-
pendently Gaussian distributed with zero mean and variance A.

If a particular approximation satisfies the condition
E(|Xr - YR|) < KA,

for all sufficiently small time steps A and some finite constant K, it is said that
the approximation Y2 converges with strong order 5. For example, the stochas-
tic Euler scheme (30) converges with strong order 0.5, while its deterministic
counterpart has the order 1.0.

For purposes of the current paper, an explicit strong order 1.5 scheme was
used. For a multi-dimensional process X with only one independent Wiener

disturbance!'?, the formula becomes

1
k k k k
YE, = YFio An+§L0b A2+

+o* AW, + LOcH (AW, A, — AZ,) + L'V AZ, + (31)

1 1 /1
+Llo*S ((AWn)2 - An) +LL ok (g (AW,)? — An> An.
Here Y*, k = 1...K is the k" component of the multidimensional vector ¥
Tn+1 82
and AZ, is a random variable defined by AZ,, = [ [dWj, ds,. This random

variable is normally distributed with mean zero, variance £ ((AZ,,L)2> =1A3

— 3
and covariance E(AZ,AW,,) = %Ai. Two random variables AW, and AZ,
can be generated from two independent standard normal variables G; and Go

as AW, = GiV/A,,, AZ, = SA7%(Gr + Z5G).

19That is, for a system like system (15). T have chosen to simulate (15) instead of equivalent
system (16) because the former has noise intensity independent of state variables. For the
approximation scheme chosen, this represented a major simplification in programming.
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