
Appendix A1: Proof of the Characterization of Optimal Tasks in Section 2.2

Let τ̂(m̃′) denote the cutoff talent below which the second period income from trying

the task m̃′ is lower than the outside option ȳ = 1: τ̂ (m̃′) · γ̃(m̃′)α̃ − α̃(m̃′)γ̃ = 1. Some

properties of τ̂(m̃′) are τ̂(1) = 1; τ̂ (m̃′) rises as m̃′ moves away from 1; and 1 < τ̂(m̃′) < m̃′

if m̃ > 1. This implies that if the updated talent for the initial task τ̃ ≤ 1, the worker

moves to another trade, assuming the tie-breaking rule that the worker moves when staying

and moving deliver the same future income. If τ̃ > 1, there are m̂l(τ̃ ) < 1 and m̂h(τ̃ ) > τ̃

such that τ̃ > τ̂(m̃′) iff m̂l(τ̃ ) < m̃′ < m̂h(τ̃ ). Then, the worker stays in the initial trade

iff the set S ≡ {m̃′| m̃′ ∈ (m̂l(τ̃ ), m̂h(τ̃ )) ∩ [ηlm̃, ηhm̃]} is not empty. Within this set, the

second-period income y′ rises in m̃′ if m̃′ < τ̃ , and falls in m̃′ if m̃′ > τ̃ . Therefore, if

τ̃ > 1 and S is not empty, the second-period income is maximized by choosing m̃′ = τ̃ if

τ̃ ∈ [ηlm̃, ηhm̃]; m̃′ = ηlm̃ if τ̃ < ηlm̃; and m̃′ = ηhm̃ if τ̃ > ηhm̃.

If the initial task m̃ < 1, the worker can raise the first-period income y by raising m̃

without lowering the second-period income y′ conditional on any τ̃ . If m̃ = 1, the worker

can raise the second-period income y′ conditional on τ̃ > ηhm̃ by raising m̃ without

lowering the first-period income y or the second-period income y′ conditional on τ̃ ≤ ηhm̃.

Therefore, we can set m̃ > 1 without a loss of generality. Then, the set S is not empty

iff ηlm̃ < m̂h(τ̃), which defines the talent threshold τ̌ (m̃) for the first-period task m̃

above which the worker stays in the initial trade. If ηlm̃ ≤ 1, τ̌ (m̃) = 1. If ηlm̃ > 1,

τ̌(m̃) ∈ (1, ηlm̃) solves ηlm̃ = m̂h(τ̌ (m̃)), that is, τ̌(m̃) · γ̃(ηlm̃)α̃ − α̃(ηlm̃)γ̃ = 1 or (1) in

the main text.

Appendix A2: Proof of a Unique Optimal (m̃, τ̌) under the Pareto Distribution

of Talent in Section 2.2

Substituting F (τ̃) = 1−kτ̃−n/n in (2) and rearranging terms using τ̄ = n/(n−1)·(k/n)1/n

= 1, we obtain

36



τ̌n − βηγ̃
l

(
k

n − 1
− k

n

)(
τ̌

ηlm̃

)n(
ηl

ηh

)n−γ̃

− τ̌

ηlm̃
· ηlτ̌

n−1 < 0. (A1)

Similarly, from (3), we obtain

τ̌n+βηγ̃
l

k

n
+βηγ̃

l

(
k

n − 1
− k

n

)(
τ̌

ηlm̃

)n(
1−

(
ηl

ηh

)n−γ̃)
− τ̌

ηlm̃

(
ηlτ̌

n−1+βηγ̃
l

k

n − 1

)
< 0. (A2)

Let LH and L̃H denote the lefthand sides of (A1) and (A2), respectively. We can think

of LH and L̃H as functions of two variables, τ̌ and τ̌/(ηlm̃). We can show that in (A2),

holding τ̌ , L̃H is positive when τ̌ /(ηlm̃) = 0, and declines as τ̌/(ηlm̃) rises while τ̌/(ηlm̃) ≤
1. In (A1), LH = L̃H when τ̌/(ηlm̃) = 1, declines as τ̌ /(ηlm̃) rises, and becomes negative

before τ̌ /(ηlm̃) = τ̌/ηl. Therefore, given τ̌ , there is a unique value of ηlm̃/τ̌ that solves

(A1) or (A2) with equality, as expected. In (A2), holding τ̌ /(ηlm̃), L̃H rises in τ̌ if

1 < τ̌ < ηlm̃. This implies that if (4) does not hold, τ̌/(ηlm̃) that solves (A2) with

equality rises in τ̌ or equivalently, m̃/τ̌ falls in τ̌ . This proves that if talent is distributed

by a Pareto distribution and if (4) does not hold, there is a unique crossing point (m̃, τ̌ )

that solves m̃ = m̃(τ̌) and τ̌ = τ̌(m̃).

Appendix A3: The Effects of a Rising γ̃ on y′ in Section 3

As γ̃ rises, y′ stays at one if τ̃ ≤ τ̌ (the first-segment), and y′ = τ̃ γ̃ rises if τ̃ ∈ [ηlm̃, ηhm̃]

(the third segment). If τ̃ > ηhm̃ (the fourth segment), a rising γ̃ raises y′ = τ̃ γ̃(ηhm̃)α̃ −
α̃(ηhm̃)γ̃ by raising it holding ηhm̃ and by raising ηhm̃. If τ̃ ∈ (τ̌ , ηlm̃) (the second

segment), y′ = τ̃ γ̃(ηlm̃)α̃ − α̃(ηlm̃)γ̃ and ∂y′/∂γ̃ ≥ 0 if and only if τ̃ ≥ z0 ≡ ηlm̃ · (1 +

α̃ log(ηlm̃))/(1 + γ̃ log(ηlm̃)) where z0 ∈ (τ̌ , ηlm̃). Further, ∂y′/∂γ̃ rises in τ̃ ; ∂y′/∂(ηlm̃)

rises in τ̃ and is equal to zero when τ̃ = ηlm̃. Then, dy′/dγ̃ = ∂y′/∂γ̃ + (d(ηlm̃)/dγ̃) ·
(∂y′/∂(ηlm̃)) = 0 for some z1 ∈ (z0, ηlm̃), and dy′/dγ̃ rises in τ̃ . Therefore, in the second

segment, y′ falls if τ̃ ∈ (τ̌ , z1), and rises if τ̃ ∈ (z1, ηlm̃). Figure 4 visualizes the changes of

y′.
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Appendix A4: Proof that dm̃/dγ̃ < 0 and dτ̌/dγ̃ < 0 if τ̌ > 1 in Proposition 2

Given y = γ̃m̃α̃− α̃m̃γ̃ = ω, we have dy/dγ̃ = ∂y/∂γ̃ +(dm̃/dγ̃) · (∂y/∂m̃) = 0, from which

we can derive
dm̃

dγ̃
= − m̃

α̃γ̃
− m̃

γ̃
log m̃ +

1
α̃γ̃

· m̃ log m̃

m̃− 1
< 0. (A3)

If τ̌ > 1 or equivalently ηlm̃ > 1, using (1), we can derive

dτ̌

dγ̃
=

∂τ̌

∂γ̃
+

dm̃

dγ̃
· ∂τ̌

∂m̃
=

1
γ̃2

· ηlm̃ ·Ω (A4)

where

Ω ≡ (ηlm̃)−γ̃ log(ηlm̃)−γ̃ +
(

log m̃

m̃ − 1
− α̃ log m̃

)
(1 − (ηlm̃)−γ̃)

≤ (ηlm̃)−γ̃ log(ηlm̃)−γ̃ +
(

log ηlm̃

ηlm̃ − 1
− α̃ log ηlm̃

)
(1 − (ηlm̃)−γ̃)

< 0.

(A5)

Appendix A5: Proof that dy′/dγ̃ ≥ 0 at any τ̃ in Proposition 2

As γ̃ rises, y′ stays at one if τ̃ < τ̌ (the first-segment), and y′ = τ̃ γ̃ rises if τ̃ ∈ [ηlm̃, ηhm̃]

(the third segment). If τ̃ ∈ [τ̌ , ηlm̃) (the second segment), y′ = τ̃ γ̃(ηlm̃)α̃ − α̃(ηlm̃)γ̃ rises

both when τ̃ = ηlm̃ and when τ̃ = τ̌ given the falling τ̌ , which implies that y′ rises for all

τ̃ between them. If τ̃ > ηhm̃ (the fourth segment), y′ = τ̃ γ̃(ηhm̃)α̃ − α̃(ηhm̃)γ̃ and rises

when τ̃ = ηhm̃. Given y = γ̃m̃α̃ − α̃m̃γ̃ = ω, we can show

dy

dγ̃
=

d(γ̃m̃α̃)
dγ̃

− d(α̃m̃γ̃)
dγ̃

= −(m̃− 1)
d(γ̃m̃α̃)

dγ̃
+ mγ̃ log m̃ = 0, (A6)

which implies that d(γ̃m̃α̃)/dγ̃ > 0. Then, y′|τ̃>ηhm̃ − y′|τ̃=ηhm̃ rises as γ̃ rises. Therefore,

y′ rises for all τ̃ > ηhm̃.

