News

Seminar - Petr Klapetek
14/02/2010 14:00 (Zasedaci mistnost budova B) »more info

Seminar - Guy Le Lay
11/02/2010 11:00 (Seminarni mistnost budova A) »more info

Our paper published in PRL Jan 2011
»more info

Seminar András Berkó
15/11/2010 15:00 (Seminarni mistnost budova A) »more info

Seminar Martin Svec
14/11/2010 15:00 (Seminarni mistnost budova A) »more info

2nd QPlus workshop 8/10/10
2nd International QPlus Workshop 8.10.2010 »more info

Seminar Y. J. Dappe 25/5/10
25/5/2010 10:00 (Seminarni mistnost budova A) »more info

Seminar J. Repp 13/4/2010
14/3/2010 15:00 (Seminarni mistnost budova A) »more info

Seminar T. Novotny 2/3/2010
»more info

Seminar R. Martonak 23/2/10
»more info

4/2/10 Colloquium S. Lindsay
»more info

18/1/10 Our work highlighted on Nanotech.org website.
»more info

30/12/09 Our paper about atomic contrast of KPFM published in PRL
»more info

Seminar J.P. Lewis 9/12/09 14:00
»more info

Seminar P. Kocan 25/11/09 15:00
»more info

14.-15.10. 2009 workshop "Simultaneous STM/AFM measurements using tuning fork based sensors"
»more info

Electron transport at atomic scale

Although significant progress in the understanding of nanocontacts has been achieved in the last few years, there are still many fundamental open questions concerning the influence of the enhanced chemical reactivity or changes of mechanical and transport properties during atomic-scale contact formation/breaking. We aim to study both experimentally and theoretically the electron transport at atomic scale. Main goal is to understand the relation between mechanical and electrical properties of atomic contacts.

We perform simultaneous STM/AFM measurements where the tunneling current and forces acting between SPM probe and sample are recorded together. The experimental measurements are completed by the state-of-art theoretical analysis based on the combination of the total energy DFT calculations and Green’s function methods [1,2]. In particular, we investigated the electron transport during the formation of the chemical bond between an apex atom and Si adatom on the Si(111)-(7x7) surface [1]. We found a striking decrease of the tunneling current in a near-to-contact regime. This effect is driven by the substantial local modification of the atomic and electronic structure of the surface. The chemical reactivity of the adatom dangling bond states that dominate the electronic density of states close to the Fermi level and their spatial localization result in a strong modification of the electronic current. 

We have also simulated the formation of gold monoatomic chains [3]. Our calculations showed that, even for a noble metal like Au where the barrier for dissociation in the surface is more than 1 eV, the enhanced chemical reactivity of these stressed Au monoatomic wires (due to the reduced dimensionality and the applied strain) makes the dissociation possible (with a barrier around 0.1 eV) and explains the fractional conductance peaks, that are associated to the resulting atomic hydrogen adsorbed on the Au wire [3]. These observations provide insight into possible new ways to control the catalytic process in the nanoscale. 

  1. P. Jelinek, M. Svec, P.Pou, R. Perez and V. Chab, “Tip-Induced Reduction of the Resonant Tunneling Current on Semiconductor Surfaces” Phys. Rev. Lett. 101, 176101 (2008).
  2. J.M. Blanco, C. Gonzalez, P. Jelinek, J. Ortega, F. Flores, and R. Perez, "First-principles simulations of STM images: From tunneling to the contact regime" Phys. Rev. B 70, 085405 (2004).
  3. P. Jelinek, R. Perez, J. Ortega, and F. Flores "H2 Dissociation over Au Nanowires and the Fractional Conductance Quantum" Phys. Rev. Lett. 96, 046803 (2006).