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Abstract: 

Conventional parameterizations of cumulative prospect theory do not explain the St. Petersburg 

paradox. To do so, the power coefficient of an individual’s utility function must be lower than the 

power coefficient of an individual’s probability weighting function. 

 

Abstrakt: 

Konvenční parametrizace kumulativní prospektové teorie nevysvětlují Petrohradský paradox. 

K tomu je zapotřebí, aby mocnitel jedincovy užitkové funkce byl nižší než mocnitel jeho 

pravděpodobnostní váhové funkce. 
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Back to the St. Petersburg paradox? 

The St. Petersburg paradox (Bernoulli, 1738) refers to a lottery L  that delivers an 

outcome n2  with probability n−2 , ∈n ù. The maximum price that an individual is willing to pay 

for L  is finite and typically low. However, L  has an infinite expected value. Thus, the St. 

Petersburg paradox is generally taken as evidence against expected value and in favor of expected 

utility theory (EUT). Samuelson (1977) offers an extensive survey of the St. Petersburg paradox. 

Arguably the dominant descriptive decision theory today is cumulative prospect theory or 

CPT (Tversky and Kahneman, 1992). CPT accommodates a large amount of experimental data 

including robust violations of EUT such as the Allais paradox (Allais, 1953). According to CPT 

an individual utility of the lottery L  involved in the St. Petersburg paradox is given by formula 

(1), where :u ú+→ú+ is an individual’s utility function for gains and [ ] [ ]1,01,0: →w  is an 

individual’s probability weighting function for gains. 
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Following Tversky and Kahneman (1992), the majority of studies adopt a power utility 

function ( ) αxxu =  and an S-shaped probability weighting function ( ) ( )( ) γγγγ 1
1 ppppw −+=  

first proposed by Quiggin (1982). Since the St. Petersburg paradox lottery L  involves very small 

probabilities, Quiggin’s function ( )pw  may be accurately approximated as ( ) γppw ≈  because 

the denominator of Quiggin’s function ( )pw  converges to unity for tiny probabilities p . Then, 

equation (1) simplifies into formula (2). 
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It follows from (2) that according to CPT an individual obtains a bounded utility from lottery L  

only when γα <  i.e. when the sum on the right hand side of (2) is convergent. Thus, CPT 
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explains the St. Petersburg paradox only when the power coefficient of an individual’s utility 

function is lower than the power coefficient of an individual’s probability weighting function. 

Intuitively, an individual’s utility function must not simply be concave but it must be concave 

relative to an individual’s probability weighting function to avoid the St. Petersburg paradox.  

Table 1 presents typical values of power coefficients α  and γ  that were obtained from 

the best parametric fitting to the experimental data in well-known recent studies. Some studies 

(e.g. Tversky and Fox, 1995) adopted a probability weighting function 

( ) ( )( )γγγ δδ ppppw −+⋅⋅= 1 , first used by Goldstein and Einhorn (1987). For small 

probabilities a Goldstein-Einhorn function ( )pw  can be approximated as ( ) γδ ppw ⋅≈ . An 

individual then still obtains a bounded utility from lottery L  only when γα < . The best fitting 

estimates of a power coefficient γ  for a Goldstein-Einhorn function ( )pw  are presented in 

parentheses in the third column of table 1 (for those studies where applicable). 

In all studies from table 1 except for Camerer and Ho (1994) and Wu and Gonzalez 

(1996) the estimated best fitting CPT parameters are γα > , which implies a divergent sum on the 

right hand side of equation (2). Thus, conventional parameterizations of CPT predict that an 

individual is willing to pay up to infinity for the St. Petersburg lottery L . This paradoxical result 

occurs because a conventional inverse S-shaped probability weighting function overweights small 

probabilities too much for a mildly concave utility function to offset this effect.  

Apparently, the parameterization of CPT that accommodates best the available 

experimental evidence does not explain the oldest and the most famous paradox in decision 

theory—the St. Petersburg paradox. To accommodate the St. Petersburg paradox CPT must be 

estimated together with a restriction γα <  on its parameters. However, it is not obvious if a 

restricted version of CPT remains descriptively superior to other decision theories. 
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Experimental study Power of utility function 

(alpha) 

Power of probability 

weighting function 

(gamma) 

Kahneman and Tversky (1992) 0.88 0.61 

Camerer and Ho (1994) 0.37 0.56 

Tversky and Fox (1995)  0.88         (0.69) 

Wu and Gonzalez (1996) 0.52 0.71 (0.68) 

Abdellaoui (2000) 0.89 0.60 (0.60) 

Bleichrodt and Pinto (2000) 0.77 0.67 (0.55) 

Kilka and Weber (2001) 0.76 – 1.00         (0.30 – 0.51) 

Abdellaoui et al. (2003) 0.91         (0.76) 

 

Table 1 Parameterization of CPT that accommodates best the experimental data in well-

known recent studies 
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