Appendix A6: The Effects of the Changes of ηh and ηl in Section 4.1

First, consider how the optimal (m̃, τ̌) changes as ηh changes. In (2) and (3), the weighted
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undermatch factor βηα̃
h

∫ ∞
ηhm̃

(τ̃ − ηhm̃)dF (τ̃ ) rises as ηh falls iff

E[τ̃ |τ̃ ≥ ηhm̃]
ηhm̃

<
γ̃

γ̃ − 1
. (A7)

As discussed in section 2.2, the undermatch factor
∫ ∞
ηhm̃

(τ̃ − ηhm̃)dF (τ̃ ) falls in ηh holding

m̃, while the undermatch factor weight ηα̃
h rises in ηh. The first effect dominates the

second effect iff γ̃ = 1 + α̃ is small enough. Assuming the Pareto distribution of talent,

E[τ̃ |τ̃ ≥ ηhm̃]/ηhm̃ = n/(n − 1) < γ̃/(γ̃ − 1) iff γ̃ < n. In figure 3, the reaction function

m̃(τ̌ ) shifts up if γ̃ < n, and shifts down if γ̃ > n, while the reaction function τ̌ (m̃) stays

constant. Therefore, as ηh falls, the optimal m̃ rises if γ̃ < n, and falls if γ̃ > n. The

optimal τ̌ moves in the same direction in a type 2 solution.

We can also show that ηhm̃ falls as ηh falls. This is easy to see in (2) for a type 1

solution. For a type 2 solution, assuming the Pareto distribution of talent, Appendix A6.1

shows that ηhm̃ falls as ηh falls even if γ̃ < n: The direct effect of a falling ηh dominates

the indirect effect of a rising m̃. In summary, we have the following proposition.

Proposition A1. Assume the Pareto distribution of talent. As ηh falls, the optimal m̃

rises if γ̃ < n, and falls if γ̃ > n. As ηh falls while τ̌ > 1 (type 2 solution), the optimal τ̌

rises if γ̃ < n, and falls if γ̃ > n. As ηh falls, the optimal ηhm̃ falls.

Now, consider how the optimal (m̃, τ̌ ) changes as ηl rises. In (3), both the overmatch

factor
∫ ηlm̃

τ̌
(ηlm̃ − τ̃ )dF (τ̃ ) and the overmatch factor weight ηα̃

l rise in ηl. In (1), holding

m̃, as ηl rises holding m̃, τ̌ rises. In figure 3, the optimal m̃ and τ̌ do not change in a type 1

solution while m̃(τ̌ ) shifts down while τ̌ (m̃) shifts to the right in a type 2 solution, leaving

the possibility of a rising m̃ or a falling τ̌ . Assuming the Pareto distribution of talent, we

can show that the overall effect is a falling m̃ and a rising τ̌ . We can also show that ηlm̃

rises as ηl rises: the direct effect of rising ηl dominates any indirect effects of falling m̃.

See Appendices A6.2 and A6.3. In summary, we have the following proposition.
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Proposition A2. As ηl rises, the optimal m̃ and τ̌ stay constant in a type 1 solution.

Assume the Pareto distribution of talent for the following statements. As ηl rises, the

optimal m̃ falls and the optimal τ̌ rises in a type 2 solution. As ηl rises, the optimal ηlm̃

rises.

Proposition 3 follows from Propositions A1 and A2.

Appendix A6.1: Proof that d(ηhm̃)/dηh > 0 in a Type 2 Solution in Proposition

A1

Rewrite (A2) with equality as follows.

Φ(ηh, τ̌ , m̃) ≡ 1 − 1
m̃

+ βηγ̃
l

(
k

n − 1
− k

n

)(
1

ηlm̃

)n(
1 −

(
ηl

ηh

)n−γ̃)

− βηγ̃
l

1
τ̌n

(
k

n − 1
· τ̌

ηlm̃
− k

n

)

= 0.

(A8)

We have
∂Φ
∂ηh

= βηγ̃
l k · n − γ̃

n(n − 1)

(
1

ηlm̃

)n(
ηl

ηh

)n−γ̃ 1
ηh

; (A9)

∂Φ
∂τ̌

= −βηγ̃
l k · 1

τ̌n+1

(
1 − τ̌

ηlm̃

)
; (A10)

and

∂Φ
∂m̃

=
1

m̃2
+ βηγ̃

l k · 1
n − 1

· 1
τ̌n

· τ̌

ηlm̃
· 1
m̃

(
1 −

(
τ̌

ηlm̃

)n−1(
1 −

(
ηl

ηh

)n−γ̃))
. (A11)

Dividing both sides of (1) by ηlm̃ and using α̃ = γ̃ − 1, we have

γ̃

(
1 − τ̌(m̃)

ηlm̃

)
= 1 −

(
1

ηlm̃

)γ̃

. (A12)

Using (A12), we have

dτ̌ =
α̃

γ̃

(
1 −

(
1

ηlm̃

)γ̃)
d(ηlm̃) = (γ̃ − 1)

(
1 − τ̌

ηlm̃

)
ηldm̃. (A13)
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Combining (A8), (A9), (A10), (A11), and (A13), we have

dΦ = dτ̌
∂Φ
∂τ̌

+ dηh
∂Φ
∂ηh

+ dm̃
∂Φ
∂m̃

= dηh
∂Φ
∂ηh

+ dm̃

(
βηγ̃

l k

τ̌nm̃
Ψm̃ +

1
m̃2

)
= 0 (A14)

where

Ψm̃ = −(γ̃−1)
(

1− τ̌

ηlm̃

)2
ηlm̃

τ̌
+

1
n − 1

· τ̌

ηlm̃

(
1−

(
τ̌

ηlm̃

)n−1(
1−

(
ηl

ηh

)n−γ̃))
. (A15)

Now, we have τ̌/ηlm̃ > (γ̃ − 1)/γ̃ from (A12). In (A2) with equality, noting the two terms

without the factor βηγ̃
l on the lefthand side sum to a positive value, we have

τ̌

ηlm̃
>

n − 1
n

+
1
n

(
τ̌

ηlm̃

)n(
1 −

(
ηl

ηh

)n−γ̃)
. (A16)

Then, if γ̃ < n, τ̌ /ηlm̃ > (n− 1)/n > (γ̃ − 1)/γ̃. If γ̃ > n, τ̌/ηlm̃ > (γ̃ − 1)/γ̃ > (n− 1)/n.

Using (A15) and (A16), we can show

Ψm̃ > −(γ̃ − 1)
(

ηlm̃

τ̌
− 1

)
+ γ̃

(
1 − τ̌

ηlm̃

)
> 0 (A17)

for all τ̌ /(ηlm̃) ∈ ((γ̃ − 1)/γ̃, 1). Then, from (A14), d(ηhm̃)/dηh = m̃ + ηhdm̃/dηh > 0 iff

dm̃

dηh
= − ∂Φ/∂ηh

βηγ̃
l k/(τ̌nm̃) · Ψm̃ + 1/m̃2

> − m̃

ηh
. (A18)

The inequality in (A18) holds if

Λ ≡ Ψm̃ − n − γ̃

n(n − 1)

(
τ̌

ηlm̃

)n(
ηl

ηh

)n−γ̃

> 0. (A19)

We have Λ > 0 if γ̃ ≥ n. If γ̃ < n, consulting (A15) and (A16), we have

Λ = − (̃γ − 1)
(
1− τ̌

ηlm̃

)2
ηlm̃

τ̌
+

1
n − 1

· τ̌

ηlm̃

(
1 −

(
τ̌

ηlm̃

)n−1(
1 − γ̃

n

(
ηl

ηh

)n−γ̃))

> − (γ̃ − 1)
(
1− τ̌

ηlm̃

)2
ηlm̃

τ̌
+

1
n − 1

· τ̌

ηlm̃
− 1

n − 1

(
τ̌

ηlm̃

)n

+
γ̃

n

(
1 +

1
n − 1

(
τ̌

ηlm̃

)n

− n

n − 1
· τ̌

ηlm̃

)

≡ Λ̃.

(A20)
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Consider Λ̃ as a function of τ̌ /(ηlm̃). We can show that Λ̃ > 0 when τ̌/(ηlm̃) = (n− 1)/n;

Λ̃ = 0 when τ̌/(ηlm̃) = 1; and ∂Λ̃/∂(τ̌ /ηlm̃) falls as τ̌ /(ηlm̃) rises. These properties of Λ̃

imply that Λ̃ > 0 for all τ̌ /(ηlm̃) ∈ ((n−1)/n, 1), which in turn implies that d(ηhm̃)/dηh >

0.

Appendix A6.2: Proof that dm̃/dηl < 0 in a Type 2 solution in Proposition A2

Consider Φ in (A8) as a function of ηl, τ̌ , and m̃: Φ = Φ(ηl, τ̌ , m̃) = 0. Then, (A10) and

(A11) are valid;

∂Φ
∂ηl

= −βηα̃
l k(n − γ̃)

(
1

n − 1
− 1

n

)(
1

ηlm̃

)n

+ βηα̃
l k · 1

τ̌n

(
γ̃

n
− γ̃ − 1

n − 1
· τ̌

ηlm̃

)
; (A21)

and (A13) becomes

dτ̌ =
α̃

γ̃

(
1 −

(
1

ηlm̃

)γ̃)
d(ηlm̃) = (γ̃ − 1)

(
1 − τ̌

ηlm̃

)
(m̃dηl + ηldm̃). (A22)

Combining (A10), (A11), (A21), (A22), and Φ(ηl, τ̌ , m̃) = 0, we have

dΦ = dτ̌ · ∂Φ
∂τ̌

+dηl · ∂Φ
∂ηl

+dm̃ · ∂Φ
∂m̃

= dηl · βηα̃
l k

τ̌n
·Ψηl +dm̃

(
βηγ̃

l k

τ̌nm̃
·Ψm̃ +

1
m̃2

)
= 0 (A23)

where

Ψηl = −(̃γ−1)
(
1 − τ̌

ηlm̃

)2
ηlm̃

τ̌
− (n− γ̃)

(
1

n − 1
− 1

n

)(
τ̌

ηlm̃

)n

+
γ̃

n
− γ̃−1

n−1
· τ̌

ηlm̃

= (̃γ − 1)
(
1 − τ̌

ηlm̃

)(
n

n − 1
− ηlm̃

τ̌

)
+ (n − γ̃)

(
1

n − 1
− 1

n

)(
1 −

(
τ̌

ηlm̃

)n) (A24)

and Ψm̃ is as in (A15). Since ηlm̃/τ̌ < n/(n − 1) (see Appendix A6.1), Ψηl > 0 given

τ̌/(ηlm̃) < 1 if γ̃ ≤ n. If γ̃ > n, using ηlm̃/τ̌ < γ̃/(γ̃ − 1), we have

Ψηl >
γ̃ − n

n− 1

(
1 − τ̌

ηlm̃
− 1

n

(
1 −

(
τ̌

ηlm̃

)n))
> 0 (A25)

given τ̌/ηlm̃ < 1. Using (A17) and (A23), we have dm̃/dηl < 0.
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Appendix A6.3: Proof that dτ̌/dηl > 0 and d(ηlm̃)/dηl > 0 in a Type 2 Solution

in Proposition A2

Rewrite Φ in (A8) as a function of ηl, τ̌ , and ηlm̃.

Φ(ηl, τ̌ , ηlm̃) ≡ 1 − ηl

ηlm̃
+ βηγ̃

l

(
k

n − 1
− k

n

)(
1

ηlm̃

)n(
1 −

(
ηl

ηh

)n−γ̃)

− βηγ̃
l

1
τ̌n

(
k

n − 1
· τ̌

ηlm̃
− k

n

)

= 0.

(A26)

We can see that when (A26) holds, Φ becomes negative as ηl rises if γ̃ ≤ n, since the sum

of the last two terms is negative. If γ̃ > n, we have

∂Φ
∂ηl

= − 1
ηlm̃

+
βηα̃

l

τ̌n

(
k

n(n − 1)

(
τ̌

ηlm̃

)n(
γ̃ − n

(
ηl

ηh

)n−γ̃)
− γ̃

(
k

n − 1
· τ̌

ηlm̃
− k

n

))

< − 1
ηlm̃

+
βηα̃

l

τ̌n

(
k

n(n − 1)

(
τ̌

ηlm̃

)n

(γ̃ − n) − k

n(n − 1)
· τ̌

ηlm̃
(γ̃ − n)

− k

n − 1
· τ̌

ηlm̃
+ γ̃

k

n

(
1 − τ̌

ηlm̃

))

< 0,

(A27)

where the first inequality uses (ηl/ηh)n−γ̃ > 1, and the second inequality uses τ̌/ηlm̃ >

(n − 1)/n and τ̌/ηlm̃ > (γ̃ − 1)/γ̃ (see Appendix A6.1). Therefore, when (A26) holds,

Φ becomes negative as ηl rises for all γ̃ > 1. We can also see that Φ rises in ηlm̃ given

τ̌/(ηlm̃) < 1. Then, holding τ̌ , ηlm̃ rises as ηl rises in order for (A26) to hold. Now

consider (A26) as defining the optimal ηlm̃ as a function of τ̌ , and consider (1) as defining

the optimal τ̌ as a function of ηlm̃. In the right figure in Figure 3 with the vertical axis

ηlm̃ instead of m̃, the effect of a rising ηl is to shift up the ηlm̃ reaction function around

the crossing point raising both the optimal τ̌ and the optimal ηlm̃. Therefore, we have

dτ̌/dηl > 0 and d(ηlm̃)/dηl > 0.
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Appendix A7: The Condition for dm̃/dγ̃ > 0 in a Type 2 Solution in Section

4.2

If η̃l = ηα̃
l and η̃h = ηα̃

h , differentiating (3) with respect to γ̃, we can see that m̃(τ̌ ) shifts

up iff

η̃
γ̃
α̃

l (− log η̃l)
(
F (ηlm̃) − F (τ̌ )

)
< η̃

γ̃
α̃

h (log η̃h)
(
1 − F (ηhm̃)

)
. (A28)

Intuitively, the optimal m̃ rises iff the fraction of workers overmatched with tasks (F (ηlm̃)

− F (τ̌ )
)
) who lose by raising m̃ is small relative to the fraction of workers undermatched

with tasks (1 − F (ηhm̃)) who gain by raising m̃. Condition (A28) is sufficient for both

the optimal m̃ and the optimal τ̌ to rise as γ̃ rises in a type 2 solution. As discussed in

the main text, if γ̃ = γ̄, τ̌ = ηlm̃, so (A28) holds; As γ̃ → ∞, (A28) holds as well since

τ̌ → ηlm̃ → m̃ → limγ̃→∞ m̄. However, (A28) may not hold for some values of γ̃. In

Appendix A7.1, assuming the Pareto distribution of talent, I show that dm̃/dγ̃ > 0 iff

−η̃
γ̃
α̃

l

nα̃

τ̌

(
1− τ̌

η̃
1
α̃

l m̃

)
∂τ̌

∂γ̃
−η̃

γ̃
α̃

l

(
log η̃

1
α̃

l

)(
1−

(
τ̌

η̃
1
α̃

l m̃

)n)
−η̃

γ̃
α̃

h

(
log η̃

1
α̃

h

)(
τ̌

η̃
1
α̃

h m̃

)n

< 0. (A29)

where ∂τ̌/∂γ̃ > 0 is given by (A31). If η̃l = ηγ̃
l and η̃h = ηγ̃

h > 1, alternative versions of

(A28) and (A29) can be derived by following the same steps, with the same interpretations.

In order to assess the plausibility of (A29), consider the case of symmetric talent

relation (i.e., η̃hη̃l = 1). Given γ̃, n, and η̃l, we can find the range of τ̌ /(η̃
1
α̃

l m̃) under which

(A29) does not hold subject to the lower bound of τ̌/(η̃
1
α̃

l m̃) given by (A12) and (A16),

and use (1) and (A2) to compute the value of the remaining parameter β corresponding

to each value of τ̌/(η̃
1
α̃

l m̃) in the range. For example, consider n = 2, which implies that

the talent Gini is 1/(2n− 1) = 1/3, which also approximates the income Gini on the right

tale of the second-period income distribution, and γ̃ = 2, which implies that the fixed cost

share of the gross output under a uniform talent across tasks is α̃/γ̃ = 1/2, as discussed in

section 2. With n = 2 and γ̃ = 2, there are no values of η̃l and β under which (A29) does

not hold. With n = 2 and γ̃ = 1.5, the lowest value of β under which (A29) does not hold,
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is about 18 and requires η̃l ≈ 0.8. With n = 2 and γ̃ = 1.1, the lowest value of β under

which (A29) does not hold, is about 4.6 and requires η̃l ≈ 0.99. In order for (A29) not to

hold, a very high value of β (i.e., a very large weight of the second-period income) or a very

low value of γ̃ (i.e., a very low fixed cost as a fraction of the gross output) coupled with a

very high value of η̃l (i.e., a very small range of tasks across which talent is transferable)

is needed.

Appendix A7.1: Proof of Condition (A29)

Given ηl = η̃
1
α̃

l , (1) becomes

τ̌ (m̃) =
α̃

γ̃
· η̃ 1

α̃

l m̃ +
1
γ̃
· 1
η̃lm̃α̃

. (A30)

We have

∂τ̌

∂γ̃
=

η̃
1
α̃

l m̃

γ̃2

(
1−

(
1

η̃
1
α̃

l m̃

)̃γ(
1− γ̃ log

(
1

η̃
1
α̃

l m̃

)
+ γ̃

((
η̃

1
α̃

l m̃
)̃γ

−1
)
log η̃

1
α̃

l

))
> 0 (A31)

for all ηlm̃ > 1. Adapting (A13), we have

dτ̌ = dγ̃
∂τ̌

∂γ̃
+ dm̃

∂τ̌

∂m̃
= dγ̃

∂τ̌

∂γ̃
+ dm̃(γ̃ − 1)

(
1 − τ̌

η̃
1
α̃

l m̃

)
η̃

1
α̃

l . (A32)

Given ηl = η̃
1
α̃

l = 1/ηh, rewrite Φ in (A8) as a function of γ̃, τ̌ , and m̃.

Φ(γ̃, τ̌ , m̃) ≡ 1 − 1
m̃

+ βη̃
γ̃
α̃

l

(
k

n − 1
− k

n

)(
1

η̃
1
α̃

l m̃

)n(
1 −

(
η̃l

η̃h

) n−γ̃
α̃ )

− βη̃
γ̃
α̃

l

1
τ̌n

(
k

n − 1
· τ̌

η̃
1
α̃

l m̃
− k

n

)

= 0.

(A33)

Adapting (A14), we have

dΦ = dτ̌
∂Φ
∂τ̌

+ dγ̃
∂Φ
∂γ̃

+ dm̃
∂Φ
∂m̃

= dγ̃
βk

τ̌nnα̃
· Ψγ̃ + dm̃

(
βη̃

γ̃
α̃

l k

τ̌nm̃
· Ψ̃m̃ +

1
m̃2

)
= 0 (A34)
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where ∂Φ/∂τ̌ and ∂Φ/∂m̃ are as in (A10) and (A11);

∂Φ
∂γ̃

=
βk

τ̌nnα̃

(
η̃

γ̃
α̃

l

(
log η̃

1
α̃

l

)((
τ̌

η̃
1
α̃

l m̃

)n

− 1
)
− η̃

γ̃
α̃

h

(
log η̃

1
α̃

h

)(
τ̌

η̃
1
α̃

h m̃

)n)
; (A35)

(A15) becomes

Ψ̃m̃ = −(γ̃−1)
(

1− τ̌

η̃
1
α̃

l m̃

)2
η̃

1
α̃

l m̃

τ̌
+

1
n − 1

· τ̌

η̃
1
α̃

l m̃

(
1−

(
τ̌

η̃
1
α̃

l m̃

)n−1(
1−

(
η̃l

η̃h

)n−γ̃
α̃

))
; (A36)

and

Ψγ̃ = −η̃
γ̃
α̃

l

nα̃

τ̌

(
1− τ̌

η̃
1
α̃

l m̃

)
∂τ̌

∂γ̃
− η̃

γ̃
α̃

l

(
log η̃

1
α̃

l

)(
1−

(
τ̌

η̃
1
α̃

l m̃

)n)
− η̃

γ̃
α̃

h

(
log η̃

1
α̃

h

)(
τ̌

η̃
1
α̃

h m̃

)n

. (A37)

Since Ψ̃m̃ > 0, dm̃/dγ̃ > 0 in (A34) iff Ψγ̃ < 0.

Appendix A8: The Effects of a Rising γ̃ on y and y′ in Section 4.2

As in section 3, the effect of a rising γ̃ on the first period income y is composed of the

effect holding m̃, which lowers y, and the effect via m̃, which lowers y iff the optimal

m̃ rises. Therefore, as γ̃ rises, y falls if m̃ does not fall, but may rise if m̃ falls. As γ̃

rises, the second-period income y′ stays at one if τ̃ < τ̌ (the first-segment), and y′ = τ̃ γ̃

rises if τ̃ ∈ [ηlm̃, ηhm̃] (the third segment). If τ̃ ∈ [τ̌ , ηlm̃) (the second segment), given

d(ηlm̃)/dγ̃ > 0, we can repeat the steps in Appendix A3 to show that there is z1 ∈ (z0, ηlm̃)

such that dy′/dγ̃ < 0 if τ̃ ∈ (τ̌ , z1) and dy′/dγ̃ > 0 if τ̃ ∈ (z1, ηlm̃). If τ̃ > ηhm̃ (the fourth

segment) and if η̃h = ηα̃
h , y′ = τ̃ · γ̃η̃hm̃α̃ − α̃η̃

γ̃/α̃
h m̃γ̃ and

∂y′

∂γ̃
= η̃hm̃α̃

(
τ̃ − η̃

1
α̃

h m̃ + (γ̃τ̃ − α̃η̃
1
α̃

h m̃) log(η̃
1
α̃

h m̃) − γ̃(log η̃
1
α̃

h )(τ̃ − η̃
1
α̃

h m̃)
)

= η̃hm̃α̃
(
τ̃ − η̃

1
α̃

h m̃ + γ̃(τ̃ − η̃
1
α̃

h m̃) log m̃ + η̃
1
α̃

h m̃ log(η̃
1
α̃

h m̃)
)

> 0.

(A38)

If η̃h = ηγ̃
h , y′ = τ̃ · γ̃

α̃
γ̃ η̃hm̃α̃ − α̃η̃hm̃γ̃ and ∂y′/∂γ̃ > 0 holds by a variation of (A38).

In comparison with the fourth segment in Appendix A3, a higher γ̃ raises y′ directly and
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lowers y′ by lowering η̃
1
α̃

h , but the former effect dominates the latter effect. The overall

effect of a rising γ̃ includes the third effect through changing m̃: dy′/dγ̃ = ∂y′/∂γ̃ +

(dm̃/dγ̃)(∂y′/∂m̃). Therefore, dy′/dγ̃ > 0 unconditionally in a type 1 solution, or if the

optimal m̃ does not fall in a type 2 solution. We can also show that dy′/dγ̃ > 0 regardless of

the possibly falling m̃ if the talent is distributed by the Pareto distribution. See Appendix

A8.1.

Appendix A8.1: Proof that dy′/dγ̃ > 0 when τ̃ > ηhm̃ under the Pareto Distri-

bution in Appendix A8

The following proof is under η̃l = ηα̃
l and η̃h = ηα̃

h . For the proof under η̃l = ηγ̃
l and η̃h = ηγ̃

h,

we can use the steps in Appendix 7.1 and below with minor variation of expressions. The

overall effect of rising γ̃ is dy′/dγ̃ = ∂y′/∂γ̃ + (dm̃/dγ̃)(∂y′/∂m̃), which is positive if

dm̃/dγ̃ ≥ 0. Suppose that dm̃/dγ̃ < 0. Then, dm̃/dγ̃ > −(m̃Ψγ̃)/(η̃
γ̃
α̃

l nα̃Ψ̃m̃) in (A34),

and
dy′

dγ̃
>

∂y′

∂γ̃
− m̃Ψγ̃

η̃
γ̃
α̃

l nα̃Ψ̃m̃

· ∂y′

∂m̃

=
∂y′

∂γ̃
− m̃Ψγ̃

η̃
γ̃
α̃

l nα̃Ψ̃m̃

· η̃hm̃α̃ · α̃γ̃η̃
1
α̃

h

(
τ̃

η̃
1
α̃

h m̃
− 1

)
.

(A39)

When τ̃(m̃) = η̃
1
α̃

h m̃, dy′/dγ̃ > 0, so dy′/dγ̃ > 0 for all τ̃ ≥ η̃
1
α̃

h m̃ if the derivative of the

righthand side of (A39) with respect to τ̃ is not negative; that is,

− Ψγ̃

η̃
γ̃
α̃

l nΨ̃m̃

≥ − 1
γ̃
− log m̃ = − 1

γ̃
− log

(
η̃

1
α̃

l m̃
)

+ log η̃
1
α̃

l . (A40)

Using (A31),(A37), and (A12), we have
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l n
=
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(A41)
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Using (A41) and (A36), after some algebra, we can write (A40) as

A log
(

1

η̃
1
α̃

l m̃

)
+ B log η̃

1
α̃

l + C ≥ 0 (A42)

where

A ≡ α̃

γ̃

(
η̃

1
α̃

l m̃

τ̌
− 1

)
− 1

n − 1

(
τ̌

η̃
1
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l m̃
−

(
τ̌

η̃
1
α̃

l m̃

)n(
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(
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η̃h

) n−γ̃
α̃
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, (A43)

B ≡ 1
n
− 1

n

(
τ̌

η̃
1
α̃

l m̃

)n

− 1
n − 1

(
τ̌

η̃
1
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l m̃
−

(
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η̃
1
α̃
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)n(
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(
η̃l

η̃h

) n−γ̃
α̃
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, (A44)

and

C ≡ 1
n

(
η̃h

η̃l

) γ̃
α̃ (

log η̃
1
α̃

h

)(
τ̌

η̃
1
α̃

h m̃
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+
1

γ̃(n−1)

(
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1
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l m̃
−

(
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(
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η̃h

)n−γ̃
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> 0. (A45)

Using (A16), we have

A <
α̃

γ̃

η̃
1
α̃

l m̃

τ̌

(
1 − τ̌

η̃
1
α̃

l m̃

)
− 1

n − 1
· τ̌

η̃
1
α̃

l m̃
+

n

n − 1
· τ̌

η̃
1
α̃

l m̃
− 1 < 0 (A46)

where the last inequality uses (η̃
1
α̃

l m̃)/τ̌ < γ̃/α̃ (see Appendix A6.1), and

B <
1
n
− 1

n

(
τ̌

η̃
1
α̃

l m̃

)n

− 1
n − 1

· τ̌

η̃
1
α̃

l m̃
+

n

n − 1
· τ̌

η̃
1
α̃

l m̃
− 1 < 0. (A47)

Therefore, (A40) holds and dy′/dγ̃ > 0 for all τ̃ > η̃
1
α̃

h m̃.

Appendix A9: The Effects of a Rising γ̃ on the Constrained τ̌ in Section 4.3

If ηl = η̃
1
γ̃

l , (A4) is valid with Ω replaced by

Ω̃γ̃ ≡ Ω + α̃(1 − (η̃
1
γ̃

l m̃)−γ̃)(− log η̃
1
γ̃

l ). (A48)
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The additional term reflects the positive effect of a rising ηl. Taking the same steps as in

(A5), we have dτ̌/dγ̃ < 0.

If ηl = η̃
1
α̃

l , (A4) is valid with Ω replaced by

Ω̃ ≡ Ω + γ̃(1 − (η̃
1
α̃

l m̃)−γ̃)(− log η̃
1
α̃

l ). (A49)

We have Ω̃ = 0 if ηl = 1/m̃. We can derive

∂Ω̃
∂ηl

=
γ̃η̃

− 1
α̃

l

m̃ − 1

(
− (m̃ − 1) + (η̃

1
α̃

l m̃)−γ̃m̃ log m̃

)
. (A50)

We can show that the expression inside the large bracket is positive when ηl = 1/m̃ given

m̃ > 1, falls as ηl rises, and becomes zero when ηl = η̂l(m̃) ≡ (log m̃/(m̃α̃(m̃− 1)))1/γ̃ . For

a constrained worker, therefore, a sufficient condition for dτ̌/dγ̃ > 0 is ηl ∈ (1/m̃, η̂l(m̃)).

The bound η̂l(m̃) falls from 1 to 0 as m̃ rises from 1 to ∞. Then, given γ̃ > 1, an alternative

expression of the sufficient condition for dτ̌/dγ̃ > 0 is m̃ ∈ (1/η̃
1
α̃

l , η̂−1
l (η̃

1
α̃

l )). If γ̃ ≤ γ̄,

m̃ ≤ 1/η̃
1
α̃

l for any ω, so the condition m̃ ∈ (1/η̃
1
α̃

l , η̂−1
l (η̃

1
α̃

l )) does not hold.

In order to proceed further, let ω̄(γ̃) denote the threshold ω for which the first-period

income constraint is just non-binding given γ̃: y = ω̄(γ̃) under the unconstrained optimal m̃

given γ̃. Let ω̂(γ̃) denote the first-period income y given m̃ = 1/η̃
1
α̃

l : ω̂(γ̃) = γ̃/η̃l−α̃/η̃
γ̃/α̃
l .

We have ω̄(γ̄) = ω̂(γ̄) and ω̄(γ̃) < ω̂(γ̃) for γ̃ > γ̄ since the unconstrained optimal m̃ >

1/η̃
1
α̃

l for γ̃ > γ̄. Therefore, for γ̃ > γ̄, (ω̄(γ̃), ω̂(γ̃)) defines the range of ω under which the

worker is constrained and the constrained τ̌ > 1. We can show that dω̂(γ̃)/dγ̃ > 0 for all

γ̃ ≥ γ̄ and ω̂(γ̃) → (1 + log η̃l)/η̃l < 1 as γ̃ → ∞. Then, if ω ≥ (1 + log η̃l)/η̃l, τ̌ = 1 for

all γ̃ > 1. If ω ∈ (ω̄(γ̄), (1 + log η̃l)/η̃l), τ̌ = 1 for γ̃ ≤ ω̂−1(ω); τ̌ > 1 for γ̃ > ω̂−1(ω); and

τ̌ → 1 as γ̃ → ∞, where the last property holds since for any ω < 1, the worker becomes

constrained with the constrained m̃ → 1 as γ̃ → ∞. If ω ≤ ω̄(γ̄), τ̌ = 1 for γ̃ ≤ γ̄; τ̌ > 1 for

γ̃ > γ̄; and τ̌ → 1 as γ̃ → ∞. Further, the above property of Ω̃ implies that given γ̃ > γ̄,
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there is an ε > 0 such that dτ̌/dγ̃ > 0 if ω ∈ (ω̂(γ̃) − ε, ω̂(γ̃)). It also implies that given

γ̃ > 1, there is an ε > 0 such that dτ̌/dγ̃ > 0 for a constrained worker with τ̌ ∈ (1, 1 + ε).

Appendix A10: The Effects of a Rising γ̃ on the Constrained y′ in Section 4.3

If ηl = η̃
1
γ̃

l , the constrained τ̌ falls as γ̃ rises (see Appendix A9), so y′ stays constant in

the first segment (τ̃ < τ̌ ), and rises in the second and the third segments (τ̃ ∈ [τ̌ , ηhm̃]) as

in section 3.1. In the fourth segment (τ̃ > ηhm̃), a rise of γ̃ lowers a constrained worker’s

ηhm̃ by lowering m̃ as in section 3.1 and also by lowering ηh. Nonetheless, y′ rises. In

order to see this, note that in the fourth segment, y′ = τ̃ · γ̃η̃hm̃α̃ − α̃η̃
γ̃/α̃
h m̃γ̃ and rises

when τ̃ = ηhm̃. By (A6), d(γ̃m̃α̃)/dγ̃ > 0 for all m̃ > 1. Then, y′|τ̃>ηhm̃ − y′|τ̃=ηhm̃ rises

as γ̃ rises. Therefore, y′ rises for all τ̃ > ηhm̃, as when γ̃ was rising without changing ηl

and ηh in section 3.1.

If ηl = η̃
1
α̃

l , as γ̃ rises, y′ stays constant in the first segment (τ̃ < τ̌), and rises in the third

and fourth segments (τ̃ > ηlm̃) as when ηl = η̃
1
γ̃

l above: Repeat the same steps of reasoning

for the fourth segment. In the second segment, y′ may fall as γ̃ rises: For a constrained

worker whose τ̌ is above but close enough to one, τ̌ rises as γ̃ rises (see Appendix A9),

lowering y′ toward one for τ̃ above but close enough to τ̌ . This result is qualitatively the

same as for the unconstrained worker in sections 3 and 4.2. Since τ̌ falls back toward one

as γ̃ continues to rise, however, holding τ̃ this fall is reversed and y′ rises as γ̃ continues

to rise.

Appendix A11: The Effects of a Rising ρ in Section 5

Given y = τ (m)ρ · amα − bmγ , we can write y = τ̃(m̃)ρ · γ̃m̃ρα̃ − α̃m̃ργ̃ where m̃ ≡
(mγ−α(b/a)(γ̃/α̃))1/ρ, τ̃(m̃) ≡ τ ((m̃ρ(a/b)(α̃/γ̃))1/(γ−α)), and Υ ≡ (α̃/b)α̃(a/γ̃)γ̃ = 1 by

normalization. If τ̃(m̃) is constant at τ for all m̃, the maximum y is τ ργ̃ obtained by
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choosing m̃ = τ . The maximum obtainable income is ȳ = maxm̃{E[τ ρ] · γ̃m̃ρα̃− α̃m̃ργ̃)} =

(E[τ ρ])γ̃ . We will assume that talent uncertainty for the first-period task is fully resolved

after one period, so we can write E[τ̃(m̃)ρ] = τ̃(m̃)ρ for the first-period task m̃ after

one period. However, the initial expectation of effective talent E[τ̃ ρ] =
∫ ∞
0

τ̃ ρdF (τ̃ ) �=
(
∫ ∞
0

τ̃ dF (τ̃))ρ = E[τ̃ ]ρ generally. Relations (1) to (4) are replaced by

τ̌ ρ =
(E[τ̃ ρ])γ̃

γ̃(ηlm̃)ρα̃
+

α̃(ηlm̃)ρ

γ̃
, (A51)

∫ ∞

0

(m̃ρ − τ̃ ρ)dF (τ̃ ) < βηρα̃
h

∫ ∞

ηhm̃

(τ̃ ρ − (ηhm̃)ρ)dF (τ̃ ), (A52)

∫ ∞

0

(m̃ρ−τ̃ ρ)dF (τ̃ )+βηρα̃
l

∫ ηlm̃

τ̌

((ηlm̃)ρ−τ̃ ρ)dF (τ̃ ) < βηρα̃
h

∫ ∞

ηhm̃

(τ̃ ρ−(ηhm̃)ρ)dF (τ̃ ), (A53)

and
1
ηρ

l

− 1 ≥ βηρα̃
h

∫ ∞

(ηh/ηl)(E[τρ])1/ρ

(
τ̃ ρ

E[τ ρ]
− ηρ

h

ηρ
l

)
dF (τ̃ ). (A54)

In (A51), τ̌ rises in ρ. Write (A53) with equality as

∫ ∞

0

(
1−

(
τ̃

m̃

)ρ)
dF (τ̃ )+βηργ̃

l

∫ ηlm̃

τ̌

(
1−

(
τ̃

ηlm̃

)ρ)
dF (τ̃ )−βηργ̃

h

∫ ∞

ηhm̃

((
τ̃

ηhm̃

)ρ

−1
)

dF (τ̃ ) = 0.(A55)

The lefthand side is the marginal cost of raising m̃ net of the marginal benefit, divided by

a common factor. The factors in (A55) can be interpreted in terms of mismatch factors

and mismatch factor weights in the same fashion as the factors in (A53). The overmatch

factor weight βηργ̃
l falls in ρ, and the undermatch factor weight βηργ̃

h rises in ρ, lowering

the net marginal cost. Let X ≡ ∫ ∞
0 (1−(τ̃ /m̃)ρ)dF (τ̃ ), Y ≡ ∫ ηlm̃

τ̌ (1−(τ̃ /ηlm̃)ρ)dF (τ̃ ), and

Z ≡ ∫ ∞
ηhm̃((τ̃ /ηhm̃)ρ − 1)dF (τ̃ ) denote the three mismatch factors. We have ρ((∂X/∂ρ) +

βηργ̃
l (∂Y/∂ρ)−βηργ̃

h (∂Y/∂ρ)) < X +βηργ̃
l Y −βηργ̃

h Y = 0: As ρ rises, changes in mismatch

factors lower the net marginal cost. Therefore, a rising ρ lowers the net marginal cost,

raising m̃ in (A55). Following the same steps in (A52), we have m̃ rising in ρ. In Figure

3, a rising ρ shifts the m̃ reaction function up and shifts the τ̌ reaction function to the

right, raising the optimal m̃ and, in the case of a type 2 solution, raising the optimal τ̌ . In
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(A54), a rising ρ can turn a type 2 solution to a type 1 solution in contrast with a rising

γ̃.

Now consider the bounds of the task range given by a fixed ratio of talent productivity

or production cost as in section 4: η̃h = ηρ
h > 1 and η̃l = ηρ

l < 1 are held constant.

Then, ηh falls and ηl rises in ρ. In (A54), the righthand side rises in ρ, so a rising ρ can

turn a type 1 solution to a type 2 solution but not the other way around. In (A52) and

(A53), mismatch factor weights ηρα̃
l and ηρα̃

h are held constant while the undermatch factor
∫ ∞

ηhm̃
(τ̃ ρ−(ηhm̃)ρ)dF (τ̃ ) rises as ηh falls, and the overmatch factor

∫ ηlm̃

τ̌
((ηlm̃)ρ−τ̃ ρ)dF (τ̃ )

rises as ηl rises. The latter effect cancels the negative effect of ρ on ηρ
l that was present

when ηl was held constant. If this latter effect is strong enough, the optimal m̃ falls. In

(A55), holding m̃, the net marginal cost eventually becomes negative as ρ continues to

rise. Therefore, even when the optimal m̃ falls, it eventually rises to a higher value as ρ

continues to rise. Overall, a rising ρ raises the optimal task levels with qualifications as a

rising γ̃ does. One difference is that, as can be seen in (A55), the optimal m̃ rises without

a bound even when ηρ
h and ηρ

l are held constant.

Unlike a rising γ̃, a rising ρ raises the current-income maximizing task level m̃ =

(E[τ̃ ρ])1/ρ and changes the associated maximum current income ȳ = (E[τ̃ ρ])γ̃ . This implies

that the responses of career-based task choices and incomes to a rising ρ are ambiguous.

Formally, define career-based tasks as multiples of the current-income maximizing task:

M̃ ≡ m̃/E[τ̃ ρ]1/ρ, T̃ ≡ τ̃ /E[τ̃ ρ]1/ρ, and G(T̃ ) ≡ F (T̃ E[τ̃ ρ]1/ρ). With these changes of

variables, (A51) to (A54) become

Ť ρ =
1

γ̃(ηlM̃)ρα̃
+

α̃(ηlM̃)ρ

γ̃
, (A56)

M̃ρ − 1 < βηρα̃
h

∫ ∞

ηhM̃

(T̃ ρ − (ηhM̃)ρ)dG(T̃ ), (A57)

M̃ρ − 1 + βηρα̃
l

∫ ηlM̃

Ť

((ηlM̃)ρ − T̃ ρ)dG(T̃ ) < βηρα̃
h

∫ ∞

ηhM̃

(T̃ ρ − (ηhM̃)ρ)dG(T̃ ), (A58)
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and
1
ηρ

l

− 1 ≥ βηρα̃
h

∫ ∞

ηh/ηl

(
T̃ ρ − ηρ

h

ηρ
l

)
dG(T̃ ). (A59)

As ρ rises, G changes possibly countering the positive effect of a rising ρ on M̃ discussed

above. Therefore, the overall effect of a rising ρ on M̃ is ambiguous and the effects on

incomes as multiples of the maximum current income, y/ȳ = γ̃M̃ α̃ − α̃M̃ γ̃ and y′/ȳ =

T̃ · γ̃(M̃ ′)α̃ − α̃(M̃ ′)γ̃ , are also ambiguous.

Appendix A12: Conditions for a Negative First-period Optimal Income y in

Section 5

We have y = γ̃m̃α̃ − α̃m̃γ̃ < 0 iff m̃ > γ̃/α̃. As γ̃ → ∞, γ̃/α̃ → 1, so y becomes negative

eventually as γ̃ rises as long as limγ̃→∞ m̃ > 1, which holds in both sections 3 and 4.2.

For the remainder, assume the Pareto distribution of talent (assumption 3-2). Suppose

ηl ≤ α̃/γ̃. Then, ηlm̃ ≤ 1 and τ̌ = 1 when m̃ = γ̃/α̃. Then, the optimal m̃ > γ̃/α̃ and

y < 0 iff (A1) holds when m̃ = γ̃/α̃, which, given τ̄ = n/(n−1) ·(k/n)1/n = 1, is equivalent

to (
n

γ̃ − 1

)n(
γ̃

n − 1

)n−1

<
β

ηn−γ̃
h

. (A60)

Now suppose ηl > α̃/γ̃. Then, ηlm̃ > 1 and τ̌ > 1 when m̃ = γ̃/α̃. Then, the optimal

m̃ > γ̃/α̃ and y < 0 iff (A2) holds when m̃ = γ̃/α̃ and τ̌ is given by (1), which is equivalent

to

(
n

γ̃ − 1

)n(
γ̃

n − 1

)n−1

<
β

ηn−γ̃
h

− β

ηn−γ̃
l

(
1−1−n+n(1− (1/γ̃)(1− (1/ηl)γ̃(α̃/γ̃)γ̃))

(1 − (1/γ̃)(1 − (1/ηl)γ̃(α̃/γ̃)γ̃))n

)
. (A61)

In order to assess the plausibility of (A60) and (A61), consider n = 2 and γ̃ = 2 used in

Appendix A7, and ηl ≤ 1/2 so that (A60) is the relevant condition. Then, (A60) becomes

β > 8; that is, the weight of the second period income must be more than eight times

the weight of the first-period income. If γ̃ rises to 3 keeping ηl ≤ 1/2, (A60) becomes

β > 3/ηh. The threshold value of β is now less than three, and falls below one if ηh > 3.
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Appendix B: A Three-Period Model with a Numerical Exercise

There are three periods, denoted by t = 0, 1, 2. There are at least three trades, indexed by

s ≥ 0. The trades are ordered by talent rewards: γ̃s ≥ γ̃s′
for s < s′. The bounds of the

talent-update task range ηs
l and ηs

h may depend on γ̃s as will be discussed shortly. Trades

are equivalent in all other aspects. In particular, the scale factor Υs = 1 for all s so that

given τ̄ = 1, the unconditional maximum income ȳs = τ̄ γ̃s ·Υs = 1 for all s. The worker’s

talent across tasks evolves as follows. Let τt(m̃, s) denote the worker’s (expected) talent

for task m̃ in trade s at the beginning of t. Let m̃t and st denote the worker’s task and

trade at t. At the beginning of t = 0, τ0(m̃, s) = τ̄ = 1 for all (m̃, s). At the beginning

of t = 1, the worker draws τ1(m̃0, s0) from the distribution F0(τ ) with E[τ ] = τ̄ = 1;

τ1(m̃, s0) = τ1(m̃0, s0) if m̃ ∈ [ηs0
l m̃0, η

s0
h m̃0]; and τ1(m̃, s) = τ̄ = 1 if s �= s0 or if s = s0

and m̃ /∈ [ηs0
l m̃0, η

s0
h m̃0]. At the beginning of t = 2, the worker draws τ2(m̃1, s1) from

the distribution F0(τ ) if s1 �= s0 or if s1 = s0 and m̃1 /∈ [ηs0
l m̃0, η

s0
h m̃0], and from the

distribution F1(τ |τ1(m̃1, s1)) with E[τ ] = τ1(m̃1, s1) if s1 = s0 and m̃1 ∈ [ηs0
l m̃0, η

s0
h m̃0];

τ2(m̃, s1) = τ2(m̃1, s1) if m̃ ∈ [ηs1
l m̃1, η

s1
h m̃1], and τ2(m̃, s) = τ̄ = 1 if s �= s1 or if s = s1

and m̃ /∈ [ηs1
l m̃1, η

s1
h m̃1]. In comparison with the two-period model, the (expected) talent

for a task is subject to a further update, distributed by F1, following the initial update,

distributed by F0.

The worker’s trade is assumed to evolve as follows. The worker starts at trade 0 at

t = 0 and, if he moves to another trade at t = 1, he moves to trade 1. If the worker moves

to yet another trade at t = 2, he moves to any trade s �= s1 and obtains ȳs = 1. This

pattern of the worker’s trade would be without a loss of generality if the worker’s expected

lifetime income rises by raising γ̃s0 or γ̃s1 and, holding {s0, s1}, if the worker’s expected

lifetime income is higher when working in the trade with a higher γ̃s first. Since the

upside income potential is higher with a higher γ̃s, this property is plausible and appears

to hold in the numerical exercise conducted. Note that the worker has three options at the
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beginning of t = 1. The worker can stay in trade 0 and attempt m̃ ∈ [η0
l m̃0, η

0
hm̃0] (option

1). The worker can stay in trade 0 and attempt m̃ /∈ [η0
l m̃0, η

0
hm̃0] (option 2). The worker

can move to trade 1 (option 3). In the two-period model, staying in the current trade and

attempting a task outside the talent-update task range (option 2) was not viable since

it was (weakly) dominated by moving to another trade and obtaining the unconditional

maximum income ȳ = 1. In the three-period model, option 2 can dominate moving to

trade 1 (option 3) as will become clear.

In the numerical exercise, I assume that F0(τ ) is a bounded Pareto distribution with

the support [1/σ0, σ0] where σ0 > 1, and the shape parameter n = 1/2, which ensures

that E[τ ] = 1. Similarly, F1(τ |τ ′) is a bounded Pareto distribution with the support

[τ ′/σ1, τ
′σ1] and the shape parameter n = 1/2, which ensures that E[τ |τ ′] = τ ′. I set

σ0 = 2, which implies that the talent Gini at the beginning of t = 1 is 1 − 2/(σ0 − 1) ·
(σ0/(σ0 − 1) · log σ0 − 1) = 0.23 given n = 1/2. I also set σ1 = σν

0 where ν ∈ [0, 1],

which implies that the expected size of talent update becomes (weakly) smaller over time.

Unlike in the two-period model, talent rewards at the second trade γ̃1 affect the career

paths. I set γ̃1 = ργ̃0 + (1 − ρ) · 1.5 where ρ ∈ [0, 1]. This implies that γ̃1 = γ̃0 when

γ̃0 = 1.5 regardless of ρ. The value of γ̃ = 1.5 implies that the fixed cost share of the

gross output is α̃/γ̃ = (γ̃ − 1)/γ̃ = 1/3. I explore the changes of the worker’s career paths

when γ̃0 rises from 1.5. If ρ = 0, γ̃1 stays at 1.5 as γ̃0 rises. If ρ = 1, as γ̃0 rises, γ̃1 rises

as much as γ̃0. A low value of ρ implies that rising talent rewards affect a narrow range

of trades from the perspective of the worker so that when the worker fails in the initial

trade, he moves to a trade with a significantly slow growth of talent rewards. A high value

of ρ implies the opposite. I also parameterize the degree of rising task differentiation as

γ̃s rises: ηs
h = 1/ηs

l = 2μ/(2α̃s)+1−μ for all s, where μ ∈ [0, 1]. This implies that when

γ̃1 = γ̃0 = 1.5, ηs
h = 1/ηs

l = 2. If μ = 0, ηs
h stays at 2 as γ̃s rises as in section 3. If μ = 1,

ηs
h = (21/2)1/α̃s

falls as γ̃s rises as it does under the fixed ratio of talent productivity in
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section 4. I set the discount parameter β = 1: there are no discounts for the second and

the third period incomes.

Tables 1 and 2 present the numerical results under ρ = 0 and ρ = 1, respectively,

with ν = 1/2 in both cases. In each table, rows 4 to 16 present results when the worker is

not constrained while rows 17 to 29 present results when the worker must earn at least 85

percent of the unconditional maximum income in the first period (y0 ≥ ω = 0.85) and a

double of that amount over the first two periods (y0 + y1 ≥ 2ω = 1.70). This is equivalent

to assuming that the worker holds no initial wealth, must spend at least 85 percent of the

unconditional maximum income in each period, cannot borrow, but can save at the zero

interest rate. The value of ω = 0.85 was chosen to construct the narrative that as γ̃0 rises,

the income constraint is not binding for a moderate rise but is binding eventually as γ̃0

continues to rise.

Benchmark: γ̃0 = 1.5 and any values of μ and ρ

Column 2 presents results when γ̃0 = 1.5, in which case the values of μ and ρ do not matter.

Under γ̃0 = 1.5, the interval [η0
l , η

0
h] = [0.5, 2] includes the intervals [1/σ0, σ0] = [0.5, 2]

and [1/σ1, σ1] ≈ [0.7, 1.4], eliminating the incentive to try a more talent-demanding task

than the current-income maximizing task. Therefore, the optimal task m0 is equal to one

and the associated income y0 is equal to one at t = 0. This outcome is constructed as

a narrative benchmark in which the results mimic the uniform-talent case discussed in

section 2.1. Nonetheless, the optimal talent threshold for staying in the initial trade τ̌1 is

1.07, greater than one. If the updated talent is moderately above τ̄ = 1 at the beginning of

t = 1, the worker moves to trade 1 since the upside income potential is higher when trying

a task m̃ = 1 in trade 1 (option 3) than trying a task within the talent-update task range

[η0
l m̃0, η

0
hm̃0] = [0.5, 2] in trade 0 (option 1) given the larger sizes of talent updates in trade

1 (i.e., σ0 > σ1), or trying a task constrained to be outside the talent-update task range in
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trade 0 (option 2). Therefore, unlike in the two-period model, the trade-switch rate F (τ̌1)

is more than a ‘failure’ rate and includes workers drawn to another trade despite being

able to earn more than the unconditional maximum income ȳ = 1 in the initial trade.

The expected lifetime income E[
∑2

t=0 yt] is about 26% higher than 3.00 which would be

obtained if the worker earned the unconditional maximum income ȳ = 1 in each period.

The cross-sectional income distribution at t = 1 exhibits a flat profile up to the 63rd

percentile filled by switchers (s1 �= s0), and then a rising profile subsequently filled by

stayers (s1 = s0). The cross-sectional income distribution at t = 2 exhibits a similar

pattern but with a smaller fraction of switchers (s2 �= s1), 42 percent, and higher incomes

of stayers (s2 = s1), some of whom have moved up the task ladder twice following two

positive talent updates. The 90th-percentile income rises to 2.45 at t = 2. For a loose

reference, Baker et. al. (1994) show that among the management employees entering a US

service-sector firm in 1975, the 95th percentile salary as a multiple of the starting salary

rose to about three by 1987. The income constraints (rows 17 to 29) do not change any

of the outcomes since the optimal task delivers an income larger than 85 percent of the

unconditional maximum income in each period.

Unconstrained Workers: γ̃0 = 3 or γ̃0 = 5 and μ = 0

Columns 3 to 5 and Columns 6 to 8 in Tables 1 and 2 characterize the career tracks when

γ̃0 = 3 and γ̃0 = 5, which imply that the fixed cost share of the gross output is 2/3 and

4/5, respectively. Consider the unconstrained worker (Columns 4 to 16). If μ = 0, the

interval [η0
l , η0

h] stays constant as γ̃0 rises, so the optimal first-period task m̃0 remains at

one. If μ = 0 and ρ = 1, the optimal talent threshold for staying in the initial trade τ̌1

rises as γ̃0 rises. As mentioned, given the larger sizes of talent updates in trade 1 (i.e.,

σ0 > σ1), the higher upside income potential in trade 1 draws workers whose τ1(m̃0, s0) is

moderately above one to trade 1, and this income advantage of trade 1 is amplified as both
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γ̃0 and γ̃1 rise. If μ = 0 and ρ = 0, τ̌1 instead falls as γ̃0 rises. With ρ = 0, γ̃1 stays at

1.5 while γ̃0 rises, lowering the advantage of trade 1 instead. When γ̃0 = 5, τ̌1 falls below

one: Workers whose τ1(m̃0, s0) are moderately below one tolerate a low current income

(i.e., income below ȳ = 1) for the upside income potential at trade 0. Therefore, the fall

of trade-switching disguises the low current-income stayers.

Unconstrained Workers: γ̃0 = 3 or γ̃0 = 5 and μ = 0.5 or μ = 1

If μ = 0.5 or μ = 1, as γ̃0 rises, the interval [η0
l , η0

h] becomes smaller creating the talent-

task gaps for high-enough talent updates as in the two-period model. Consequently, the

optimal first-period task m̃0 rises, lowering the first-period income y0 as in the two-period

model. This implies that the lower task bound η0
l m̃0

0 (not shown in the table) rises as well,

echoing Proposition 4. The upper task bound η0
hm̃0

0 (not shown in the table) falls as γ̃0

rises except when γ̃0 rises from 3 to 5 under μ = 0.5 and ρ = 1. The optimal task m̃0 rises

more for a higher μ, which shrinks the interval [η0
l , η

0
h] by more as γ̃0 rises. This implies

that the lower task bound η0
l m̃0

0 rises as μ rises, echoing Proposition A2. On the other

hand, the upper task bound η0
hm̃0

0 falls as μ rises, echoing Proposition A1.

If μ = 0.5 or μ = 1 and if ρ = 1, as γ̃0 rises, the expected income from moving to trade

1 (option 3) rises along with the expected income from staying in trade 0. In particular,

choosing a task without a task-range constraint in trade 1 (option 3) weakly dominates

attempting a task outside the talent-update task range in trade 0 (option 2). Under the

parameters chosen, the task range constraint is binding for option 2, so option 3 strictly

dominates option 2. If μ = 0.5, the income advantage of trade 1 due to the larger sizes of

talent updates in trade 1 (i.e., σ0 > σ1) is amplified as γ̃0 rises, raising τ̌1, as discussed for

the case of μ = 0. However, this effect is weaker than in the case of μ = 0 because a higher

μ narrows the range of the talent-update task range, which lowers the benefit of the larger
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sizes of talent updates. If μ = 1, the effect nearly disappears and τ̌1 changes little as γ̃0

rises.

If μ = 0.5 or μ = 1 and if ρ = 0, as γ̃0 rises, the expected income from moving to trade

1 (option 3) stays constant while the upside income potential from staying in trade 0 rises,

motivating the worker to stay in trade 0 and attempt a task outside the talent-update task

range (option 2) if his updated talent is below a threshold, denoted by τ́1. Consequently,

the probability of moving to trade 1 (F0(τ̌1)) falls to zero while the probability of moving

off the talent-update task range in trade 0 (F0(τ́1)) is positive. The worker’s current income

y1 from taking option 2 can be as low as 0.69 (when μ = 0.5 and γ̃0 = 5). The worker

tolerates a low current income for the upside income potential at t = 1 as he does at t = 0.

Therefore, the absence of trade-switchers disguises the low current-income stayers, which

is qualitatively similar to the case of γ̃0 = 5 under μ = 0 and ρ = 0.

Unconstrained Workers: Income Changes

The unconstrained expected lifetime income E[
∑2

t=0 yt] grows substantially as γ̃0 rises.

The cross-sectional income distributions worsen as γ̃0 rises. At t = 1, the 50-10 income

ratio stays constant but the 90-50 ratio rises significantly, reflecting both positive talent

updates delivering larger income gains and the negative talent updates leading to prolonged

low incomes (options 2 or 3). At t = 2, the 50-10 income ratio rises but the 90-50 ratio

rises much more. For a loose reference, the average CEO compensation of the top 350 US

firms as a multiple of the average production worker compensation rose from 20 in 1965

to 278 in 2018 (Mishel and Wolfe 2019). If ρ = 1 or if μ = 0.5 or μ = 1, γ̃s1 = γ̃0 along

any career paths (either ρ = 1 or ρ = s1 = 0), as discussed above. As a consequence, the

median income at t = 2 is (nearly) constant at 1.39 for γ̃0 = 3 and 1.74 for γ̃0 = 5, which

reflects that the median income earners are workers who drew the final (expected) talent

τ2 of about 1.12 in trade s1. If ρ = 0 and μ = 0, workers who draw a low enough talent at
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the beginning of t = 1 move to trade 1 and face lower talent rewards (i.e., γ̃s1 = γ̃1 < γ̃0)

when γ̃0 = 3 or γ̃0 = 5, so their income growth is dampened and the median income at

t = 2 is lower at 1.26 for γ̃0 = 3 and 1.32 for γ̃0 = 5.

One half or more of the workers earning about the median income at t = 2 are

workers who moved to trade 1 (option 3) or moved off the talent-update task range in

trade 0 (option 2) at t = 1, and the rest are workers who stayed within the talent-update

task range in trade 0 (option 1) at t = 1. Thus, many of the final-period median income

earners have gone through a prolonged period of low income, and the life-time income of

the final-period medium income earner can fall as γ̃0 rises. For example, if μ = 1 and ρ = 0,

the minimum life-time income of the final-period medium income earner is 3.18 (y0 = 1,

y1 = 1, y2 = 1.18) when γ̃0 = 1.5. The life-time income of the final-period medium income

earners who took option 2 at t = 1 is 3.26 (y0 = 0.87, y1 = 1, y2 = 1.39) when γ̃0 = 3, and

2.74 (y0 = 0.17, y1 = 0.83, y2 = 1.74) when γ̃0 = 5. Therefore, the rise of the final-period

median income disguises a possibly large income loss along the career paths leading to the

median income.

Constrained Workers: γ̃0 = 3 or γ̃0 = 5

Now consider constrained workers (rows 17 to 29). Under any values of μ and ρ considered,

the income constraint of ω = 0.85 is not binding when γ̃0 = 3, so the outcome is identical

to the unconstrained outcome. As mentioned, this is a narrative construction. When

γ̃0 = 5 and μ = 0, the optimal first-period income y0 is one, so the first-period task

m̃0 remains at one. When ρ = 0 in addition, the optimal second-period income y1 of a

worker who receives a talent update τ1 above the threshold τ̌1 = 0.96 but below one, is less

than one as was discussed. Nonetheless, income constraints are not binding as the sum

of the optimal incomes over the first two periods remains above the constraint threshold:

y0 + y1 > 2ω = 1.7.
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When γ̃0 = 5 and μ = 0.5 or μ = 1, the income constraint in the first-period is

binding and pulls down the first-period task m̃0 in order to generate the first-period income

y0 ≥ 0.85. In the table, y0 = 0.87, which is the lowest value of y0 ≥ 0.85 when γ̃0 = 5

and τ0 = τ̄ = 1 due to the grid-based computation (151 possible values of τ or m̃ with the

ratio of adjacent values equal to 1.014). This generates a rising and then falling level of

the first-period task m̃0 as γ̃0 rises from 1.5 to 3 and then from 3 to 5, echoing Proposition

2. The constrained career paths lead to a smaller growth of the expected lifetime income

and of some segments of the cross-sectional income profiles, as γ̃0 rises. If μ = 0.5 and

ρ = 0, the optimal second-period income y1 of a worker who stays off the talent-update

task range in trade 0 (option 2) following a talent update τ1 below the threshold τ́1 = 1.03,

falls below ω = 0.85. Unlike the case of μ = 0 and ρ = 0 discussed above, the income

constraint is binding in the second period as well as in the first period, forcing workers

with τ1 below τ̌1 = 0.97 to move to trade 1 (option 3). Note that the constrained career

paths lead to a fall of the final-period median income below that under γ̃0 = 3 (from 1.39

to 1.32). Therefore, the final-period median income can first rise and then fall as γ̃0 rises

from 1.5 to 3 and then from 3 to 5.

References for Appendix B

Baker, G., Gibbs, M., and Holmstrom, B. (1994), “The Wage Policy of a Firm,” Quarterly

Journal of Economics 109:921-955.

Mishel, L., and Wolfe, J. (2019), CEO Compensation Has Grown 940% since 1978, Eco-

nomic Policy Institute Report (epi.org/171191).
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Table 1: Numerical Exercise under ρ = 1 and ν = 0.5

γ̃0 1.5 3.0 3.0 3.0 5.0 5.0 5.0
μ Any 0.0 0.5 1.0 0.0 0.5 1.0
ρ Any 1.0 1.0 1.0 1.0 1.0 1.0

m̃0|optimal 1.00 1.00 1.06 1.16 1.00 1.12 1.21
y0|optimal 1.00 1.00 0.99 0.91 1.00 0.83 0.31
τ̌1|optimal 1.07 1.10 1.10 1.07 1.15 1.13 1.07

F0(τ̌1)|optimal 0.63 0.65 0.65 0.63 0.68 0.67 0.63
τ́1|optimal - - - - - - -

F0(τ́1)|optimal - - - - - - -
E[

∑2
t=0 yt]|optimal 3.79 5.58 5.52 5.14 12.70 12.00 7.78

y1(10th)|optimal 1.00 1.00 0.99 0.97 1.00 0.87 0.77
y1(50th)|optimal 1.00 1.00 0.99 0.97 1.00 0.87 0.77
y1(90th)|optimal 2.16 4.66 4.65 4.28 13.00 12.97 9.32
y2(10th)|optimal 1.00 1.00 1.00 1.00 1.00 1.00 1.00
y2(50th)|optimal 1.18 1.39 1.39 1.39 1.74 1.74 1.74
y2(90th)|optimal 2.45 6.23 6.00 5.33 21.11 19.70 11.55

m̃0|ω=0.85 1.00 1.00 1.06 1.16 1.00 1.10 1.10
y0|ω=0.85 1.00 1.00 0.99 0.91 1.00 0.87 0.87
τ̌1|ω=0.85 1.07 1.10 1.10 1.07 1.15 1.13 1.07

F0(τ̌1)|ω=0.85 0.63 0.65 0.65 0.63 0.68 0.67 0.63
τ́1|ω=0.85 - - - - - - -

F0(τ́1)|ω=0.85 - - - - - - -
E[

∑2
t=0 yt]|ω=0.85 3.79 5.58 5.52 5.14 12.70 11.99 7.40

y1(10th)|ω=0.85 1.00 1.00 0.99 0.97 1.00 0.87 0.87
y1(50th)|ω=0.85 1.00 1.00 0.99 0.97 1.00 0.87 0.87
y1(90th)|ω=0.85 2.16 4.66 4.65 4.28 13.00 12.90 7.32
y2(10th)|ω=0.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00
y2(50th)|ω=0.85 1.18 1.39 1.39 1.39 1.74 1.74 1.74
y2(90th)|ω=0.85 2.45 6.23 6.00 5.33 21.11 19.70 10.04
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Table 2: Numerical Exercise under ρ = 0 and ν = 0.5

γ̃0 1.5 3.0 3.0 3.0 5.0 5.0 5.0
μ Any 0.0 0.5 1.0 0.0 0.5 1.0
ρ Any 0.0 0.0 0.0 0.0 0.0 0.0

m̃0|optimal 1.00 1.00 1.15 1.20 1.00 1.16 1.23
y0|optimal 1.00 1.00 0.93 0.87 1.00 0.63 0.17
τ̌1|optimal 1.07 1.00 - - 0.96 - -

F0(τ̌1)|optimal 0.63 0.58 - - 0.55 - -
τ́1|optimal - - 1.03 1.07 - 1.03 1.07

F0(τ́1)|optimal - - 0.60 0.63 - 0.60 0.63
E[

∑2
t=0 yt]|optimal 3.79 5.20 5.23 5.10 10.96 10.91 7.77

y1(10th)|optimal 1.00 1.00 0.83 1.00 1.00 0.69 0.83
y1(50th)|optimal 1.00 1.00 0.83 1.00 1.00 0.69 0.83
y1(90th)|optimal 2.16 4.66 4.66 4.36 13.00 13.00 9.61
y2(10th)|optimal 1.00 1.00 1.00 1.00 1.00 1.00 1.00
y2(50th)|optimal 1.18 1.26 1.39 1.39 1.32 1.74 1.74
y2(90th)|optimal 2.45 4.66 4.79 4.96 13.00 13.00 11.33

m̃0|ω=0.85 1.00 1.00 1.15 1.20 1.00 1.10 1.10
y0|ω=0.85 1.00 1.00 0.93 0.87 1.00 0.87 0.87
τ̌1|ω=0.85 1.07 1.00 - - 0.96 0.97 -

F0(τ̌1)|ω=0.85 0.63 0.58 - - 0.55 0.56 -
τ́1|ω=0.85 - - 1.03 1.07 - - 1.06

F0(τ́1)|ω=0.85 - - 0.60 0.63 - - 0.62
E[

∑2
t=0 yt]|ω=0.85 3.79 5.20 5.23 5.10 10.96 10.52 7.23

y1(10th)|ω=0.85 1.00 1.00 0.83 1.00 1.00 1.00 1.00
y1(50th)|ω=0.85 1.00 1.00 0.83 1.00 1.00 1.00 1.00
y1(90th)|ω=0.85 2.16 4.66 4.66 4.36 13.00 12.90 7.32
y2(10th)|ω=0.85 1.00 1.00 1.00 1.00 1.00 1.00 1.00
y2(50th)|ω=0.85 1.18 1.26 1.39 1.39 1.32 1.32 1.74
y2(90th)|ω=0.85 2.45 4.66 4.79 4.96 13.00 13.00 9.02
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